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Abstract. We study analytically and numerically the problem of two particles with a long range attractive
interaction on a two-dimensional (2d) lattice with disorder. It is shown that below some critical disorder
the interaction creates delocalized coupled states near the Fermi level. These states appear inside well
localized noninteracting phase and have a form of two-particle ring which diffusively propagates over the
lattice.

PACS. 72.15.Rn Localization effects (Anderson or weak localization) – 71.30.+h Metal-insulator
transitions and other electronic transitions – 74.20.-z Theories and models of superconducting state –
05.45.Mt Semiclassical chaos (“quantum chaos”)

Recently a great deal of attention has been attracted to
the problem of interaction effects in disordered systems
with Anderson localization [1,2]. From the theoretical
point of view the problem is rather nontrivial. Indeed,
even if a great progress has been reached in the theoretical
investigation of the properties of localized eigenstates [3]
still the analytical expressions for interaction matrix el-
ements between localized states are lacking. In spite of
these theoretical difficulties it has been shown recently
that a repulsive or attractive interaction between particles
can destroy localization and lead to a propagation of pairs
in the noninteracting localized phase. This two interacting
particles (TIP) effect has been studied recently by differ-
ent groups [4–11] and it has been understood that the de-
localization of TIP pairs is related to the enhancement of
interaction in systems with complex, chaotic eigenstates.
Such an enhancement had been already known for par-
ity violation induced by the weak interaction in heavy
nuclei [12] where the interaction is typically increased
by a factor of thousand. However, since there the two-
body interaction is really weak the final result still remains
small. On the contrary, for TIP pairs in the localized phase
the enhancement of interaction qualitatively changes the
dynamics leading to a coherent propagation of TIP on
a distance lc being much larger than the pair size and
one-particle localization length l1. The enhancement fac-
tor κ is determined by the density of two-particle states
ρ2, coupled by interaction, and the interaction induced
transition rate Γ2 between noninteracting eigenstates, so
that κ = Γ2ρ2. At κ ∼ 1 the interaction matrix element
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becomes comparable with two-particle level spacing and
the Anderson localization starts to be destroyed by in-
teraction. For excited states the TIP density ρ2 is sig-
nificantly larger than the one-particle density ρ and the
delocalization can be reached for relatively weak interac-
tion if l1 is large. However, when the excitation energy ε
above the Fermi level decreases then ρ2 becomes smaller
and it approaches the one-particle density ρ at low en-
ergy: ρ2 ≈ ερ2 [5]. As a result the value of κ also drops
with ε so that the delocalization of TIP pairs practically
disappears near the Fermi energy. This result has been
found in [5,13] in the approximation of the frozen Fermi
sea created by fermions. Recent numerical studies of TIP
pairs with short range interaction near the Fermi level [14]
confirmed these theoretical expectations.

In this paper we discuss another type of situation in
which TIP delocalization takes place mainly due to geo-
metrical reasons and not due to the relation ρ2 � ρ. As a
result the TIP pair can be delocalized in a close vicinity
to the Fermi level that opens new interesting possibili-
ties for interaction induced delocalization in the localized
noninteracting phase. To study this new situation we in-
vestigate a model with a long range attractive interaction
between particles in the 2d Anderson model. In this case
the particles can rotate around their center of mass, being
far from each other and keeping the same energy, while
the center can move randomly in two dimensions. As a
result the system has effectively three degrees of freedom
that makes it rather similar to the case of one particle in
the 3d Anderson model where delocalization takes place
at sufficiently weak disorder. A somewhat similar situa-
tion has been studied recently for particles with Coulomb
interaction but only excited states were considered there
and the delocalization was attributed to the large ratio
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ρ2/ρ [15]. Here we show that in fact the conditions for
delocalization are much less restrictive.

To illustrate the above ideas let us first discuss the case
of only two particles with attractive interaction U(r) < 0
in the 2d Anderson model described by the Schrödinger
equation

(En1 +En2 + U(n1 − n2))ψn1,n2 + V (ψn1+1,n2

+ ψn1−1,n2 + ψn1,n2+1 + ψn1,n2−1) = Eψn1,n2 . (1)

Here n1,2 are the indices of the two particles on the 2d lat-
tice with L2 sites and periodic boundary conditions, V is
the hopping between nearby sites and the random on-site
one-particle energies En1,2 are homogeneously distributed
in the interval [−W/2,W/2]. The long range attractive
interaction depends only on the distance between parti-
cles r = ‖n1 − n2‖ and is equal to a constant U < 0
if |r − R| ≤ ∆R and zero otherwise. The value of r is
determined as the minimal inter-particle distance on the
periodic lattice. Thus the interaction takes place only in-
side a ring of radius R and width ∆R, and we assume
that R � ∆R ≥ 1. For U = 0 the eigenstates are given
by the product of two one-particle (noninteracting) eigen-
states which are always localized in 2d in a presence of
disorder [16].

