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Cooper problem in the vicinity of the Anderson transition
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We study numerically the ground state properties of the Cooper problem in the three-dimensional Anderson
model. It is shown that attractive interaction creates localized pairs in the metallic noninteracting phase. This
localization is destroyed at sufficiently weak disorder. The phase diagram for the delocalization transition in
the presence of disorder and interaction is determined.

The pioneering experimental results for normal-state reping and the random on-site energesare homogeneously
sistivity of high-temperature superconductors demonstrated distributed in the intervdl—W/2,W/2]. It is well known that
striking correlation between the optimal doping with maxi- at half filling (the band center witie=0) the MIT takes
mal T, in the superconducting phase and the Andersomplace atW,/V~16.5 with the insulating and metallic phases
metal-insulator transitiofMIT) in the normal phase ob- atW>W, and W<W, respectively(see, e.g., Refs. 11,12
tained in a strong pulsed magnetic fiélNamely, the MITin  To study this problem with interaction it is convenient to
strong magnetic field takes place at such a doping for whiclwrite its Hamiltonian in the basis of noninteracting eigen-
T. is maximal at zero magnetic field. More recent experi-states of the Anderson model that gives
ments on the superconductor-insulator transiti@T) in
three dimension&3D),%~* which were done in various mate-
rials at different dopings and magnetic fields, also reveal  (Ep, +Emp,)Xm, m,+U > Qmy my,m{ miXm! m;
close correlation between these transitions even if it is pos- my,m,
sible that the normal state remains metallic in some
materials** These experimental results put forward the im- =Exm, m, 2
portant theoretical problem of interaction effects in the vicin-
ity of Anderson transition in 3D. However, the full under- Herex m, are eigenfunctions of the TIP problem written in
standing of this problem is very difficult since even the gne_particle eigenbasis,, with eigenenergiek,,,. The tran-

origin of the highT; phase is not yet established completely. gjiion matrix ebmentle’mzvmi’mé are obtained by rewrit-

Due to that it would be interesting to understand the effects

of interaction and disorder in a more simple model of ger]_lng the Hubbard interaction in the noninteracting eigenbasis

eralized Cooper probletrof two quasiparticles above the of quel(l). The Fe,rmi sea is introduced by restr-icting the
frozen Fermi sea which interact via the attractive Hubbard®Um in EQ.(2) to my ;>0 with unperturbed energieS,, |
interaction in the presence of disorder. In spite of apparentEr. The value of the Fermi enerdy:~0 is determined
simplicity of this problem it is rather nontrivial. Indeed, even by the filling factor . which is fixed atu=1/2. To have
if the great progress has been reached recently in the invegiore close similarity with the Cooper problem we also in-
tigation of localized one-particle eigenstate propeftidlse  troduce the high energy cutoff defined by the condition 1
analytical expressions for the interaction induced matrix el<mj;+m,<M. Such a rule gives an effective phonon fre-
ements in the localized phase and in the MIT vicinity are stillquency wp>=M/L® whereL is the linear lattice size. Since
absent. Furthermore, the recent results for the problem ahe frequencywp should be independent af we keep the
two interacting particle§TIP) in the localized phase demon- ratio a=L3%/M constant when varyindg.. The majority of
strated that the interaction effects for excited states can qualiata are obtained far~ 30 (Ref. 13 but we checked that its
tatively change the eigenstate structure leading to the appearariation by few times did not affect the results. Due to on-
ance of delocalizatiofi.'® Due to that the investigation of site nature of the Hubbard interaction only symmetric con-
the ground state properties of the above model in the vicinitffigurations are considered.
of the Anderson transition in 3D represents an interesting In fact the first studies of the modéR) with the frozen
unsolved problem which can shed light on the origin of SITFermi sea had been done by Ifiyith the aim to analyze
in the presence of disorder. the delocalization effect of TIP in the proximity of Fermi
To investigate the above problem we study numericallylevel at finite particle density. This model was also studied
the ground state properties of two particles with Hubbard omumerically in Ref. 14 where it was shown that n&rthe
site attraction y <0) in 3D Anderson model at half filling. interaction becomes effectively stronger comparing to the
In this case the one particle eigenstates are determined by tkeegodic estimate used in Refs. 7,8. However the above

2

Schralinger equation studie&'* were concentrated on the properties of excited
e Vv _E 1 states in the repulsive cas&e>0. On the contrary here we
ntbntV(¥n-1F ¥nsd) =B, (1) analyze the ground state properties for the attractive case.

wheren is the site index on the 3D lattice with periodic SinceU<O0, then even in the limit of large system siz¢he
boundary conditions applied, is the nearest-neighbor hop- particles are always close to each other in the ground state
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FIG. 1. Probability distributions for TIP in the ground state pro-
jected on theX,y) plane: one particle probabilitf;, for interaction
U=—4V (left column, interparticle distance probability,q for
U=—4V (centrum colump f, for U=0 (right column; the dis-
order strength i$V/W.= 1.1 (upper ling, W/W,= 0.5 (middle line),
W/W,=0.3 (bottom line. All data are given for the same realiza-

