Proceedings of the XOXXIVth RENCONTRES DE MORIOND
Serias: Moriond Warkshops
Les Arcs, France January 23-30, 1999

QUANTUM PHYSICS
AT

MESOSCOPIC SCALE

edited by

C. Glattli
M. Sanquer

J. Tréin Thanh Van

£

— l I
Ebr

g

T meeame du Hoggar, PA de Courtabauf, BLP. 112, 91944 Les Ulis cedex A, Frunce



Sponsored by

- CNRS (Centre National de la Recherche Scientifique)

- EC (European Comimission)

- CEA (Commissariat a I'Energie Atomique)

- NEDO (New Energy and Industrial Technology Development Organization)

KX XIVih Rencontres de Moriond
Les Arcs, Savole, France - January 23-30, 1999

Quantum physics at mesoscopic scale
Series: Moriond workshops

ISBN 2-86883-506-6
©@ EDP Sciences, 2000

This weark is subject to copyright, All ights are reserved, wheather the whole or part of the
materal s concemed, specifically the rghts of tronslation. reprinfing, re-use of
ilustrations, recitation, broad-casting, reproduction on microfilms of in other ways, and
storage in data banks. Duplication of this publication or parts theraof is only permitted
under the provisions of the French Copyright Law of March 11, 1957, Violations fall under
the prozecution act of the French Copyright Lo,



CONTENTS

Préface
Foreword

L. Carbon Nanotubes, Atomic Point Contacts and AFM Techniques

Carbon Nanotubes as a One-dimensional Luttinger Liquid
Orthogonality Catastrophes in Carbon Nanotubes

Universality of Electron Correlations and Mott Transition
in Carbon Nanotubes

Transport Studies of Multiwalled Carbon Nanotubes
Utilizing AFM Manipulation '

Weak Localisation and Universal Conductance Fluctuations
in Multiwalled Carbon Nanotubes

Quantentransport in Multiwall Carbon Nanotubes
Quantum Squeezing Micron-sized Cantilevers

Cohesion, Conductance and Charging Effects in a Metallic
Manocontact

Fabrication and Reshaping oF Semiconductor Nanostructures
by AFM Lithography

I1. Metal-Insulator Transition in 2DEG

A New Quantum Phase in Two Dimensions

Intermediate Regime between the Fermi Glass and the Mott
Insulator in One Dimension

Quantum Phase Transition in the p $iGe System
Re-entrant B = ( Insulator-metal-insulator Transition

in Two Dimensions ’
MIT in a 2DEG with Controlled Potential Perturbation
Suppression of the Metallic Behavior in Two Dimensions
by Spin Flip Scattering

Two Electron View on MIT in Two Dimensions
Temperature and Electric Field Scaling in a 2D Hole Gas

M. Bockrath et al,
L, Balents

A. A. Odintsov et al.
L. Roschier et al,

C. Naud, et al,
C. Schoenenberger et al,
M. P. Blencowe et al.

C. A Stafford et al.

& Liischer et al

(7. Benenti ef al,

. Weinmann, et al.
P. T. Coleridge et af.

AR, Hamilton er al.
R Jiggi et al

D, Papovic et al,

D, Shepelyansky
V. Senz et al.

Vil
VIII

19

25

31
37
43

49

55

63

69
75

al
87

o3
93
105



TWO ELECTRON VIEW ON METAL-INSULATOR TRANSITION
IN TWO DIMENSIONS

D. L. SHEPELYANSKY
Loborateire de Physique Quantique, UMR 5626 du CNRS,
Université Paul Sabatier, F-31062 Toulouse Cedex {, France

The model of two electrons with Coulomb interaction on a two-dimensional (2D) disordered
lattice is considered. It is shown that the interaction can give a sharp transition to delocalized
states in a way similar to the Anderson transition in 3D, The localized phase appears when
the ratio of the Coulomb energy to the Fermi energy becomes larger than some critical value
dependent on the discrder. The relation to the experiments on metal-insulator transition in

2D is also discussed.