In the limit of very strong attractive interaction |U | �
V,W the TIP coupled states form the energy band of
width ' 16V around E ' −|U | (we consider only the
states symmetric in respect to particle interchange). For
states in this band the particles are located always in-
side the ring which center can move over the 2d lattice.
Since |U | � V these states are decoupled from all other
states with particles outside the ring. In the ring the
Schrödinger equation is in fact rather similar to the case
of 3d Anderson model of one particle. In this analogy the
number of sites inside the ring MR ≈ 2πR∆R determines
the effective number of 2d planes placed one over another
in the third z-dimension (length size Lz = MR). In this 3d
model the effective strength of disorder is approximately
2W since the diagonal term is now the sum of two En

values. Also one site is coupled with Z = 8 neighbours
contrary to Z = 6 for 3d case (assuming ∆R � 1). Since
in 3d the Anderson transition at the band center takes
place at Wc = 2.75ZV = 16.5V [17], we expect that TIP
states inside the ring will be delocalized in the middle of
the band when 2W/ZV = 2.75 that gives the transition at
Wc2 ≈ 11V . The above relation corresponds to the border
according to which the mixing of levels takes place when
the coupling becomes comparable to the spacing between
directly coupled states [13] which in our case is propor-
tional to W/Z with the numerical factor taken from [17].
This estimate is in agreement with preliminary numeri-
cal simulations of the model (1) [18]. Of course, since in
the slab the thickness in the third direction is finite the
eigenstates will be eventually localized. But their local-
ization length lc will make a sharp jump from lc ∼ 1 at
W > Wc2 to lc ∼ exp(g) � 1 at W < Wc2 that fol-
lows from the standard scaling theory in 2d [3,16,15].
Here g is the conductance of the quasi-two-dimensional
layer of width Lz = MR. As usual g = Ec/∆1 where

Ec = D/L2 is the Thouless energy, ∆1 ∼ V/(L2Lz) is
the level spacing [3] and the diffusion rate in the lattice
model is D ∼ V (V/W )2. As a result for W < Wc2 the TIP
delocalization length jumps to exponentially large value
lc ∼ exp(2πR∆R(Wc2/W )2). In these estimates we as-
sumed that l1 > ∆R > 1 since if ∆R � l1 the majority
of states inside the ring are noninteracting and can be
presented as the product of one-particle eigenstates. We
also note that for W < Wc2 there is an energy interval
around the band center with delocalized states where the
TIP ring diffuses with the rate D2 ∼ V (Wc2/V )2. When
W decreases the mobility edge approaches the bottom of
the band as it happens in 3d Anderson model.

The above arguments presented for the case |U | � V
indicate that it is possible to have a similar TIP delocal-
ization at moderate value of U ∼ V near the Fermi level.
To investigate this case we rewrite the equation (1) in the
basis of the noninteracting eigenstates that gives

(Em1 +Em2)χm1,m2

+ U
∑
m
′
1,m
′
2

Qm1,m2,m
′
1,m
′
2
χm′1,m

′
2

= Eχm1,m2 . (2)

Here χm1,m2 are eigenfunctions of the TIP problem
written in the basis of one-particle eigenstates φm
with eigenenergies Em. The matrix UQm1,m2,m

′
1,m
′
2

rep-
resents the two-body matrix elements of interaction
U(n1 − n2) between noninteracting eigenstates |φm1φm2〉
and |φm′1φm′2〉. The Fermi sea is determined by the restric-

tion of the summation in (2) to m
(′)
1,2 > 0 with energies

E
m

(′)
1,2
> EF, where EF is the Fermi energy related to the

filling factor µ. We choose the case with half filling µ = 1/2
for which EF ≈ 0. In this way our model corresponds to
the approximation of frozen Fermi sea successfully used for
the Cooper problem [19]. As it was done by Cooper we
also introduce the high energy cut-off defined by the con-
dition 1 ≤ m′1+m

′

2 ≤M . This rule determines an effective
phonon frequency ωD ∝ M/L2. We fix α = L2/M ≈ 15
since ωD should be independent of the system size L [20].
We checked that the results are not affected by a variation
of α in few times. The first studies of the TIP model with
frozen Fermi sea was done by Imry [5] with the aim to
take into account the effect of finite fermionic density and
then was also analyzed in [13]. The one-dimensional case
was also studied in [7]. Recently a similar model was inves-
tigated for the case of Hubbard attraction in 3d [14]. Of
course, the Cooper approach does not take into account
many-body effects. However, it is known that without dis-
order it captures an important part of physics. Therefore
we think that the generalization of this approach to sys-
tems with disorder will allow to reach a better understand-
ing of rather complicated many-body problem.

