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Double Butterfly Spectrum for Two Interacting Particles in the Harper Model
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We study the effect of interparticle interactionU on the spectrum of the Harper model and show
that it leads to a pure-point component arising from the multifractal spectrum of the noninteracting
problem. Our numerical studies allow us to understand the global structure of the spectrum. An
analytical approach developed permits us to understand the origin of localized states in the limit of
strong interactionU and fine spectral structure for smallU. [S0031-9007(96)01788-7]
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Recently a great deal of attention has been devoted to
investigation of incommensurate systems exhibiting s
gular continuous spectrum with many interesting mu
fractal properties (see, e.g., [1–3]). Among the physi
models, one of the most popular is the Harper mode
electrons on a two-dimensional square lattice in the p
ence of a perpendicular magnetic field [4,5]. This syst
can be reduced to the study of a rather simple mode
particle dynamics on a one-dimensional quasiperiodic
tice. The energy spectrum exhibits multifractal propert
and the band spectrum for rational values of magnetic
looks like a butterfly. In spite of the academic charac
of such a model, experiments have been performed du
the last ten years exhibiting this multifractal butterfly stru
ture. One of the first among them was performed in 19
using superconducting networks [6] and more recently
periments with superlattices also allowed us to observe
first hierarchical steps of multifractal butterfly structure [7

An in-depth understanding of such an intricate sp
tral structure attracted the interest of mathematici
and physicists who developed new approaches for
investigation such as noncommutative geometry [
pseudodifferential operators [9], functional analysis [1
renormalization group approach [11,12], and thermo
namical formalism [13]. All these tools allowed us
study the problem on rigorous mathematical ground a
to understand the properties of eigenstates. For exam
using the duality between momentum and spatial coo
nate [14], it is possible to prove rigorously the existen
of localized or delocalized states [15,16]. It was a
found that quantum systems which are chaotic in
classical limit may have quite unusual properties in
presence of underlying quasiperiodic structure [1,13,17

All the works mentioned above were done for o
particle dynamics. However, even from the physics
the original Harper model, it is clear that the interacti
between electrons on the square lattice in the prese
of magnetic flux plays an important role. Therefore it
natural to address the question of the influence of inte
tion on multifractal spectrum. The most simple examp
of such a case is an interaction between two partic
Recently it was found that in the case of random poten
52 0031-9007y96y77(23)y4752(4)$10.00
the
n-
i-
al
of
s-
m
of
t-
s

ux
er
ing
-
5
x-
he
].
c-
ns
its
],
],
y-

nd
ple
i-
e
o
e
e
.
e
f

n
ce

s
c-

le
s.

ial

even such a simple model has a number of unexpe
properties [18]. For example, repulsiveyattractive short
range interaction leads to the appearance of effec
pair states in which two particles propagate together
a distance much larger than the one-particle local
tion length without interaction. Surprisingly the fir
numerical studies of interaction effect in a quasiperio
potential showed an opposite tendency [19]. Nam
repulsiveyattractive interaction leads to the appeara
of localized states while in the absence of interact
multifractal spectrum generated quasidiffusive spread
of wave packets on the lattice. However, the numer
approach used in [19] allowed us to study only the wa
packet evolution while the structure of the spectrum its
was not directly accessible. Therefore, to underst
the spectral structure and the nature of eigensta
we performed numerical simulations by direct diag
nalization based upon the Lanczos algorithm.

As a basic model for our investigations we consid
the model of two interacting particles (TIP) in the Harp
problem described by the following eigenvalues equat

f2l cossgn1 1 b1d 1 2l cossgn2 1 b2d1Udn1,n2 gwn1,n21

wn111,n2 1 wn121,n2 1 wn1,n211 1 wn1,n221 ­ Ewn1,n2 . (1)

Without interaction, each particle moves in quasiperio
Harper potential andgy2p ­ fyf0 ­ a is the ratio
between the magnetic flux within one unit cell of t
square lattice and the flux quantumf0 ­ hye. The
parametera plays the role of an effective Planck
constant andb1,2 are related to the quasimomentu
components in the noninteracting problem. The param
l characterizes the strength of the quasiperiodic pote
and for the case of electrons on a square latticel ­ 1 [5].
Strong analytical and numerical evidence has been g
that the spectrum is pure point and the states are loca
whenl . 1 while for l , 1 the spectrum is continuou
with extended eigenstates [1,10,14,20]. The strength
the short range on-site interaction is characterized byU.
We concentrate our investigations on the casel ­ 1,
b1,2 ­ b when for U ­ 0 the spectrum is multifracta
for irrational values ofgy2p. We consider only the
symmetric TIP states.
© 1996 The American Physical Society
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In the absence of interaction, the corresponding
particle spectrum results from the superposition of t
one-particle spectra of the Harper model and is show
Fig. 1(a).

