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Quantum Computing of Quantum Chaos and Imperfection Effects
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We study numerically the imperfection effects in the quantum computing of the kicked rotator model
in the regime of quantum chaos. It is shown that there are two types of physical characteristics: for one
of them the quantum computation errors grow exponentially with the number of qubits in the computer,
while for the other the growth is polynomial. A certain similarity between classical and quantum com-
puting errors is also discussed.
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A great interest in quantum computers has been gener-
ated recently by prominent theoretical results and impres-
sive experimental progress which allowed one to realize
operations with a few qubits (see [1] for a review). The
most striking theoretical advantage is the enormous paral-
lelism of quantum computing. Using the Shor algorithm
[2] the factorization of large numbers can be done expo-
nentially faster on a quantum computer than by any known
algorithm on a classical computer. Also a search of an
item in a long list is much faster on a quantum computer
as shown by Grover [3]. Another very important step is
the development of error-correcting codes which show that
a certain amount of noise could be tolerable in quantum
computations [4]. Physically, one qubit can be viewed as
a two level system and controlled coupling between qubits
should be included to operate gates in quantum computa-
tions. A variety of physical systems have been considered
to build a quantum computer including ion traps [5,6], nu-
clear magnetic resonance systems [7], nuclear spins with
interaction controlled electronically [8,9] or by laser pulses
[10], electrons in quantum dots [11], Cooper pair boxes
[12], optical lattices [13], and electrons floating on liquid
helium [14]. At present a two-qubit gate has been experi-
mentally realized with cold ions [15], and the Grover al-
gorithm has been performed for three qubits made from
nuclear spins in a molecule [16].

It is clear that in any realistic quantum computer spe-
cial attention should be paid to the imperfection effects.
Indeed, the imperfections are always present and they, in
principle, may seriously modify the computation results
compared to the algorithms based on ideal qubit opera-
tions. At present the imperfection effects have been tested
in the numerical simulations of the quantum Fourier trans-
form (QFT) [5] and the Shor algorithm factorization of 15
[17,18]. The obtained results look to be promising for the
quantum computing. They indicate that a small amount of
noise does not change strongly the computations [5] even
if in some cases only a rather low level of noise is toler-
able [18]. The developed quantum error-correcting codes
ensure tolerance to a certain level of noise [4], but they
require the introduction of a lot of redundant qubits and
make some assumptions about noise properties. Because
0031-9007�01�86(10)�2162(4)$15.00
of that it is not easy to study numerically the effects of im-
perfections for a quantum computing of a physical system
with many qubits nq. The effects of static imperfections
on the stability of quantum computer hardware were ana-
lyzed in [19], but these results cannot be directly applied
to quantum algorithms operating in time.

In view of the importance of imperfection effects we
analyze in this paper their influence on a quantum compu-
tation of quantum chaos evolution in time. The quantum
chaos in time-dependent systems was studied intensively
during last two decades. It has been understood that the
quantum interference can lead to dynamical localization
of classical diffusive excitation in a close analogy with
the Anderson localization in a random potential [20,21].
The study of such systems should represent a serious test
for quantum computing. Indeed, in a classically chaotic
system the numerical errors grow exponentially with time
due to exponential local instability of motion which leads
to chaotic diffusion in the phase space. In the quantum
case the error growth is not so strong [22], but still the dy-
namical localization of quantum chaos remains rather sen-
sitive to external perturbations and noise [22,23]. In the
case of quantum computing, our work is relevant to the
situation when a problem is faced with iterative quantum
gate operations on a quantum computer, e.g., the Grover
algorithm [3].

To investigate the imperfection effects on quantum com-
puting we choose the kicked rotator model introduced in
[24]. It represents the main features of time-dependent
quantum chaos and had been studied extensively in nu-
merical simulations [21] and experiments with cold atoms
[25]. The unitary evolution operator Û over the period T
of the perturbation is given by

c̄ � Ûc � e2ik cosûe2iTn̂2�2c , (1)

where h̄ � 1 so that the commutator is �n̂, û� � 2i and
the classical limit corresponds to k ! `, T ! 0, while the
classical chaos parameter K � kT remains constant. The
operator Û is given by the product of two unitary operators
representing kick Ûk � exp�2ik cosû� and free rotation
ÛT � exp�2iTn̂2�2�; it acts on N quantum levels with
© 2001 The American Physical Society
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periodic boundary conditions. The classical dynamics is
described by the Chirikov standard map:

n̄ � n 1 k sinu; ū � u 1 Tn̄ . (2)

For K . 0.9716 the global chaos sets in with the diffusive
growth n2 � Dt, where t is given in the number of kicks
and the diffusion rate is D � k2�2 for K . 4.5 [21]. The
quantum interference leads to suppression of this diffu-
sion after a time scale t� � D and exponential localization
of the eigenstates of the Û operator with the localization
length l � D�2 [21].

