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Repulsive trap for two electrons in a magnetic field

A. D. Chepelianskii and D. L. Shepelyansky
ILycee Pierre de Fermat, Parvis des Jacobins, 31068 Toulouse Cedex 7, France
2Laboratoire de Physique Quantique, UMR 5626 du CNRS, UnivePsité Sabatier, 31062 Toulouse Cedex 4, France
(Received 1 November 2000; published 3 April 2D01

We study numerically and analytically the dynamics of two classical electrons with Coulomb interaction in
a two-dimensional antidot superlattice potential in the presence of crossed electric and magnetic fields. It is
found that near one antidot the electron pair can be trapped for a long time, and the escape rate from such a trap
is proportional to the square of a weak electric field. This is qualitatively different from the case of noninter-
acting electrons which are trapped forever by the antidot. For pair propagation in the antidot superlattice, we
found a broad parameter regime for which the pair is stable, and where two repulsive electrons propagate
together for an enormously large distance.
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. INTRODUCTION studied only for noninteracting electrofis. In this paper, we
analyze the effect of Coulomb interaction between classical
Recent technological developments allowed one to createlectrons in the vicinity of an antidot. We show that, for

various types of surface superlattices for two-dimensionasufficiently strong interaction between electrons, their dy-
(2D) electron gas in semiconductor heterostructures, and tdamics becomes chaotic. Due to this, one or two electrons
investigate their transport properties in the presence of &an escape from the antidot, even in an arbitrary weak ap-
magnetic field. Experiments with antidot lattices were car-plied electric fieldE that corresponds te.—0 contrary to
ried out by different experimental grougsee, e.g., Refs. €.>0 inthe absence of interaction. We determine the depen-
1-4), and the contribution of classical periodic orbits in the dence of the average escape taten e, showing that, in the
resistivity peaks at certain values of magnetic field wadimit of a small electric fieldI'= 2. After this we also dis-
clearly identified. In fact, the size of the antidots and thecuss two-electron propagation in the antidot superlattice.
distance between them are relatively large, and an analysis of The paper is organized as follows. In Sec. Il we briefly
classical trajectory dynamics can be successfully applied tdiscuss the one-electron dynamics near the antidot in crossed
understand a number of unusual transport properties in sughagnetic and electric fields. In Sec. Ill the dynamics of two
antidot array$:® Due to the nonlinearity of motion in the interacting electrons is analyzed in detail. The electron mo-
vicinity of an antidot potential, the classical dynamics can beion in the antidot superlattice is considered in Sec. IV. In
chaotic, which leads to diffusive spreading of trajectoriesSec. V we summarize the obtained results.
even for perfectly periodic latticés If the distance between
antidots is large or comparable to the cyclotron radius of an
electron in a magnetic field perpendicular to the lattice, then Il. ONE-ELECTRON DYNAMICS

one should first understand, the properties of electron dy- The d . ¢ lectron i d electri d
namics near one antidot. In the absence of an electric field € dynamics of an €lectron In crossed electric and mag-

the dynamics is integrable for an antidot of circular shapé;et'c fields in two dimensions with one antidot is described

due to angular momentum conservation, and an electron aty the Hamiltonian
ways regularly rotates around the antidot. An electric field
applied in the 2D plane of the superlattice breaks the cylin-
drical symmetry, and can lead to electron escape from the
antidot to infinity. The problem of electron dynamics, in

crossed electri&€ and magneti® fields near a circular elas- where A is the vector potential, anty(x,y) describes an
tic disk (antido?, was studied in Ref. 7. It was shown that the antidot potential which depends only on the radius

dynamics can be described by a simple area-preserving map xZ1yZ with U=0 for r=a. For convenience, following

Vi'h'Ch depends Zonly on one dimensionless parameter oo 5 e introduce the dimensionless variablesx/a, y
=(2mm/ae)(E/B%), wherem and e are electron mass and ~ - = ~
:y/a, t:t/’To, HOZH0/26|:, U:U/ZEF, B:B/Bo, and

charge, and is the disk radius. For smadli< . the electron
dynamics in a phase space of angular momentuand a E=E/E, where ex(vg) is the Fermi energyvelocity), 7o
conjugated angle ¢ is bounded by the invariant =(2er/ma®) Y2=a/ve, and the magnetic and electric
Kolmogorov-Armnold-Moser(KAM) curves so that the elec- fields are scaled b= (mer)*¥ea and Ey=2ex /€4, re-
tron always remains near the disk. Conversely,efore, the ~ Spectively. In these units a magnetic fiedd=B, gives the
KAM curves are destroyed, global chaos sets in, and theyclotron radiusR.=a for an electron with energyeg
electron escapes to infinity after a few collisions with the=mv,2:/2. We choose the Landau gaude=(—By,0,0).
disk. Then, omitting the tildes, the Hamiltonian equations of mo-
Until now the classical dynamics in antidot lattices wastion read

Ho=(p—eA)%2m+U(x,y)—eEr, (1)
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dx/dt=v,, dv,/dt=Bv,~dU/dx—E,, (2 Py

dy/dt=v,, dv,/dt=—Bv,—dU/dy—E, as| E=01 |

wherev,=p,+yB andv,=p,. To model the antidot, we
chose the potential: i

U(x,y)=Uo(1=1)°, @
Usually we chooséJ, to be much larger than the electron
energyH,, so that this potential becomes very similar to an _
absolutely rigid disk with an effective radias s about 15%
smaller thara.

