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Delocalization of two-particle ring near the Fermi level of 2d Anderson model
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We study analytically and numerically the problem of two particles with a long range attractive
interaction on a two-dimensional (2d) lattice with disorder. It is shown that below some critical
disorder the interaction creates delocalized coupled states near the Fermi level. These states appear
inside well localized noninteracting phase and have a form of two-particle ring which diffusively
propagates over the lattice.

PACS numbers: 72.15.Rn, 71.30+h, 74.20.-z, 05.45.Mt

Recently a great deal of attention has been attracted to
the problem of interaction effects in disordered systems
with Anderson localization [1,2]. From the theoretical
point of view the problem is rather nontrivial. Indeed,
even if a great progress has been reached in the theo-
retical investigation of the properties of localized eigen-
states [3] still the analytical expressions for interaction
matrix elements between localized states are lacking. In
spite of these theoretical difficulties it has been shown re-
cently that a repulsive or attractive interaction between
particles can destroy localization and lead to a propaga-
tion of pairs in the noninteracting localized phase. This
two interacting particles (TIP) effect has been studied
recently by different groups [4–11] and it has been un-
derstood that the delocalization of TIP pairs is related
to the enhancement of interaction in systems with com-
plex, chaotic eigenstates. Such an enhancement had been
already known for parity violation induced by the weak
interaction in heavy nuclei [12] where the interaction is
typically increased by a factor of thousand. However,
since there the two-body interaction is really weak the
final result still remains small. On the contrary, for TIP
pairs in the localized phase the enhancement of inter-
action qualitatively changes the dynamics leading to a
coherent propagation of TIP on a distance lc being much
larger than the pair size and one-particle localization
length l1. The enhancement factor κ is determined by the
density of two-particle states ρ2, coupled by interaction,
and the interaction induced transition rate Γ2 between
noninteracting eigenstates, so that κ = Γ2ρ2. At κ ∼ 1
the interaction matrix element becomes comparable with
two-particle level spacing and the Anderson localization
starts to be destroyed by interaction. For excited states
the TIP density ρ2 is significantly larger than the one-
particle density ρ and the delocalization can be reached
for relatively weak interaction if l1 is large. However,
when the excitation energy ǫ above the Fermi level de-
creases then ρ2 becomes smaller and it approaches the
one-particle density ρ at low energy: ρ2 ≈ ǫρ2 [5]. As a
result the value of κ also drops with ǫ so that the delocal-
ization of TIP pairs practically disappears near the Fermi
energy. This result has been found in [5,13] in the ap-

proximation of the frozen Fermi sea created by fermions.
Recent numerical studies of TIP pairs with short range
interaction near the Fermi level [14] confirmed these the-
oretical expectations.
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FIG. 1. Probability distributions f and fd for TIP in 2d
disordered lattice of size L = 40, and interaction of radius
R = 12 and width ∆R = 1. Left column, one-particle prob-
ability f for W = 8V : ground state at U = 0 (top); ground
state with binding energy ∆E = −1.05V at U = −2V (mid-
dle); coupled state with ∆E = −0.19V at U = −2V (bottom).
Right column: f for coupled state, compare to bottom left,
at W = 12V and U = −2V with ∆E ≈ −0.19V (top); in-
ter-particle distance probability fd related to the middle left
case (middle); fd related to the bottom left case (bottom).
All data are shown for the same disorder realisation. Color
2d density plots for these data are given in Fig. 1bis of Ap-
pendix.

1



In this paper we discuss another type of situation in
which TIP delocalization (see Fig. 1) takes place mainly
due to geometrical reasons and not due to the relation
ρ2 ≫ ρ. As a result the TIP pair can be delocalized in
a close vicinity to the Fermi level that opens new inter-
esting possibilities for interaction induced delocalization
in the localized noninteracting phase. To study this new
situation we investigate a model with a long range at-
tractive interaction between particles in the 2d Anderson
model. In this case the particles can rotate around their
center of mass, being far from each other and keeping
the same energy, while the center can move randomly in
two dimensions. As a result the system has effectively
three degrees of freedom that makes it rather similar to
the case of one particle in the 3d Anderson model where
delocalization takes place at sufficiently weak disorder.
A somewhat similar situation has been studied recently
for particles with Coulomb interaction but only excited
states were considered there and the delocalization was
attributed to the large ratio ρ2/ρ [15]. Here we show
that in fact the conditions for delocalization are much
less restrictive.