1 Introduction

According to D. Tsui !, “the important thing is the interplay between disorder and electron-
electron interactions. The FQHE (fractional quantum Hall effect) is, in some sense, the clean
limit. But there's another limit, where both interaction and disorder are important ... there's
always some disorder.” Indeed, the recent experimental discovery of metal-insulation transition
in two dimensions (2D} by Kravchenko ef el ? attracted a great interest to this problem.
This transition is especially surprising since according to the well established theoretical result
3 all states of non-interacting electrons in 2D disordered potential are exponentially localized.
However, in reality the electron-electron interaction is present and the original result ?, as well
as the new results of different groups in experiments with different materials 15678810 chow
that the interaction can induce metallic behavior. Indeed, the majority of experiments are done
in the situation where the parameter r, = 1/, /m0y =~ E../Ep 3 1. Here, E,, is the energy
of Coulomb interaction, Ep is the Fermi energy determined by the charge density n, and a}
is the effective Bohr radius. In some experiments the vy value was as large as 10 - 30, In this
gituation the electrons are located far from each other and in & first approximation it is natural
to consider the problem of only two electrons with Coulomb interaction. The first consideration
of two particles with strong attraction was done by Dorokhov ' but it was ignored by the
community. The studies of two interacting particles with short range interaction showed that
repulsive/attractive interaction can lead to a strong increase of localization length or even to
delocalize pairs of particles in dimension d > 25134050 4 cearding to '%'? in 2D the pairs
of particles remain localized and their localization length [, grows smoothly with the increase
of disorder strength U or one-particle localization length {1 In{l./l;) ~ & > with & ~ Typa,
where [y ~ Uﬂf'ﬂf ig the interaction induced transition rate, py ~ I‘f,n"V is two-particle density
of states in the middle of the band and V is the hopping strength propoertional to the energy
band size B (B = 4V for weak disorder). The case of the long range Coulomb interaction
requires separate analysis. Generally, one can expect that the delocalization effect will be even
stronger in this case since the particles are always interacting, in a difference from a short range
interaction case.

2  Analytical estimates

The first estimates for two electrons with Coulomb interaction on a 2D disordered Anderson
lattice were presented in 7. The lattice is characterized by the nearby hopping V' and the
diagonal disorder in the interval [—W /2, W/2], while the interaction is I7{|r; — r3|. Then the
parameter v, = Uf(2V,/mn;) where n, is the filling factor. If the distance R between the
electrons is much larger than the one-particle localization length [, {Inly ~ (V/W)?*) then the
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Figure 1: Dependence of the inverse participation ratio £; on resealed one-particle energy ¢f 8 for
Ufv =2, L= 16(r, =638 8 =4V)and W/V =5,7,10,15 (from up to down).

two-body coupling appears only in the dipole-dipole interaction term. This gives the typical
matrix element [, ~ [7/R* 17 and the transition rate [z ~ U¥pg, where still pz is determined
by the estimate given above since the electrons can have a jump only on a distance {; from the
initial position (otherwise wave function overlap drops exponentially). As the result the two
electron levels become mixed by interaction when k, = y* ~ Typy ~ {ri“r“'fr,}z = 1, where rp,
is the value of r; at the density n, = 1/I¥ (one electron in a box of I size). For x. > 1 the
Coulomb interaction leads to a delocalization of two electrons in a way similar to 3D Anderson
transition'”. Indeed, in this case the hopping goes effectively in 3D: the center of mass moves in
2D and in addition the electrons slowly rotate around it that gives 3 dimensions. The rotation
goes on a ring of width Iy and of radius R ~ I.:.,.ra % [y (for O ~ V); the size of the ring is fixed
by the energy conservation € ~ U/R. Due to that the length I, changes sharply from [. ~ [; to
b~ by exp[r!fﬁ.-:,]l when &, crosses the critical value &, ~ 17, It is interesting to note that,
as in the experiments (see Refs. 2 4-10), the localized phase corresponds to the large values of
vy physically the two-body interaction becomes weaker at low density. The diffusion rate in
the metallic phase can be estimated as D, ~ 3Ty ~ Vi, /lf. Near the critical point s, ~ 1 the
diffusion rate (conductivity) drops with the decrease of disorder (increase of [;). These estimates
are done for the excited states in the middle of the band.

3 MNumerical results

The above problem of two electrons in the 2D Anderson model in the triplet state is studied
numerically. The maximal lattice size is L = 24. The numerical diagonalization is done in the
following way: the Hamiltonian is rewritten in the basis of noninteracting eigenstates, from which
only first M low energy one-particle states {orbitals) are selected and after that the Hamiltonian
is diagonalized exactly. The special check is done to ensure that the low energy stales are nol
effected by the above cutoff (eg by changing M in few times). Usually ND=4000 disorder
realizations are used to average the fluctuations. The fact that the effect of interaction strongly
depends on l; (or W) is demonstrated in Fig. 1. Indeed, here the number of noninteracting
eigenstates & contributing in an eigenfunction at fixed interaction U//V = 2 is increased in
about 50 times only by the change of the disorder W. This confirms the analytical result
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Figure #: Dependence of the rescaled traosition rate I's (defined via the relation Ty = (& — 1)/ pz(e) with
praie] being the two-electron density of states) on «f B for the parameters of Fig.1 and the same order of curves,
A=BIL%