When increasing the strength of the interactionU, the
spectrum is split into two butterflies which are sligh
shifted one in respect to the other. However, one
them remains almost at the same place correspondin
the noninteracting case of Fig. 1(a). The shifted butte
moves to the right since the repulsive interactionU . 0
gives a global increase of energy. A typical caseU ­ 1
of the double butterfly spectrum is presented in Fig. 1(

The main features which can be immediately obser
in Fig. 1(b) are the smoothness of the edge of the shi
butterfly, the less dense character of its spectrum, and
filling of some internal energy gaps (see, for examp
neara ­ 0.6 andE ­ 21.5). However, the gaps in th
spectrum still exist on all scales.

The shift of one butterfly and the almost unchanged fo
for the other at moderate values of interactionU can be un-
derstood in the following simple way. For that we choo
small values of fluxa ø 1 and use the perturbation th
ory in U on the basis of harmonic oscillator functio
to get analytical expressions for the Landau sublevel

FIG. 1. Spectrum of the two particle Harper problem [(a) u
with U ­ 0 obtained for rational values ofgy2p ­ a ­ pyq
with q # 19; [(b) down] with U ­ 1 andq # 23.
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the spectrum edge. Without interaction, the band edg
given byE6sad ­ 68 7 4pasm1 1 m2 1 1d 6 p2a2f2 1

s2m1 1 1d2 1 s2m2 1 1d2gy4 1 Osa3d, which is a superpo-
sition of two Hofstadter butterflies in the semiclassic
regime [21]. The integersm1, m2 are the Landau quantum
numbers for oscillator states near the bottoms of poten
minima. If two particles are located in different minim
the interaction between them is negligibly small and
energy levels are not shifted byU. These energy state
correspond to a nonshifted butterfly with dense spectr
since there are many states when TIP are separated
each other. If TIP are located in the same potential m
mum, the interaction gives an energy shift which in the fi
order of perturbation theory isDE6 ­ U

p
a for m1,2 ­ 0

andm1,2 ­ s0; 1d being in good agreement with numeric
data forU , 1 as can be seen in Fig. 2(a). This sho
that the shifted butterfly corresponds to the case when

FIG. 2. Energy band edges (a)U ­ 0.4, dots are numerica
data, and solid curves are perturbation theory results (see t
(b) U ­ 10, dots are data from Fig. 4, and solid curves a
given by theory described in the text.
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two particles are located near each other. The densit
such states is smaller than in the case when particles
far from each other and that is why the shifted butterfly
less dense.

Direct analysis of eigenstates for irrational flux valu
(which are approximated by a continuous fraction exp
sion) also shows that the states in the shifted part co
spond to the situation where two particles stay near e
other. However, contrary to the TIP in a random pote
tial, the particles here cannot propagate together and
exponentially localized near the origin as can be seen w
the typical 3D plot of Fig. 3.

We also investigated the structure of eigenstates in
more dense part of the spectrum (nonshifted butterfl
In that case the eigenstates are delocalized and q
similar to those corresponding to the noninteracting ca
Here the two particles mainly spread quasidiffusive
along the quasiperiodic lattice and interaction is n
important for them in agreement with [19]. The properti
of eigenstates can also be analyzed with the help
the inverse participation ratio (IPR)j ­ s

P
n1,2

W2
n1,n2

d21

(Fig. 4). The localized states with smallj correspond
to the part of the shifted butterfly with the less den
spectrum while the unshifted butterfly is associated
large j with delocalized states. It is interesting
determine the IPRj0 in the noninteracting eigenstate
basis. Such an approach has been quite useful for
in a random potential [22] but the situation for TIP in th
Harper model is quite different. Namely, the delocaliz
states have a very small value ofj0 while the localized
ones are delocalized in the noninteracting eigenst
basis and have very largej0 (see Fig. 3).

