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Cooper problem in the vicinity of the Anderson transition

J. Lages and D. L. Shepelyansky*
Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite´ Paul Sabatier, F-31062 Toulouse Cedex 4, France

~Received 17 May 2000!

We study numerically the ground state properties of the Cooper problem in the three-dimensional Anderson
model. It is shown that attractive interaction creates localized pairs in the metallic noninteracting phase. This
localization is destroyed at sufficiently weak disorder. The phase diagram for the delocalization transition in
the presence of disorder and interaction is determined.
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The pioneering experimental results for normal-state
sistivity of high-temperature superconductors demonstrat
striking correlation between the optimal doping with ma
mal Tc in the superconducting phase and the Ander
metal-insulator transition~MIT ! in the normal phase ob
tained in a strong pulsed magnetic field.1 Namely, the MIT in
strong magnetic field takes place at such a doping for wh
Tc is maximal at zero magnetic field. More recent expe
ments on the superconductor-insulator transition~SIT! in
three dimensions~3D!,2–4 which were done in various mate
rials at different dopings and magnetic fields, also rev
close correlation between these transitions even if it is p
sible that the normal state remains metallic in so
materials.2,4 These experimental results put forward the i
portant theoretical problem of interaction effects in the vic
ity of Anderson transition in 3D. However, the full unde
standing of this problem is very difficult since even t
origin of the high-Tc phase is not yet established complete
Due to that it would be interesting to understand the effe
of interaction and disorder in a more simple model of ge
eralized Cooper problem5 of two quasiparticles above th
frozen Fermi sea which interact via the attractive Hubb
interaction in the presence of disorder. In spite of appar
simplicity of this problem it is rather nontrivial. Indeed, eve
if the great progress has been reached recently in the in
tigation of localized one-particle eigenstate properties,6 the
analytical expressions for the interaction induced matrix
ements in the localized phase and in the MIT vicinity are s
absent. Furthermore, the recent results for the problem
two interacting particles~TIP! in the localized phase demon
strated that the interaction effects for excited states can q
tatively change the eigenstate structure leading to the app
ance of delocalization.7–10 Due to that the investigation o
the ground state properties of the above model in the vici
of the Anderson transition in 3D represents an interes
unsolved problem which can shed light on the origin of S
in the presence of disorder.

To investigate the above problem we study numerica
the ground state properties of two particles with Hubbard
site attraction (U,0) in 3D Anderson model at half filling
In this case the one particle eigenstates are determined b
Schrödinger equation

Encn1V~cnÀ11cn¿1!5Ecn , ~1!

where n is the site index on the 3D lattice with period
boundary conditions applied,V is the nearest-neighbor hop
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ping and the random on-site energiesEi are homogeneously
distributed in the interval@2W/2,W/2#. It is well known that
at half filling ~the band center withE50) the MIT takes
place atWc /V'16.5 with the insulating and metallic phase
at W.Wc and W,Wc respectively~see, e.g., Refs. 11,12!.
To study this problem with interaction it is convenient
write its Hamiltonian in the basis of noninteracting eige
states of the Anderson model that gives

~Em1
1Em2

!xm1 ,m2
1U (

m18 ,m28
Qm1 ,m2 ,m

18 ,m
28
xm

18 ,m
28

5Exm1 ,m2
. ~2!

Herexm1 ,m2
are eigenfunctions of the TIP problem written

one-particle eigenbasisfm with eigenenergiesEm . The tran-
sition matrix elementsQm1 ,m2 ,m

18 ,m
28

are obtained by rewrit-

ing the Hubbard interaction in the noninteracting eigenba
of model ~1!. The Fermi sea is introduced by restricting th
sum in Eq.~2! to m1,28 .0 with unperturbed energiesEm

1,28

.EF . The value of the Fermi energyEF'0 is determined
by the filling factor m which is fixed atm51/2. To have
more close similarity with the Cooper problem we also
troduce the high energy cutoff defined by the condition
<m181m28<M . Such a rule gives an effective phonon fr
quencyvD}M /L3 whereL is the linear lattice size. Since
the frequencyvD should be independent ofL we keep the
ratio a5L3/M constant when varyingL. The majority of
data are obtained fora'30 ~Ref. 13! but we checked that its
variation by few times did not affect the results. Due to o
site nature of the Hubbard interaction only symmetric co
figurations are considered.

In fact the first studies of the model~2! with the frozen
Fermi sea had been done by Imry8 with the aim to analyze
the delocalization effect of TIP in the proximity of Ferm
level at finite particle density. This model was also stud
numerically in Ref. 14 where it was shown that nearEF the
interaction becomes effectively stronger comparing to
ergodic estimate used in Refs. 7,8. However the ab
studies8,14 were concentrated on the properties of excit
states in the repulsive caseU.0. On the contrary here we
analyze the ground state properties for the attractive c
SinceU,0, then even in the limit of large system sizeL the
particles are always close to each other in the ground s
8665 ©2000 The American Physical Society
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8666 PRB 62BRIEF REPORTS
that is qualitatively different from the caseU.0. In this way
the model~2! represents the generalized Cooper problem
the presence of disorder.