To illustrate the above ideas let us first discuss the case
of only two particles with attractive interaction U(r) < 0
in the 2d Anderson model described by the Schrödinger
equation

(En1
+ En2

+ U(n1 − n2))ψn1,n2
+ V (ψn1+1,n2

+ψn1−1,n2
+ ψn1,n2+1 + ψn1,n2−1) = Eψn1,n2

.
(1)

Here n1,2 are the indices of the two particles on the 2d
lattice with L2 sites and periodic boundary conditions, V
is the hopping between nearby sites and the random on-
site one-particle energies En1,2

are homogeneously dis-
tributed in the interval [−W/2,W/2]. The long range
attractive interaction depends only on the distance be-
tween particles r = ‖n1 − n2‖ and is equal to a constant
U < 0 if |r − R| ≤ ∆R and zero otherwise. The value
of r is determined as the minimal inter-particle distance
on the periodic lattice. Thus the interaction takes place
only inside a ring of radius R and width ∆R, and we as-
sume that R ≫ ∆R ≥ 1. For U = 0 the eigenstates are
given by the product of two one-particle (noninteracting)
eigenstates which are always localized in 2d in a presence
of disorder [16].

In the limit of very strong attractive interaction |U | ≫
V the TIP coupled states form the energy band of width
≃ 16V around E ≃ −|U | (we consider only the states
symmetric in respect to particle interchange). For states
in this band the particles are located always inside the
ring which center can move over the 2d lattice. Since
|U | ≫ V these states are decoupled from all other
states with particles outside the ring. In the ring the
Schrödinger equation is in fact rather similar to the case
of 3d Anderson model of one particle. In this analogy
the number of sites inside the ring MR ≈ 2πR∆R deter-
mines the effective number of 2d planes placed one over

another in the third z-dimension (length size Lz = MR).
In this 3d model the effective strength of disorder is ap-
proximately 2W since the diagonal term is now the sum
of two En values. Also one site is coupled with Z = 8
neighbours contrary to Z = 6 for 3d case (assuming
∆R ≫ 1). Since in 3d the Anderson transition at the
band center takes place at Wc = 2.75ZV = 16.5V [17],
we expect that TIP states inside the ring will be delo-
calized in the middle of the band when 2W/ZV = 2.75
that gives the transition at Wc2 ≈ 11V . This estimate
is in agreement with numerical simulations of the model
(1) [18]. Of course, since the size in the third direction
is finite the eigenstates will be eventually localized. But
their localization length lc will make a sharp jump from
lc ∼ 1 at W > Wc2 to lc ∼ exp(g) ≫ 1 at W <Wc2 that
follows from the standard scaling theory in 2d [3,16,15].
Here g is the conductance of the quasi-two-dimensional
layer of width Lz = MR. As usual g = Ec/∆1 where
Ec = D/L2 is the Thouless energy, ∆1 ∼ V/(L2Lz) is
the level spacing [3] and the diffusion rate in the lattice
model is D ∼ V (V/W )2. As a result for W < Wc2 the
TIP delocalization length jumps to exponentially large
value lc ∼ exp(2πR∆R(Wc2/W )2). In these estimates
we assumed that l1 > ∆R > 1 since if ∆R ≫ l1 the ma-
jority of states inside the ring are noninteracting and can
be presented as the product of one-particle eigenstates.
We also note that forW < Wc2 there is an energy interval
around the band center with delocalized states where the
TIP ring diffuses with the rate D2 ∼ V (Wc2/V )2. When
W decreases the mobility edge approaches the bottom of
the band as it happens in 3d Anderson model.