The most efficient way of numerical simulation of quan-
tum dynamics (1) on a classical computer is based on the
fast Fourier transforms (FFT) between u and n represen-
tations. Indeed, the operators Ûk and ÛT are diagonal in
u and n representations, respectively, which take O�N�
multiplications for their realization. The transition be-
tween representations is done by forward and back FFT
with O�N log2N� multiplications. Thus the FFT is the
most time-consuming part in the classical computations of
model (1).

On the contrary the quantum computer requires only
O�log2

2N� gate operations to perform QFT (see [2,26]) and
makes very easily the forward/back transformations be-
tween u and n representations. Hence, in this part the
quantum computer has the exponential gain comparing to
the classical one. However, it is not so easy to reach the
exponential gain in the multiplication by the diagonal ma-
trices Ûk and ÛT in u and n representations, respectively.
Of course, as for the classical computation this can be done
in O�N� operations. In this worst case the quantum com-
puter will have O�log2N� gain comparing to the classical
one. We suppose that a much better performance can be
reached for the above diagonal part of the quantum algo-
rithm with a strong gain increase. However, in this paper
we leave this question for future research and assume that
the unitary diagonal transformations Ûk and ÛT in (1) are
performed by some quantum circuit exactly while imper-
fections are present only in the QFT part. Namely, for the
QFT description in [26] [see Eqs. (14)–(21) there] each
basic unitary operation Aj (one-qubit) or Bjk (two-qubit)
is rotated on a small random angle of amplitude e ø 1.
At e � 0 the operation Aj is written as n̂0 ? �s, where
n̂0 � �1�

p
2, 0, 1�

p
2� and si’s are Pauli matrices. With

imperfections Aj � n̂j ? �s is given by a rotation of a
unit vector n̂j on an angle ej from n̂0. For Bjk a ran-
dom angle of size ejk is added to ujk in Eq. (18) of [26]
(jejj, jejkj # e). These random e rotations vary in time
producing an effective noise in the QFT and quantum com-
puting of the kicked rotator dynamics on N � 2nq levels
with nq qubits.

The effect of imperfections in the QFT on the second
moment �n2�, computed from the probability distribution
Wn over unperturbed levels n (�n2� �

P
n n2Wn), is shown

in Fig. 1 for the regime of quantum chaos (k . K . 1)
and the different number of qubits nq at e � 1024 and
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FIG. 1. Dependence of the second moment �n2� on time t for
the different imperfection strengths e in quantum computing
and the different number of qubits nq. Curves are for nq �
13, 12, 11 at e � 1024 from top to bottom and the lowest curve
is for e � 0 being the same for nq � 13, 12, 11. Here k �
10, K � 5 and at t � 0 all probability is at n � 0. The inset
shows the upper curve up to larger times.

e � 0. The data show that the noise from imperfections
produces an effective diffusive growth of the second mo-
ment with the rate De which grows exponentially with the
number of qubits. In fact, the data in Fig. 2 show that in
the regime k . K . 1 this rate is well described by the
relation De � 5e222nq for different e, nq, and k [27].

The physical origin of the exponential error growth
in �n2� with nq becomes clear from Fig. 3 which shows
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FIG. 2. Scaling of �n2��N2 is shown for various values of
e and N � 2nq : 1024 # e # 2 3 1023 and nq � 10 (¶), 11
(full triangle), 12 (±), 13 (full square) for k � 10 and K � 5.
Each point represents the averaged value over 103 kicks for
t # 104 and the straight line represents the scaling given by
�n2� � Det � 5e2N2t for tq , t , te (see text). Here and in
the next figures the logarithms are decimal.
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FIG. 3. Probability distribution Wn over unperturbed levels for
nq � 12, k � 10, and K � 5 at two moments of time t � 100
(lower curve) and t � 105 (upper curve): (a) e � 1024 and
(b) e � 0. Initially all probability is at n � 0.

the probability distribution Wn at two moments of time.
At e � 0 the probability decays exponentially from the
initially excited level n � 0 due to dynamical localiza-
tion [see Fig. 3(b)]. This decay continues up to a noise
probability level Wp 	 10232 at t � 100 which is deter-
mined by the round-off errors in the classical computer
being of the order ec 	 10216. In fact, these errors pro-
duce an effective diffusive growth so that Wp 	 e2

c t. In-
deed, Wp is increased approximately by 103 when t is
changed from 100 to 105. The classical errors have cer-
tain similarities with the imperfection effects in the quan-
tum case [Fig. 3(a)]. Indeed, the quantum errors also
lead to a noise probability level Wpq appearing at large
n in a form of plateau with peaks. Below this level
the quantum imperfections completely modify the quan-
tum probabilities Wn comparing to the ideal case with
e � 0 [compare Figs. 3(a) and 3(b)]. From Fig. 3(a)
it is clear that the noise probability level grows diffu-
sively with time: Wpq ~ e2t. It is interesting to note that
the classical computer gives the noise level Wp homoge-
neous at large n while in the quantum case Wpq has pro-
nounced peaks located around the levels nm � 62m with
m � 1, 2, . . . , nq�2. This property is related to the QFT
2164
structure which due to imperfections generates transitions
to levels nm with probability Wnm ~ e2. At k ø 1 the
probability on other levels (n fi nm) is much smaller than
Wnm (data not shown), but for k ¿ 1 each peak at nm

is strongly broadened. Hence, quantum chaos enhances
strongly the effect of imperfections. It also gives relatively
strong secondary peaks placed between primary nm peaks
[Fig. 3(a)].