Far from the antidot the equations of motion are exactly _
solvable, and give an electron rotation over a circle of cyclo- -25
tron radiusR.=v/w., with a cyclotron frequencw.=B. In [
addition, this circle moves with the drift velocityy=E/B in
a direction perpendicular to the electric and magnetic fields.
As found by Berglundet al’, near the antidot, the dynamics o5 10 15 20 25
depends strongly on the dimensionless parameter Y
=vg2m we= 27E/B?. For e>1 the electron scatters onthe 15 1 poincarecross section for Hamiltoniaft) constructed
antidot, and escapes to infinity after one collision. Con‘atx:o, andv,>0 for Hy=8.725, B=—2, andE=0.1, so that
versely, the situation with not very largeis much ”‘?he'y- In" " ¢~0.16. The antidot determined by potential is located at0, 0);
this case the electron can collide many times with the antiy —1000.
dot, and this process is described by a simple area-preserving

map/

should mention that formally the de7s,cription provided by the
s — 9 ajr 1 map[Egs.(4)] is valid only atv>B." However, in our nu-
¢=¢tm=2sin 7B, @ merical simulations we found that the map is already effec-
— . — tively valid for v~2B (see Figs. 1 and)2For example, the
B=p—esing, exact simulations give the escape bordgwith 10% accu-
where bars denote the values of variables after collistois, ~ racy. This result, however, assumes that the potential of the
the scattering angle measured in respect to the direction @ntidot is rather steep. The case with a smooth antidot poten-
the drift velocity, andg is the scattering impact parameter tial is rather different, as shown in Ref. 5.
divided by the antidot radius. In this wag varies in the It is interesting to note that the mafgqs. (4)] cannot be
interval (-1, 1). We note thaj8 can be also considered as the Valid if orbits have|s|~1 or |8|>1. For example, if the
orbital momenturd of the electron divided by the maximal antidot is inside a large cyclotron circle, then the electron
momentun .= av, at which electron still collides with the Will make many rotations before this slowly drifting circle
antidot. The real dynamics is correctly described by the map;vill cross the antidot._This situation is not taken into account
if R;>1, that corresponds 0> B. Fore<1 the variation of ~ Y the first equation in Eq4). An example of the electron
B is bounded by the invariant KAM curves, and the electron

is trapped near the antidot. The last KAM curve is destroyedpy F - ' '

for e>e,~0.45/ so that orbits with initial3~0 can escape [ _

from the antidot to infinity. Of course, foe>¢e. some is- 351 .‘.r'a?",""ﬁ‘;"'.r E=03 1

lands with regular motion inside still remain, but they be- s ’6/ %&%_P-- .

come very small as soon asbecomes significantly larger .- ".? ._-‘c

thane.. 15| { L% T R S8 1
To study the electron dynamics in E(l), the Hamil- ; s";-t.g < 4

tonian equations of motion are solved numerically by a :i o 3'.'-‘»'§!.é:>

Runge-Kutta method of fourth order, so that the electron s L 8 o :?_:"4‘ v |

energy is conserved with a relative precision better than " | ."'5:?

10°% The examples of the Poinca@oss sections con- O A5 i 3

structed ak=0 andv,>0, for trajectories trapped near the [ ... ] g"

antidot, are shown in Figs. 1 and 2. In Fig. d520.16 is 251 .\ =, : et ]

rather small, and almost all the phase space is filled by inte- L Y, i‘-"' :___%'

grable KAM curves. For Fig. 2, the parameter0.42 is S i

close toe., and KAM curves become more deformed and gt . . .

the chaotic component becomes visible. This case can b 9% 10 5 20 v 25

compared with Fig. 3 in Ref. 7, where the cross section for

the map[Egs.(4)] is given for a close value of. Here we FIG. 2. Same as in Fig. 1, but f@=0.3 ande~0.42.
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FIG. 3. Electron dynamics in the(y) plane near the antidot of a0k ]
Fig. 1 forHy=9.7, B=—2.0, E=0.1, ande~0.16. '
dynamics in this case is given in Fig. 3. Hete=0.16 is 20 ]

small, and the motion is still regular. We should stress that
such a trajectory separates orbits which escape to infinity anc
those which collide with the antidot on each cyclotron pe-

riod. For an antidot superlattice with an antidot spacing com-
parable toR., this type of orbit(see Fig. 3 is of special 20l
importance, since these orbits can easily jump from one an-
tidot to another, leading to a global diffusion in the system.