The above arguments presented for the case |U | ≫ V
indicate that it is possible to have a similar TIP delocal-
ization at moderate value of U ∼ V near the Fermi level.
To investigate this case we rewrite the equation (1) in
the basis of the noninteracting eigenstates that gives

(Em1 + Em2)χm1,m2 + U
∑

m
′

1
,m

′

2

Qm1,m2,m
′

1,m
′

2
χm

′

1,m
′

2

= Eχm1,m2 . (2)

Here χm1,m2 are eigenfunctions of the TIP problem
written in the basis of one-particle eigenstates φm

with eigenenergies Em. The matrix UQ
m1,m2,m

′

1,m
′

2

represents the two-body matrix elements of interac-
tion U(n1 − n2) between noninteracting eigenstates
|φm1φm2〉 and |φ

m
′

1
φ

m
′

2
〉. The Fermi sea is determined by

the restriction of the summation in (2) to m
(′)
1,2 > 0 with

energies E
m

(′)
1,2

> EF , where EF is the Fermi energy re-

lated to the filling factor µ. We choose the case with half
filling µ = 1/2 for which EF ≈ 0. In this way our model
corresponds to the approximation of frozen Fermi sea suc-
cessfully used for the Cooper problem [19]. As it was done
by Cooper we also introduce the high energy cut-off de-
fined by the condition 1 ≤ m

′

1 + m
′

2 ≤ M . This rule
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determines an effective phonon frequency ωD ∝ M/L2.
We fix α = L2/M ≈ 15 since ωD should be independent
of the system size L [20]. We checked that the results are
not affected by a variation of α in few times. The first
studies of the TIP model with frozen Fermi sea was done
by Imry [5] with the aim to take into account the effect
of finite fermionic density and then was also analyzed in
[13]. Recently a similar model was investigated for the
case of Hubbard attraction in 3d [14].
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FIG. 2. Dependence of IPR ξ on the binding energy ∆E/V
for U = −2V , W = 8V and ∆R = 1: L = 20 (◦), L = 22
(triangle down), L = 26 (diamond), L = 30 (triangle up),
L = 40 (square); full/empty symbols are for R = 8/R = 12;
the shaded band shows the variation of ξ at EF and U = 0 for
20 ≤ L ≤ 40. Insert shows dependence of ξ on disorder W/V
at R = 8 for the ground state at U = −2V, L = 30 (×) and
at U = 0, L = 30 (+), and for the states at the delocalization
border with binding energy ∆E ≈ ∆Ec at U = −2V (∗).

To study the eigenstate properties of our model we di-
agonalize numerically the Hamiltonian (2) and rewrite
the eigenfunctions in the original lattice basis. In this
way we determine the two-particle probability distribu-
tion F (n1,n2) from which we extract the one particle
probability f(n1) =

∑
n2
F (n1,n2) and the probabil-

ity of inter-particle distance fd(r) =
∑

n2
F (r + n2,n2)

with r = n1 − n2. The binding energy of an eigenstate
in (2) is ∆E = E − 2EF ≈ E since EF ≈ 0. For
the ground state with energy Eg the coupling energy is
∆ = 2EF −Eg. The typical examples of probability dis-
tributions are shown in Fig. 1. They clearly show that
the ground state in the presence of interaction remains
localized and the particles stay on distance R from each
other. However, there are states with negative binding
energy (∆E < 0) which are delocalized by interaction
and for which the particles move around the ring in agree-

ment with discussion of model (1) at |U | ≫ V . We stress
that this delocalization of coupled states (∆E < 0) takes
place in the well localized one-particle phase. However,
at very strong disorder this delocalization disappears (see
top right case in Fig. 1).

To analyze the delocalization of states with negative
binding energy ∆E in a more quantitative way we de-
termine the inverse participating ratio (IPR) ξ for one-
particle probability 1/ξ = 〈

∑
n
f2(n)〉, where brackets

mark the averaging over 100 disorder realisations. In this
way ξ gives the number of lattice sites occupied by one
particle in an eigenstate. The dependence of ξ on ∆E
and W is shown in Fig. 2 for different lattice sizes L in
the presence of interaction. This figure shows that near
the ground state the interaction creates states which are
even more localized than in the absence of interaction (ξ
is significantly smaller than at U = 0, see insert Fig. 2).
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FIG. 3. Level spacing statistics P (s) for TIP coupled states
at L = 30, U = −2V , W = 8V , R = 8, ∆R = 1 in the lo-
calized phase near the ground state inside the energy interval
−∆ < ∆E < −3∆/4 (◦) and in the delocalized phase for en-
ergies inside −∆/4 < ∆E < 0 (•); here ∆Ec ≈ −0.3∆ and
the statistics is done over 3000 disorder realisations. Full lines
show the Poisson distribution and the Wigner surmise.