To study the eigenstate properties of our model we
diagonalize numerically the Hamiltonian (2) and rewrite
the eigenfunctions in the original lattice basis. In this
way we determine the two-particle probability distribu-
tion F (n1,n2) from which we extract the one particle
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Fig. 1. Probability distributions f and fd for TIP in 2d disor-
dered lattice of size L = 40, and interaction of radius R = 12
and width ∆R = 1. Left column, one-particle probability f for
W = 8V : (a) ground state at U = 0; (b) ground state with
binding energy ∆E = −1.05V at U = −2V ; (c) coupled state
with ∆E = −0.19V at U = −2V . Right column: (d) f for
coupled state, compare to case (c), at W = 12V and U = −2V
with ∆E ≈ −0.19V ; (e) inter-particle distance probability fd

related to case (b); (f) fd related to case (c).

probability f(n1) =
∑
n2

F (n1,n2) and the probability

of inter-particle distance fd(r) =
∑
n2

F (r + n2,n2) with

r = n1 − n2. The binding energy of an eigenstate in (2) is
∆E = E − 2EF ≈ E since EF ≈ 0. For the ground state
with energy Eg the coupling energy is ∆ = 2EF−Eg. The
typical examples of probability distributions are shown in
Figure 1. They clearly show that the ground state in the
presence of interaction remains localized (b) and the par-
ticles stay on distance R from each other (e). However,
there are states with negative binding energy (∆E < 0)
which are delocalized by interaction (c) and for which the
particles move around the ring (f) in agreement with dis-
cussion of model (1) at |U | � V . We stress that this de-
localization of coupled states (∆E < 0) takes place in the
well localized one-particle phase. However, at very strong
disorder this delocalization disappears (see top right case
in Fig. 1d).

To analyze the delocalization of states with nega-
tive binding energy ∆E in a more quantitative way
we determine the inverse participating ratio (IPR) ξ

for one-particle probability 1/ξ =

〈∑
n

f2(n)

〉
, where
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Fig. 2. 2d density plots for the data of Figure 1 with
the same ordering of figures (color figures are available at
http://xxx.lanl.gov/abs/cond-mat/0002296). Black corre-
sponds to the minimum of the probability distribution and
light-grey to the maximum. Figures (a, b, d, e) are drawn
in logarithmic scale while Figures (c, f) are in linear scale.
Black/light-grey color corresponds to: (a) f = 1.3×10−10/f =
0.2, (b) f = 1.1×10−9/f = 0.26, (c) f = 1.5×10−6/f = 0.014,
(d) f = 1.14× 10−11/f = 0.073, (e) fd = 3.8× 10−7/fd = 0.1,
(f) fd = 1.5× 10−5/fd = 0.0032.

brackets mark the averaging over 100 disorder realizations.
In this way ξ gives the number of lattice sites occupied
by one particle in an eigenstate. The dependence of ξ on
∆E and W is shown in Figure 3 for different lattice sizes
L in the presence of interaction. This figure shows that
near the ground state the interaction creates states which
are even more localized than in the absence of interac-
tion (ξ is significantly smaller than at U = 0, see insert
Fig. 3). In fact for −∆ < ∆E < ∆Ec < 0 the IPR value
even slightly drops with the increase of L. However for the
states with binding energy ∆Ec < ∆E < 0 the situation
becomes different and ξ grows significantly with L while
the change of IPR at U = 0 with L is rather weak (see
shaded band in Fig. 3). The critical value of the binding
energy ∆Ec can be defined as such an energy at which
ξ remains independent of L. In this way ∆Ec determines
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Fig. 3. Dependence of IPR ξ on the binding energy ∆E/V
for U = −2V , W = 8V and ∆R = 1: L = 20 (◦), L = 22
(triangle down), L = 26 (diamond), L = 30 (triangle up),
L = 40 (square); full/empty symbols are for R = 8/R = 12;
the shaded band shows the variation of ξ at EF and U = 0 for
20 ≤ L ≤ 40. The delocalization transition at ∆Ec is marked
by arrows. Insert shows dependence of ξ on disorder W/V at
R = 8 for the ground state at U = −2V,L = 30 (×) and at
U = 0, L = 30 (+); for the states with binding energy ∆Ec at
U = −2V the ξ value is shown by (∗).