To study the characteristics of the ground statexm1 ,m2

(0) we

diagonalize numerically the Hamiltonian~2! and rewrite the
eigenfunction in the original lattice basisun& with the help of
relation between lattice basis and one particle eigenst
un&5(mRn,mfm . As the result of this procedure we dete
mine the two particle probability distributionF(n1 ,n2) in the
ground state~here n1,2 mark the positions of the two par
ticles!, from which the one particle probabilityf (n1)
5(n2

F(n1 ,n2) and the probability of interparticle distanc

f d(r )5(n2
F(r1n2,n2) with r5n12n2 are extracted. For

graphical presentation these probabilities are projected
(x,y) plane that gives f p(nx ,ny)5(nz

f (nx ,ny ,nz) and

f pd(x,y), respectively. The typical examples of project
probability distributionsf p and f pd for different values of
disorderW are shown in Fig. 1. They clearly show that in th
presence of interaction the ground state remains localized
only in the noninteracting localized phase (W.Wc) but also
in the phase delocalized atU50 (W,Wc). However the
localized interacting phase abruptly disappears if disordeW
becomes smaller than some critical valueWs(U),Wc . For
W,Ws the ground state becomes delocalized over the wh
lattice. At the same time the peaked structure of the interp
ticle distance distributionf pd clearly shows that the particl
dynamics remains correlated. In this sense we can say
the pairs exist for any strength of disorder but forW.Ws
they are localized while forW,Ws they become delocal
ized. We assume that such a transition should correspon
the transition from insulating to superconducting phase in
many-body problem.

To analyze this transition in a more quantitative way

FIG. 1. Probability distributions for TIP in the ground state pr
jected on the (x,y) plane: one particle probabilityf p for interaction
U524V ~left column!, interparticle distance probabilityf pd for
U524V ~centrum column!, f p for U50 ~right column!; the dis-
order strength isW/Wc51.1 ~upper line!, W/Wc50.5 ~middle line!,
W/Wc50.3 ~bottom line!. All data are given for the same realiza
tion of disorder for the system sizeL516 ~see text for details!.
Upper line corresponds to the insulating noninteracting phase w
two others are in the metallic one atU50.
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determine the inverse participating ratio~IPR! j for one par-
ticle probability: 1/j5^(nf 2(n)&, where brackets mark the
averaging over 100 disorder realizations. Physically,j
counts the number of sites occupied by one particle in
ground state. Its variation with system sizeL is shown in Fig.
2 for different strength of interaction and disorder. This fi
ure shows that in the localized interacting phaseW
.Ws(U) the j value remains finite and independent on s
L while in the delocalized phase it grows proportionally
the total number of sitesL3. To find the critical disorder
strength Ws we compare the relative change ofj with
L (8<L<14) with its relative change for the noninteractin
case at the critical pointW5Wc . ThenWs(U) is defined as
such a disorder at which the relative variation ofj at uUu
.0 becomes larger than in the caseU50. We note that near
the transition the change ofj with W is so sharp that the
delocalization border is not really sensitive to the choice
definition. We also checked that the change ofvD does not
affect significantly the borderWs(U).16 The phase diagram
for SIT defined in the way described above is presented
Fig. 3. It shows that the interaction makes localization str
ger so that the localized~insulating! phase penetrates in th
noninteracting~normal! metallic phase. However, for suffi
ciently weak disorder delocalization takes over. This is
agreement with the Anderson theorem according to whic
weak disorder in metallic phase does not affe
superconductivity.15 Qualitatively we can say that the attra
tion creates a pair with a total mass (mp) twice larger than
the one particle mass and due to that the critical disor
strength for localization becomes twice smaller (Ws /Wc
.0.5) since the effective hoppingVe f f}1/mp . Of course

ile

FIG. 2. Dependence of IPRj on the rescaled disorder streng
W/Wc for U50 (s), U522V (h), U524V (L), U5
26V (n) ~empty/full symbols are forL510/L512). The inset
shows the data forU524V at L58 (3), 10 (L), 12 ~full dia-
mond!, 14 ~* !; j obtained in the Cooper approximation~see text!
for U524V, L514 is shown by~1!. Statistical error bars are
smaller than symbol size. Lines are drawn to adapt an eye.
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this argument is not sufficient to explain the exact bor
Ws(U) obtained numerically but it gives a reasonable e
mate in the case of strong interaction. Further studies
required to explain the form of the border.