1.5

tion of disorder for the system sie=16 (see text for details FIG. 2. Dependence of IPR on the rescaled disorder strength
Upper line corresponds to the insulating noninteracting phase whildV/We for U=0 (0), U=-2V (L)), U=-4V (0), l_J:
two others are in the metallic one dt=0. —6V (A) (empty/full symbols are fot. =10/L=12). The inset

shows the data fo=—4V atL=8 (X), 10 (<), 12 (full dia-

) o ) ) mond, 14 (*); ¢ obtained in the Cooper approximatigsee text

the model(2) represents the generalized Cooper problem insmaller than symbol size. Lines are drawn to adapt an eye.
the presence of disorder.
To study the characteristics of the ground Sb@fﬂ?,mz we determine the inverse participating rati®R) ¢ for one par-

diagonalize numerically the Hamiltonid@) and rewrite the ~ {icle probability: 1£=(Z,f*(n)), where brackets mark the
eigenfunction in the original lattice bagis) with the help of ~ @veraging over 100 disorder realizations. Physicaly,
relation between lattice basis and one particle eigenstaté&@UNts the number of sites occupied by one particle in the
IN)=3Rn.mbm. As the result of this procedure we deter- ground. state. Its variation ywth system slz¢5_shown in F_|g..
mine the two particle probability distributidh(n; ,n,) in the 2 for different strength of interaction a_md dlsqrder. This fig-
ground state(heren, , mark the positions of the two par- Y€ shows that in the localized interacting phagé
ticles, from which the one particle probabilityf(n,) >WS(U). the ¢ value remains f|n|te' and mdependent on size
=3, F(ny,n,) and the probability of interparticle distance L while in the delocall_zedsphase.lt grows pr-oportl.onally to
¢ 2:2 E(r+non.) with r=n-—n. are extracted. For the total number of sites®. To fmd. the critical dlsorder
a(N) =20, F( 2:2) 1~ Ny are extracted. o strength Wy we compare the relative change &f with
graphical presentation these probabilities are projected op (g<| <14) with its relative change for the noninteracting
(x,y) plane that givesfy(n,,ny) ==, f(ns,ny,n;) and  case at the critical pointV=W,. ThenW,(U) is defined as
fra(X,y), respectively. The typical examples of projectedsuch a disorder at which the relative variation {oft |U|
probability distributionsf, and f,q4 for different values of >0 becomes larger than in the cd$e=0. We note that near
disorderW are shown in Fig. 1. They clearly show that in the the transition the change &f with W is so sharp that the
presence of interaction the ground state remains localized natelocalization border is not really sensitive to the choice of
only in the noninteracting localized phas&/W,) but also  definition. We also checked that the changewgf does not
in the phase delocalized &=0 (W<W,). However the affect significantly the bordew,(U).'® The phase diagram
localized interacting phase abruptly disappears if disovder for SIT defined in the way described above is presented in
becomes smaller than some critical vaMg(U)<W,. For  Fig. 3. It shows that the interaction makes localization stron-
W< W; the ground state becomes delocalized over the wholger so that the localize@insulating phase penetrates in the
lattice. At the same time the peaked structure of the interpamoninteracting(norma) metallic phase. However, for suffi-
ticle distance distributiori ,4 clearly shows that the particle ciently weak disorder delocalization takes over. This is in
dynamics remains correlated. In this sense we can say thagreement with the Anderson theorem according to which a
the pairs exist for any strength of disorder but Tot>W,  weak disorder in metallic phase does not affect
they are localized while folW<W; they become delocal- superconductivity® Qualitatively we can say that the attrac-
ized. We assume that such a transition should correspond tan creates a pair with a total massf) twice larger than
the transition from insulating to superconducting phase in thehe one particle mass and due to that the critical disorder
many-body problem. strength for localization becomes twice small& (W,

To analyze this transition in a more quantitative way we=0.5) since the effective hopping.s=1/m,. Of course
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FIG. 3. Phase diagram for transition from localiz@usulating
I) to delocalizedsuperconducting) phase in the ground state of  FIG. 4. Variation of the ground state coupling energyin the
the generalized Cooper proble@). Vertical dashed line shows the model(2) with the rescaled disorder strengtfW, for L=12 and
Anderson transition in absence of interaction. different interaction = — 2V (full box), U= —4V (full diamond,
U= -6V (full triangle); the open symbols are for the satdeval-

this argument is not sufficient to explain the exact border, . putin the Cooper approximatiésee text. The vertical dashed

