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Double Butterfly Spectrum for Two Interacting Particles in the Harper Model
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We study the effect of interparticle interactidh on the spectrum of the Harper model and show
that it leads to a pure-point component arising from the multifractal spectrum of the noninteracting
problem. Our numerical studies allow us to understand the global structure of the spectrum. An
analytical approach developed permits us to understand the origin of localized states in the limit of
strong interactiorV and fine spectral structure for sméll [S0031-9007(96)01788-7]

PACS numbers: 05.45.+b, 72.10.Bg, 72.15.Qm

Recently a great deal of attention has been devoted to treven such a simple model has a number of unexpected
investigation of incommensurate systems exhibiting sinproperties [18]. For example, repulsjadtractive short
gular continuous spectrum with many interesting multi-range interaction leads to the appearance of effective
fractal properties (see, e.g., [1-3]). Among the physicapair states in which two particles propagate together on
models, one of the most popular is the Harper model o distance much larger than the one-particle localiza-
electrons on a two-dimensional square lattice in the pregion length without interaction. Surprisingly the first
ence of a perpendicular magnetic field [4,5]. This systermumerical studies of interaction effect in a quasiperiodic
can be reduced to the study of a rather simple model gbotential showed an opposite tendency [19]. Namely,
particle dynamics on a one-dimensional quasiperiodic latrepulsivg/attractive interaction leads to the appearance
tice. The energy spectrum exhibits multifractal propertieof localized states while in the absence of interaction
and the band spectrum for rational values of magnetic fluxnultifractal spectrum generated quasidiffusive spreading
looks like a butterfly. In spite of the academic characterof wave packets on the lattice. However, the numerical
of such a model, experiments have been performed duringpproach used in [19] allowed us to study only the wave
the last ten years exhibiting this multifractal butterfly struc-packet evolution while the structure of the spectrum itself
ture. One of the first among them was performed in 198%vas not directly accessible. Therefore, to understand
using superconducting networks [6] and more recently exthe spectral structure and the nature of eigenstates,
periments with superlattices also allowed us to observe thee performed numerical simulations by direct diago-
first hierarchical steps of multifractal butterfly structure [7]. nalization based upon the Lanczos algorithm.

An in-depth understanding of such an intricate spec- As a basic model for our investigations we consider
tral structure attracted the interest of mathematicianshe model of two interacting particles (TIP) in the Harper
and physicists who developed new approaches for itproblem described by the following eigenvalues equation:
investigation such as noncommutative geometry [8],(2) cogyn; + B1) + 2A coSyny + B2)+ U8, n,1@m, i+
pseudodifferential operators [9], functional analysis [10],
renormalization group approach [11,12], and thermody- ®ni+1n T @Pni=tn T Prim+1 + Pnimy—1 = E@nyn, - 1)
namical formalism [13]. All these tools allowed us to Without interaction, each particle moves in quasiperiodic
study the problem on rigorous mathematical ground andHarper potential andy/27 = ¢/¢o = « is the ratio
to understand the properties of eigenstates. For examphetween the magnetic flux within one unit cell of the
using the duality between momentum and spatial coordisquare lattice and the flux quantumy = h/e. The
nate [14], it is possible to prove rigorously the existenceparametera plays the role of an effective Planck’s
of localized or delocalized states [15,16]. It was alsoconstant andB;, are related to the quasimomentum
found that quantum systems which are chaotic in theeomponents in the noninteracting problem. The parameter
classical limit may have quite unusual properties in thex characterizes the strength of the quasiperiodic potential
presence of underlying quasiperiodic structure [1,13,17]. and for the case of electrons on a square latiice 1 [5].