In fact for −∆ < ∆E < ∆Ec < 0 the IPR value even
slightly drops with the increase of L. However for the
states with binding energy ∆Ec < ∆E < 0 the situ-
ation becomes different and ξ grows significantly with
L while the change of IPR at U = 0 with L is rather
weak (see shaded band in Fig. 2). The critical value of
the binding energy ∆Ec can be defined as such an en-
ergy at which ξ remains independent of L. In this way
∆Ec determines the mobility edge for coupled states so
that at given U and W the TIP eigenstates are local-
ized for −∆ < ∆E < ∆Ec while for ∆Ec < ∆E < 0
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the states becomes delocalized (see an example in Fig.
1). In agreement with this picture ξ varies up to 30
times when ∆E changes from −∆ up to 0. This vari-
ation grows with L and the interaction radius R since
the system becomes more close to the effective 3d An-
derson model as it was discussed above. The qualitative
change of the structure of the eigenstates leads also to a
change in the level spacing statistics P (s) (Fig. 3). Near
the ground state the statistics is close to the Poisson dis-
tribution PP (s) = exp(−s) typical for the localized An-
derson phase [21] while for ∆Ec < ∆E < 0 it approaches
to the Wigner surmise PW (s) = πs exp(−πs2/4) /2 cor-
responding to the delocalized phase [21].
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FIG. 4. Dependence of the delocalization border ∆Ec and
the binding energy of the ground state −∆ on disorder W/V .
The values of ∆Ec are shown by (◦)/(•) for U = −V / − 2V ;
the values of −∆ are shown by upper/lower dashed line for
U = −V / − 2V and L = 30 (vertical intervals give variation
for 20 ≤ L ≤ 30).

The variation of the delocalization border ∆Ec for TIP
coupled states with disorder strength and interaction is
shown in Fig. 4. While the coupling energy ∆ grows with
U and W , the mobility edge ∆Ec < 0, on the contrary,
disappears at strong W . According to the data of Fig. 4
all states with binding energy ∆E < 0 become localized
for W > Wc2 ≈ 9.5V (U = −2V ) and W > Wc2 ≈ 8V
(U = −V ). This shows that at weaker interaction a
weaker disorder is required to have delocalized coupled
states. As it follows from Fig. 4, at small disorder W
the delocalization border ∆Ec becomes closer and closer
to the ground state. This means that at weak disor-
der the delocalization will take place for excited states
with low energy. For W ≪ Wc2 and U ∼ −V the dif-
fusion rate of delocalized TIP ring can be estimated as
D2 ∼ V (Wc2/W )2 [22]. Further studies are required to
determine the dependence of Wc2 on W at |U | ≪ V .

In conclusion, our results show that long range at-
tractive interaction between two particles in 2d leads to
the appearance of delocalized diffusive states near the
Fermi level inside the well localized noninteracting phase.
It would be interesting to understand what will be the
consequences of this delocalization for real many-body
fermionic problem with attractive interaction. It is pos-
sible that obtained results will be also relevant for elec-
trons with Coulomb repulsion. Indeed, in this case at
very weak disorder each electron oscillates near an equi-
librium position and the two-body interaction can be con-
sidered as an effective harmonic attraction [23].

We thank O.P.Sushkov for stimulating discussions, and
the IDRIS in Orsay and the CICT in Toulouse for access
to their supercomputers.
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FIG. 1bis. Color 2d density plots for the data of Fig.1 with the same ordering of figures. Blue corresponds to the
minimum of the probabilty distribution and red to the maximum. The first four figures are drawn in logarithmic scale
while two figures at the bottom are in linear scale. Blue/Red color corresponds to: f = 1.3 × 10−10/f = 0.2 (top
left), f = 1.1 × 10−9/f = 0.26 (middle left), f = 1.5 × 10−6/f = 0.014 (bottom left), f = 1.14 × 10−11/f = 0.073
(top right), fd = 3.8 × 10−7/fd = 0.1 (middle right), fd = 1.5 × 10−5/fd = 0.0032 (bottom right).