according to which the effect of interaction becomes stronger for larger [} since £3 ~ Dypa(e).
The last relation allows to determine numerically the dependence of the transition rate 'y on the
excitation energy = 2¢, counted from the ground state. This dependence is presented in Fig,
2 and for a moderate disorder shows a very flat dependence on ¢ and even a certain increase of 'y
very close to the ground state. If to assume that the matrix element U is independent of ¢ then
['a should drop linearly with ¢ since pa(e) = (Je/V? '*, However, for a short range interaction
is has been shown that for localized states ['y can be independent of ¢ due to enbanced return
probability near the Fermi level '®, For the case of long range interaction similar effects can be
responsible for the flat variation of [y with ¢ in Fig. 2. More detailed studies are required to
understand the properties of I's near the ground state.

Another part of numerical studies is devoted Lo the investigation of the level spacing statistica
in the above model. Indeed, it is known that the localized phase is characterized by the Poisson
distribution Pp(s), the metallic phase has the Wigner-Dyson statistics Py p while the critical
transition point has an intermediate statistics independent of the system size'®. It is convenient
to study the transition between two limits with the help of the parameter 5 = [*(P(s) —
Py p(s))ds/ [ (Prls) — Pwpls))ds, where sg = 0.4720... is the intersection point of Pp(s) and
Py pls). In this way n = 1 corresponds to Ppis), and =0 to Pyp(s). The dependence of
7 on € is determined in the following way. For each disorder realization the spacing betwesn
nearby energy levels E; is determined and then is averaged over ND disorder realizations for
each ¢ giving the P(s) statistics and 1 as a function of averaged excitation energy ¢ = Ef2. At
higher energies the values of i are in addition averaged in a fixed encrgy interval. In this way
the total statistics obtained for P(s) and » varies from NS = 12000 for low energy states up to
NS = 10° at high energy with high density of levels. Un example of 5 variation with energy
for different system size L is shown in Fig. 3 (see also Fig. 1in'" for a stronger disorder).
For large L the statistics becomes close to Pe(s) at low energy and to Py p(s) at ¢ larger than
a critical energy e, dependent on the disorder and independent of L. The transition in the
spectral statistics can be qualitatively understand on the basis of the estimates given in the
previous section. Indeed, since the interaction energy is U/ R ~ ¢ the high energy states allow
to have particles closer to each other (i ~ IFfe) that increases their interaction and finally leads
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Figure 3: Dependence of 1 on e/ B for LfV = 2, W/V = § and different L: 10 {a); 12 (D); 16 (full diamond); 20
{*); 24 (x); so that 2.39 < r, < 9.57.

to delocalization for R > I':'”{U ~ V). In agreement with this picture the critical energy .
decreases with the increase of i) (decrease of W/V) as it can be seen from Fig. 1 in!7 and
Fig. 3. The fact that an interaction increases the localization length for two particles in 2D
has been also seen in the other numerical simulations !, However, the claim made there that
the short range interaction gives a transition from Jocalized to delocalized states is in a sharp
contradiction with the theoretical arguments '>'%'% and probably should be attributed to small
sizes used in?®?!, The numerical data for the Coulomb case presented in?! are somewhat similar
to the data presented here and in'7, even if any theoretical arguments in the favor of transition
were presented in?!,

The variation of P(s) with the interaction strength is shown in Fig. 4. At small I/ the
statistics approaches to the Polsson distribution while with the increase of I7 it tends to the
Wigner-Dyson case. In the vicinity of the critical point e, the statistics is close to the critical
statistics in the 3D Anderson model with periodic boundary conditions 2223 (see Fig. 4). This
gives one more support for the physical picture developed in the previous section according to
which two electrons in 2D are delocalized in a way similar to the 300 Anderson transition.

4 Conclusion

The analytical and numerical results obtained show that the Coulomb interaction leads to
delocalization of two electron states in a way similar to the Anderson transition in 3D for
TE STy < 1*1"3. The model is restricted only by two interacting electrons and has delocalization
only for excited states that represents its weak point. However, it gives a picture qualitatively
similar to experimentally observed metal-insulator transition in 2D ? and therefore it can be
useful for a future complete theory.
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