All the works mentioned above were done for oneStrong analytical and numerical evidence has been given
particle dynamics. However, even from the physics ofthat the spectrum is pure point and the states are localized
the original Harper model, it is clear that the interactionwhen A > 1 while for A < 1 the spectrum is continuous
between electrons on the square lattice in the presenceith extended eigenstates [1,10,14,20]. The strength of
of magnetic flux plays an important role. Therefore it isthe short range on-site interaction is characterized/by
natural to address the question of the influence of interadNe concentrate our investigations on the case 1,
tion on multifractal spectrum. The most simple exampleB;, = B when for U = 0 the spectrum is multifractal
of such a case is an interaction between two particledor irrational values ofy/27. We consider only the
Recently it was found that in the case of random potentiafymmetric TIP states.
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In the absence of interaction, the corresponding twdhe spectrum edge. Without interaction, the band edge is
particle spectrum results from the superposition of twogiven byE+ (o) = =8 ¥ 4ma(m; + my + 1) + m2a?[2 +
one-particle spectra of the Harper model and is shown i2m; + 1)> + (2m, + 1)?]/4 + O(a?), which is a superpo-

Fig. 1(a). sition of two Hofstadter butterflies in the semiclassical
When increasing the strength of the interactidnthe  regime [21]. The integers,, m, are the Landau quantum
spectrum is split into two butterflies which are slightly numbers for oscillator states near the bottoms of potential

shifted one in respect to the other. However, one ofminima. If two particles are located in different minima,
them remains almost at the same place corresponding tbe interaction between them is negligibly small and the
the noninteracting case of Fig. 1(a). The shifted butterflyenergy levels are not shifted ly. These energy states
moves to the right since the repulsive interactidn> 0 correspond to a nonshifted butterfly with dense spectrum
gives a global increase of energy. A typical cdse=1  since there are many states when TIP are separated from
of the double butterfly spectrum is presented in Fig. 1(b).each other. If TIP are located in the same potential mini-

The main features which can be immediately observednum, the interaction gives an energy shift which in the first
in Fig. 1(b) are the smoothness of the edge of the shiftedrder of perturbation theory BE+- = U./a form;, = 0
butterfly, the less dense character of its spectrum, and thendm;, = (0; 1) being in good agreement with numerical
filling of some internal energy gaps (see, for exampledata forU < 1 as can be seen in Fig. 2(a). This shows
neara = 0.6 andE = —1.5). However, the gaps in the that the shifted butterfly corresponds to the case when the
spectrum still exist on all scales.

The shift of one butterfly and the almost unchanged form : :
for the other at moderate values of interactidisan be un- . - (@)
derstood in the following simple way. For that we choose
small values of fluxx < 1 and use the perturbation the-
ory in U on the basis of harmonic oscillator functions
to get analytical expressions for the Landau sublevels at
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FIG. 2. Energy band edges (&) = 0.4, dots are numerical
FIG. 1. Spectrum of the two particle Harper problem [(a) up],data, and solid curves are perturbation theory results (see text);
with U = 0 obtained for rational values of /27 = a = p/q (b) U = 10, dots are data from Fig. 4, and solid curves are
with ¢ = 19; [(b) down] with U = 1 andgq = 23. given by theory described in the text.
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two particles are located near each other. The density of The physical reason for the appearance of such a sepa-
such states is smaller than in the case when particles arated spectral band can be understood in the following way.
far from each other and that is why the shifted butterfly isFor strongU, there are states for which TIP are localized
less dense. on the same site so tha{, = n. According to (1) the

Direct analysis of eigenstates for irrational flux valuesenergy of the states i§, = 4Acogyn + B) + U. The
(which are approximated by a continuous fraction expantransition between these states can be obtained with first
sion) also shows that the states in the shifted part corresrder perturbation theory it/ U which gives the effective
spond to the situation where two particles stay near eackigenvalue equation

other. However, contrary to the TIP in a random poten- [4Acodyn + B) + Uldn+

tial, the particles here cannot propagate together and stay

exponentially localized near the origin as can be seen with Vert(fnr1 + ¢dn-1) = Edpn. 2)