W(U) obtained numerically but it gives a reasonable eSti'Iine W/W,=1 marks the MIT atU=0; the other vertical dashed

mate in the case of strong interaction. Further studies arg,e w/w,=0.35 marks approximately the SIT line from Fig. 3 for

required to explain the form of the border. |U|=2. The insert shows the caté=—4V for L=10 (), L
Another interesting physical characteristic is the coupling=12 (full diamond, L =14 (*); the dotted line shows the Cooper

energyA of two particles in the presence of interaction. Its approximation case withl = — 4V andL =12 from the main figure;

value is equal ta\ =2E¢—E, whereEg is the ground state logarithm is decimal.

energy in the presence of interaction artei-2s equal toE

atU=0. In the standard Cooper problel>0 is related 0,04 states exist in the noninteracting metallic phase while

the BCS gap and determines the correlation length of theolccording to the Cooper approximation pairs should be de-

pairl’ It is interesting to understand how varies with the localized forW<W, . Indeed, for example the graphical im-
disorder strengthV at fixed interactiorlJ. This dependence age as in Fig. 1 schows that fof=—4V. W=0.5V.>W.

. . . . e . ’ . Cc S

IS prleseljtr(]edhln .F|g. 4. 1t g}sarly shows t.matgrovys sg\r/]\;ﬂ- the probability f, obtained in the Cooper approximation
canty with the Increase o at cqnstant Interaction € from Eq. (2) is completely delocalized contrary to the real
attribute the physical origin of this growth to the fact that at

) . . case in which the ground state is localizédg. 1). In addi-
stronger disorder the rate of separation between partlc_les bﬁbn to this case the average IPR within the Cooper approxi-

fiation is much larger than its real value obtained without
approximation(see inset in Fig. 2

The data presented in the insets of Figs. 2 and 4 clearly
show that in the localized interacting phage>W; the lat-

On the same figure we compare the exact value\pf  yoq gjze js sufficiently larger than the localization length and
found numerically in the mode2), with its valueAc ob- o\ ajues oft and A correspond to the limit.— o8 In-

tained by the Cooper approximatigmean field valug In deed, for example foW=0.4W,, U= — 4V the value ofA

this approximation only the matrix elemen@, m, m:.m;  varies only by 6% around the averade=0.035/ when L
with m;=m, and m;=m; are kept in Eq.(2) that corre- changes from 10 to 16. On the contrary, the first order cor-
sponds to the original Cooper ansatZhe comparison rection inU to A, computed over noninteracting delocalized
shows that at weak disordér. is very close to exach (see  eigenstates, drops 4 times {/L3). This fact, in combination
the inset where dotted line coincides with full diamonds forwith other data in the inset of Fig. 4 and a peaked probability
W/W,<0.35) while when approaching the Anderson transi-distribution in interparticle distancky(r) in the middle col-
tion and beyond it\W/W.>0.35) A becomes much smaller umn of Fig. 1, clearly shows the formation of localized pairs
than A. This leads to the conclusion that the nondiagonain the noninteracting metallic phase. At the same time for
matrix elements i, #m, and m;#m,), neglected in the weak disordetW/W,<0.2 the asymptotic value ok be-
Cooper approximation, play an important role near MIT.comes very small and very large valuesloére required to
This is also clear from Fig. 1 according to which the local-reach it. Such largé. are also desirable to see better the

tween them, hencd, as it was discussed in Ref. 14. The
dependence ak on Wis changed drastically ne&lv that is
related to the delocalization transition.
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propagation of pairs with large size. We note thatin-  appearance of SIT in the norm@&oninteracting particlgs
creases strongly in the metallic noninteracting phas#&/at metallic phase is in a qualitative agreement with the
<W<W,. However in this region the TIP pair remains lo- experimentdwhich show that the “ground state” of the nor-
calized due to interaction that does not allow to obtain a gairmal state of YBCO is metallic. Indeed, an applied magnetic
in the value ofA=T,. It would be interesting to find some field effectively decreases the attractidrbetween quasipar-
possibility to delocalize the pair in this region and to keepticles and also eliminates the supraconducting gap that
large A at the same time. should drive the system to the norm@oninteracting par-

In conclusion, our numerical studies of the generalizedjcles) metallic phase. This is in a qualitative agreement with
Cooper problem show that at sufficiently strong disorder, agyr results according to which the decrease in interaction
which, however, the noninteracting particles are still deloca"strengthu can lead to a more delocalized state. However,
izgd(noninteracting metallic pha}setheT attractive interaction ¢, ther studies of the generalized Cooper problem with a
W'th. astreng_th Igrger than some critical value leads to IocalT”nagnetic field are required for a quantitative analysis of
ization of pairs in the ground state, contrary to the COOpanagnetic field effects
ansatz. This localization, however, disappears at sufficiently '
weak disorder in agreement with the Anderson theof®@m.  We thank V. V. Flambaum, K. Frahm, and O. P. Sushkov
The phase diagram for the transition to delocalized states i®r stimulating discussions, and the IDRIS in Orsay and the
determined as a function of disorder and interaction. TheCICT in Toulouse for access to their supercomputers.
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