the mobility edge for coupled states so that at given U and
W the TIP eigenstates are localized for −∆ < ∆E < ∆Ec

while for ∆Ec < ∆E < 0 the states becomes delocalized
(see an example in Fig. 1). In agreement with this picture
ξ varies up to 30 times when ∆E changes from −∆ up to
0. This variation grows with L and the interaction radius
R since the system becomes more close to the effective 3d
Anderson model as it was discussed above. The qualita-
tive change of the structure of the eigenstates leads also to
a change in the level spacing statistics P (s) (Fig. 4). Near
the ground state the statistics is close to the Poisson distri-
bution PP(s) = exp(−s) typical for the localized Anderson
phase [21] while for ∆Ec < ∆E < 0 it approaches to the
Wigner surmise PW(s) = πs exp(−πs2/4) /2 correspond-
ing to the delocalized phase [21].

The variation of the delocalization border ∆Ec for
TIP coupled states with disorder strength and interac-
tion is shown in Figure 5. While the coupling energy ∆
grows with U and W , the mobility edge ∆Ec < 0, on
the contrary, disappears at strong W . According to the
data of Figure 5 all states with binding energy ∆E < 0
become localized for W > Wc2 ≈ 9.5V (U = −2V ) and
W > Wc2 ≈ 8V (U = −V ). This shows that at weaker in-
teraction a weaker disorder is required to have delocalized
coupled states. We note that the values of Wc2 obtained
for U = −V,−2V are rather close to the value Wc2 ≈ 11
corresponding to the limit |U | � V,W . This shows that
the physics of delocalization at U ∼ V remains rather
similar to the limiting case of very strong interaction. As it
follows from Figure 5, at small disorder W the delocaliza-
tion border ∆Ec becomes closer and closer to the ground
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Fig. 4. Level spacing statistics P (s) for TIP coupled states
at L = 30, U = −2V , W = 8V , R = 8, ∆R = 1 in the
localized phase near the ground state inside the energy interval
−∆ < ∆E < −3∆/4 (◦) and in the delocalized phase for
energies inside −∆/4 < ∆E < 0 (•); here ∆Ec ≈ −0.3∆ and
the statistics is done over 3000 disorder realizations with the
total number of spacings being 3 × 104(◦)/7.5 × 104(•). Full
lines show the Poisson distribution and the Wigner surmise.
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Fig. 5. Dependence of the delocalization border ∆Ec and the
binding energy of the ground state −∆ on disorder W/V . The
values of ∆Ec are shown by (◦)/(•) for U = −V / − 2V ; the
values of −∆ are shown by upper/lower dashed line for U =
−V / − 2V and L = 30 (vertical intervals give variation for
20 ≤ L ≤ 30).

state. This means that at weak disorder the delocaliza-
tion will take place for excited states with low energy. For
W � Wc2 and U ∼ −V the diffusion rate of delocalized
TIP ring can be estimated as D2 ∼ V (Wc2/W )2 [22].
Further studies are required to determine the dependence
of Wc2 on W at |U | � V .

In conclusion, our results show that long range at-
tractive interaction between two particles in 2d leads to
the appearance of delocalized diffusive states near the
Fermi level inside the well localized noninteracting phase.
It would be interesting to understand what will be the
consequences of this delocalization for real many-body
fermionic problem with attractive interaction. It is pos-
sible that obtained results will be also relevant for elec-
trons with Coulomb repulsion. Indeed, in this case at very
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weak disorder each electron oscillates near an equilibrium
position and the two-body interaction can be considered
as an effective harmonic attraction [23]. Another physical
situation which can be related to the investigated model
corresponds to the case of long range attractive Coulomb
interaction between electron-hole excitation in a semicon-
ductor (e.g. spin-exciton). In a strong magnetic field elec-
tron/hole rotates on a cyclotron circle which drifts slowly
along another large circle formed by an equipotential line
of Coulomb interaction. Thus without disorder such a
system corresponds very closely to the ring model we an-
alyzed above with the ring width proportional to the cy-
clotron radius. In the presence of disorder the displace-
ments of the ring can be localized by quantum effects or
become delocalized below some critical disorder strength.
While this physical situation still should be studied in
more detail it is clear that its physical properties are
closely related to the ring model analyzed in the paper.

We thank O.P. Sushkov for stimulating discussions, and the
IDRIS in Orsay and the CICT in Toulouse for access to their
supercomputers.
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