the typical 3D plot of Fig. 3. Here V. is the hopping between such states due to

We also investigated the structure of eigenstates in theirtual transitions via states withy # n,. ForU > 1, the
more dense part of the spectrum (nonshifted butterfly)energy difference between diagonal and off-diagonal states
In that case the eigenstates are delocalized and quite very large and thereforé.;s ~ 1/U. The equation for
similar to those corresponding to the noninteracting casaliagonal eigenstates has the form of the Harper equation
Here the two particles mainly spread quasidiffusivelywith A.sf = 2A/Ves > 1. Because of this, these states
along the quasiperiodic lattice and interaction is notare exponentially localized so that particles stay near the
important for them in agreement with [19]. The propertiesorigin. In some sense, the interaction renormalizes the
of eigenstates can also be analyzed with the help ofonstantA — A in the Harper equation for a pair of
the inverse participation ratio (IPR) = (3, , W7 ,)~'  particles. For strong/, the renormalizediss is much
(Fig. 4). The localized states with smajl correspond larger than 1 that, according to the Aubry duality [14],
to the part of the shifted butterfly with the less densdeads to a localization of TIP pairs in the quasiperiodic
spectrum while the unshifted butterfly is associated tgootential. Our conjecture is that in a sengg remains
large ¢ with delocalized states. It is interesting to larger than 1 even for moderate values @f~ 1. In
determine the IPR¢, in the noninteracting eigenstates a sense interaction breaks Aubry duality leading to the
basis. Such an approach has been quite useful for Tigppearence of a localized TIP phase. However more
in a random potential [22] but the situation for TIP in the rigorous analytical confirmations of this conjecture are
Harper model is quite different. Namely, the delocalizeddesirable especially keeping in mind that in a random
states have a very small value &f while the localized potential the interaction witli ~ 1 leads to delocalization
ones are delocalized in the noninteracting eigenstate®f TIP pair states. The expressions for the TIP energy
basis and have very largg (see Fig. 3). edges of a shifted spectral band can be found using

With a further increase of/ the shifted butterfly goes Semiclassical analysis at small flux values [8,23]. For
on moving to the right and becomes more and mordrig. 2(b), they giveE = 6.0 + 0.59 X 27a + O(a?)
deformed. Starting from the interaction strength= 10,  [24] in agreement with numerical data.
this butterfly is transformed into a spectral band with a For the part of the spectrum represented by the
width two times smaller than the original spectruntat=  unshifted butterfly atU > 1, the eigenstates become
0. The center of this band is located at enefyy= U. A~ more and more similar to asymmetric TIP configuration,
typical example of a global spectrum is shown in Fig. 5. i.e., ¢,,,, = sgn(n; — ny) (,\/,(ﬂ),\/,(zf) - ,\/,(zi))(,f))/\/i,

FIG. 3. Semilog plot of W,, ., = |¢,,.,|> for localized €=—-1.3376,—10=<InW =—1,£=5.9,& =193 [(a) left]) and
delocalized £ = —1.7368, —10 < InW = —3,¢ = 214, &, = 12.5 [(b) right]) eigenstates a/ = 1,a = 34/55, 8 = /2.
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FIG. 4. Inverse participation ratiog vs eigenenergiest
shown até = 2; U = 1, = 34/55,0 = B < 27r.

where y-s are one-particle eigenfunctions. Because o

this, the effective interaction becomes quite small and

the unshifted butterfly at larg& (TIP are in different
wells) looks very similar to the one @& = 0. The main
difference is the splitting of Landau sublevels which
appears due to an effective small interaction betwee
particles located in the same well. According to the
expression forp,, »,, such a splitting can take place only
when Landau quantum numbers are different & m,)
so thaty) # y®. As a result the first sublevel with
mi, = 0 is not split. For the noninteracting part, the
edges are given by the sanfie (o) as forU = 0 while
the U-induced shift isSE(a) = —8ma/(U + 4) (see
[24]) being in agreement with data in Fig. 2(b).

In summary,20 years afterHofstadter [5], our inves-

tigations of spectra and eigenstates for TIP in the Harper
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FIG. 5. Same as in Fig. 1 withh = 10 andg = 28.
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model (1) show that repulsiyattractive interaction leads
to the appearance of localized states. Our conjecture is
that due to Aubry duality breaking a localized TIP pair
phase appears at an arbitrary small interaction strength.
At the same time we expect that this breaking is absent
for TIP on the 2D lattice with magnetic flux. However,
the later model requires separate investigations [24].
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