Another interesting physical characteristic is the coupl
energyD of two particles in the presence of interaction.
value is equal toD52EF2Eg whereEg is the ground state
energy in the presence of interaction and 2EF is equal toEg
at U50. In the standard Cooper problemD.0 is related to
the BCS gap and determines the correlation length of
pair.17 It is interesting to understand howD varies with the
disorder strengthW at fixed interactionU. This dependence
is presented in Fig. 4. It clearly shows thatD grows signifi-
cantly with the increase ofW at constant interaction U. We
attribute the physical origin of this growth to the fact that
stronger disorder the rate of separation between particles
comes smaller that enhances enormously the interaction
tween them, henceD, as it was discussed in Ref. 14. Th
dependence ofD on W is changed drastically nearWs that is
related to the delocalization transition.

On the same figure we compare the exact value ofD,
found numerically in the model~2!, with its valueDC ob-
tained by the Cooper approximation~mean field value!. In
this approximation only the matrix elementsQm1 ,m2 ,m

18 ,m
28

with m15m2 and m185m28 are kept in Eq.~2! that corre-
sponds to the original Cooper ansatz.5 The comparison
shows that at weak disorderDC is very close to exactD ~see
the inset where dotted line coincides with full diamonds
W/Wc,0.35) while when approaching the Anderson tran
tion and beyond it (W/Wc.0.35) DC becomes much smalle
than D. This leads to the conclusion that the nondiago
matrix elements (m1Þm2 and m18Þm28), neglected in the
Cooper approximation, play an important role near M
This is also clear from Fig. 1 according to which the loc

FIG. 3. Phase diagram for transition from localized~insulating
I ) to delocalized~superconductingS) phase in the ground state o
the generalized Cooper problem~2!. Vertical dashed line shows th
Anderson transition in absence of interaction.
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ized states exist in the noninteracting metallic phase w
according to the Cooper approximation pairs should be
localized forW,Wc . Indeed, for example the graphical im
age as in Fig. 1 shows that forU524V, W50.5Wc.Ws
the probability f p obtained in the Cooper approximatio
from Eq. ~2! is completely delocalized contrary to the re
case in which the ground state is localized~Fig. 1!. In addi-
tion to this case the average IPR within the Cooper appro
mation is much larger than its real value obtained witho
approximation~see inset in Fig. 2!.

The data presented in the insets of Figs. 2 and 4 cle
show that in the localized interacting phaseW.Ws the lat-
tice size is sufficiently larger than the localization length a
the values ofj and D correspond to the limitL→`.18 In-
deed, for example forW50.4Wc , U524V the value ofD
varies only by 6% around the averageD50.035V when L
changes from 10 to 16. On the contrary, the first order c
rection inU to D, computed over noninteracting delocalize
eigenstates, drops 4 times (}1/L3). This fact, in combination
with other data in the inset of Fig. 4 and a peaked probabi
distribution in interparticle distancef d(r ) in the middle col-
umn of Fig. 1, clearly shows the formation of localized pa
in the noninteracting metallic phase. At the same time
weak disorderW/Wc,0.2 the asymptotic value ofD be-
comes very small and very large values ofL are required to
reach it. Such largeL are also desirable to see better t

FIG. 4. Variation of the ground state coupling energyD in the
model~2! with the rescaled disorder strengthW/Wc for L512 and
different interactionU522V ~full box!, U524V ~full diamond!,
U526V ~full triangle!; the open symbols are for the sameU val-
ues but in the Cooper approximation~see text!. The vertical dashed
line W/Wc51 marks the MIT atU50; the other vertical dashed
line W/Wc50.35 marks approximately the SIT line from Fig. 3 fo
uUu>2. The insert shows the caseU524V for L510 (L), L
512 ~full diamond!, L514 ~* !; the dotted line shows the Coope
approximation case withU524V andL512 from the main figure;
logarithm is decimal.
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propagation of pairs with large size. We note thatD in-
creases strongly in the metallic noninteracting phase atWs
,W,Wc . However in this region the TIP pair remains lo
calized due to interaction that does not allow to obtain a g
in the value ofD.Tc . It would be interesting to find som
possibility to delocalize the pair in this region and to ke
largeD at the same time.

In conclusion, our numerical studies of the generaliz
Cooper problem show that at sufficiently strong disorder
which, however, the noninteracting particles are still deloc
ized~noninteracting metallic phase!, the attractive interaction
with a strength larger than some critical value leads to loc
ization of pairs in the ground state, contrary to the Coo
ansatz. This localization, however, disappears at sufficie
weak disorder in agreement with the Anderson theorem15

The phase diagram for the transition to delocalized state
determined as a function of disorder and interaction. T
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appearance of SIT in the normal~noninteracting particles!
metallic phase is in a qualitative agreement with t
experiments4 which show that the ‘‘ground state’’ of the nor
mal state of YBCO is metallic. Indeed, an applied magne
field effectively decreases the attractionU between quasipar
ticles and also eliminates the supraconducting gap
should drive the system to the normal~noninteracting par-
ticles! metallic phase. This is in a qualitative agreement w
our results according to which the decrease in interac
strengthU can lead to a more delocalized state. Howev
further studies of the generalized Cooper problem with
magnetic field are required for a quantitative analysis
magnetic field effects.
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