With a further increase ofU the shifted butterfly goes
on moving to the right and becomes more and m
deformed. Starting from the interaction strengthU $ 10,
this butterfly is transformed into a spectral band with
width two times smaller than the original spectrum atU ­
0. The center of this band is located at energyE ø U. A
typical example of a global spectrum is shown in Fig. 5
4754
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The physical reason for the appearance of such a s
rated spectral band can be understood in the following w
For strongU, there are states for which TIP are localiz
on the same site so thatn1,2 ­ n. According to (1) the
energy of the states isEn ­ 4l cossgn 1 bd 1 U. The
transition between these states can be obtained with
order perturbation theory in1yU which gives the effective
eigenvalue equation

f4l cossgn 1 bd 1 Ugfn1

Veffsfn11 1 fn21d ­ Efn . (2)

Here Veff is the hopping between such states due
virtual transitions via states withn1 fi n2. ForU ¿ 1, the
energy difference between diagonal and off-diagonal st
is very large and thereforeVeff , 1yU. The equation for
diagonal eigenstates has the form of the Harper equa
with leff ­ 2lyVeff ¿ 1. Because of this, these stat
are exponentially localized so that particles stay near
origin. In some sense, the interaction renormalizes
constantl ! leff in the Harper equation for a pair o
particles. For strongU, the renormalizedleff is much
larger than 1 that, according to the Aubry duality [1
leads to a localization of TIP pairs in the quasiperio
potential. Our conjecture is that in a senseleff remains
larger than 1 even for moderate values ofU , 1. In
a sense interaction breaks Aubry duality leading to
appearence of a localized TIP phase. However m
rigorous analytical confirmations of this conjecture a
desirable especially keeping in mind that in a rand
potential the interaction withU , 1 leads to delocalization
of TIP pair states. The expressions for the TIP ene
edges of a shifted spectral band can be found u
semiclassical analysis at small flux values [8,23]. F
Fig. 2(b), they giveE ­ 6.0 1 0.59 3 2pa 1 Osa2d
[24] in agreement with numerical data.

For the part of the spectrum represented by
unshifted butterfly atU ¿ 1, the eigenstates becom
more and more similar to asymmetric TIP configuratio
i.e., fn1,n2 ­ sgnsn1 2 n2d sxs1d

n1 x
s2d
n2 2 x

s1d
n2 x

s2d
n1 dy

p
2,
FIG. 3. Semilog plot of Wn1,n2 ­ jfn1,n2j
2 for localized (E ­ 21.3376, 210 # ln W # 21, j ­ 5.9, j0 ­ 193 [(a) left]) and

delocalized (E ­ 21.7368, 210 # ln W # 23, j ­ 214, j0 ­ 12.5 [(b) right]) eigenstates atU ­ 1, a ­ 34y55, b ­
p

2.
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FIG. 4. Inverse participation ratiosj vs eigenenergiesE
shown atj ­ 2; U ­ 1, a ­ 34y55, 0 # b , 2p.

where x-s are one-particle eigenfunctions. Because
this, the effective interaction becomes quite small a
the unshifted butterfly at largeU (TIP are in different
wells) looks very similar to the one atU ­ 0. The main
difference is the splitting of Landau sublevels whic
appears due to an effective small interaction betwe
particles located in the same well. According to t
expression forfn1,n2 , such a splitting can take place on
when Landau quantum numbers are different (m1 fi m2)
so thatxs1d fi x s2d. As a result the first sublevel with
m1,2 ­ 0 is not split. For the noninteracting part, th
edges are given by the sameE6sad as for U ­ 0 while
the U-induced shift isdEsad ­ 28paysU 1 4d (see
[24]) being in agreement with data in Fig. 2(b).

In summary,20 years afterHofstadter [5], our inves-
tigations of spectra and eigenstates for TIP in the Har

FIG. 5. Same as in Fig. 1 withU ­ 10 andq # 28.
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model (1) show that repulsiveyattractive interaction lead
to the appearance of localized states. Our conjectu
that due to Aubry duality breaking a localized TIP p
phase appears at an arbitrary small interaction stre
At the same time we expect that this breaking is ab
for TIP on the 2D lattice with magnetic flux. Howeve
the later model requires separate investigations [24].
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