In fact, QFT is performed by O�n2
q� gate operations [26]

with imperfect rotations. This imperfection noise creates
nq peaks with probability Wpq 	 e2nqt in each peak [28]
that leads to the diffusive growth �n2� 	 N2Wpq 	 Det
with De � nqe222nq �2. The numerical factor here is taken
from the data in Fig. 2. There the variation of nq by 30%
is too small to allow one to distinguish the nq prefactor
in front of the exponential dependence 22nq from a con-
stant. Since at e � 0 the second moment is bounded due
to quantum localization of chaos and fluctuates around
�n2� � D2 � 4l2 � k4�4 [21], the imperfections strongly
modify �n2� after the time scale

tq � D2�De � k4��e2nq22nq � , (3)

which drops exponentially with nq. Because of the finite
system size, the imperfection induced diffusive growth of
�n2� is saturated around the maximal value N2 after the
time te � N2�De � 2��nqe2� (it is seen in Fig. 2 for large
e2t). The imperfection induced diffusion exists on the
large time interval tq ø t ø te (see Fig. 2). From the
above estimates for Wpq growth with time it follows that
the probability in nq peaks becomes comparable with the
probability inside the central peak (Wpqnq 	 n2

qe2t 	 1)
after time tp 	 1��nqe�2. For t ø tp the noise level Wpq

is rather low and some characteristics should remain close
to their values in the absence of imperfections. One of
them is the inverse participation ratio (IPR) j which is
often used in the problems with localization and deter-
mines the effective number of basis states contributing to
the wave function. It is defined as

P
n W2

n � 1�j. By
comparing the value of IPR in the presence of imperfec-
tions with its value at e � 0 we determine the time scale
tp by the condition j�e��j�e � 0� � 1.5 for different nq,
e, and k. The dependence of tp on the parameters is shown
in Fig. 4 for k � 10. According to these data

tp � 0.33��enq�2, (4)

in agreement with the above estimate. Thus, the depen-
dence of tp on nq is polynomial. We also checked that the
numerical coefficient C � 0.33 in (4) does not vary signifi-
cantly with k, e.g., C � 0.32 for k � 15 and C � 0.35
for k � 20. In our opinion this is related to the fact that
the peaks at Wnm are rather sparse and for large nm the
distance between them is much larger than the localiza-
tion length l � k2�4. The comparison between (4) and
(3) is striking: a correct quantum computation of j dur-
ing t � 103 kicks for k � 10 and nq � 100 requires the
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FIG. 4. Dependence of time scale tp on system parameters for
1024 # e # 2 3 1023, and nq � 10 (¶), 11 (full triangle), 12
(±), 13 (full square), 14 (≤), 15 (1), 16 (3), and 17 (�) for
k � 10 and K � 5. The straight line is given by Eq. (4). The
inset shows scaling of the normalized IPR ratio j�e��j�e � 0�.

imperfection amplitude e , 2 3 1024, while for the com-
putation of �n2� one needs e , 2 3 10231.

In conclusion, our studies of imperfection effects on
quantum computing of the kicked rotator show that for cer-
tain characteristics, e.g., the second moment of the prob-
ability distribution, the errors grow exponentially with the
number of qubits nq. At the same time there are other char-
acteristics, e.g., IPR j, which are much more stable and for
which the errors grow with nq only polynomially. How-
ever, such characteristics stable to imperfections are essen-
tially local and are determined only by a small fraction of
levels of the whole Hilbert space N � 2nq . In principle,
the quantum error-correcting codes [4] allow the reduction
of the effective strength of imperfections by introduction
of many redundant qubits nr $ 5nq. However, a correct
quantum simulation of all physically important quantities
of quantum chaos on N levels requires an exponentially
small strength of imperfections e ~ 22nq , and it is not ob-
vious if this can be reached with a reasonable number of
redundant qubits nr [29]. Thus the results obtained for a
simple quantum chaos model raise an important problem
of the necessity of exponentially high accuracy for expo-
nentially fast quantum computing.

Note added.—After the submission of this paper an ex-
ponentially efficient algorithm was proposed for (1) by
Georgeot and Shepelyansky [30].
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