We will discuss this situation in Sec. lll. 0 ]
IIl. EFFECTS OF COULOMB INTERACTION -60 0 oY oo 20 40 5.0
ON ELECTRON DYNAMICS X

Let us now consider how the Coulomb interaction be- FIG. 4. Dynamics of two electrons in the,f) plane forH
tween two electrons affects their dynamics near the antidot=15.65, B=—2.0, E=0.15, ande~0.24, and an initial distance
In this case the Hamiltonian of the system reads between electrons df,—r,|~0.5. After many cyclotron periods

the first electron escapes from the antidot to infititpper figure,

while the second remains trapped foreyeottom figure.
H=Ho(pur)+Ho(Par) +e¥lr—1o. (5 pped foreviotiom figure

antidot. In our numerical simulations we observed different
While in free space the Coulomb interaction repels the eleceases where one electron or both electrons escape to infinity.
trons and leads to their separation, the situation is more com- To investigate how the escape rate depends on the
plicated in the presence of a magnetic field. In the case withstrength of an external electric field, we studied an en-
out any antidot the total momentum of the two electrons issemble of 100 paths. In each path the positions and momen-
conserved, and as a result each electron rotates regularly ortans of each electron are chosen randomly in the intervals
cyclotron circle, which in addition rotates around the center—4<x,y<4, —2<p,,p,<2 in such a way that the total
of mass of the system. Without an external electric fi#dd ( energy isH~ 15+ 0.5. We remind the reader that the antidot
=0) the center of mass is fixed and inert, whereas in thevith potential(3) is placed at (0,0) antl,=1000. The es-
presence of the field E|>0) the center of mass drifts with cape ratd” is defined ad”=1/T, whereT is the time after
a constant velocity y=E/B, but the average distance be- which the distance of one of the electrons from the antidot is
tween electrons remains constant. However, this electrogreater thanR.s~5R.~10. This distance is sufficiently
pair can be trapped by the repulsive potential of the antidotiarge, and as soon as it is reached an electron escapes to
so that the electrons will spend a long time colliding with infinity and never returns to the antidot. The average value of
this antidot. An example of the electron dynamics in thisT is obtained by averaging over 100 values obtained for 100
case is shown in Fig. 4. It shows that an electron can escapandomly chosen paths.
from the antidot even in the situation witth<e., when, The dependence of the escape rBten the strength of
without the interaction, the electrons remain trapped near ththe applied electric fiel is presented in Fig. 5. It definitely
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FIG. 5. Dependence of the escape rEten the electric fielde :ﬁzoo _1600 —8I00 —sloo -4'oo —2'oo 6 200

for electrons initially in the vicinity of the antidot &= —2.0, H 15

~15.0+0.5, andU,=1000. Here, averaging is done over 100
paths,w.=2,e=27E/B?, points give the numerical results for,
and the straight line gives the dependefi€e. (6)]. Logarithms are
decimal.

5
shows that the escape takes place even at very weak electr
fields with e< e, when, without Coulomb interaction, elec-
trons are forever trapped near the antidot. According to the °f
obtained numerical dai@ee Fig. 5, in the limit of e—0 the
escape rate is sl

I'we~ e (6)

_10 L

Our understanding of this dependence is based on the fol
lowing argument. Due to the Coulomb interaction between

electrons, their dynamics in the vicinity of the antidot be- ~

comes chaotic. Therefore, the phasén the map[Eqgs.(4)]

changes randomly between electron collisions with the anti- FIG. 6. Dynamics of two electrons in the,{/) plane of an
dot, andB grows diffusively with the number of collisiong ~ antidot superlattice foH~51, B=-2.0, E=0.4, and ¢~0.63

so that (A B)2~Dn, with D= €%/2. This diffusion results in and initial distance between electrgng—r,|~4. The antidots are

the escape raté/w,~ D~ €. in agreement with the numeri- placed on a square superlattice with period 4 dge- 1 in Eq.(3).
cal data in Fig. 5 The upper figure shows the propagation of the first electron in the

plane &,y), while the bottom figure shows the distance between the
electronsAx=x;—X, andAy=y;—y,.

15
-15 -10 -5 ] 5 10 15

IV. TWO-ELECTRON PROPAGATION

IN ANTIDOT SUPERLATTICE L . i
It is interesting to understand how two electrons move in

We also studied the electron dynamics on a square antidguch a superlattice. Intuitively, one would expect that the
superlattice, when the antidot potential is given by B). Coulomb repulsion would separate the electrons and that
and the distance between antidotsdis 2. In this case our they would not propagate together. In fact, we found that this
results for one-electron dynamics are in qualitative agreeis not necessarily the case, and there are regimes where two
ment with the conclusions drawn in Refs. 5 and 6. As soorelectrons propagate together. An example of such a case is
as the cyclotron radiuB. becomes comparable to the antidot shown in Fig. 6. In this case the electron pair moves with an
spacingd, the trajectories start to move diffusively on the average drift velocity 4=~ E/B, and the total displacement of
whole lattice. Trapped orbits near one antidot exist only forthe pair is about 100 times larger than the distance between
2R.<d ande<e.. ForR.>d/2, the cyclotron circle starts the two electrongFig. 6).
to drift in a way similar to that shown in Fig. 3. After atime  The physical reason for the appearance of such electron
ty~d/vy, a collision with another antidot takes place thatpairs is quite clear in the absence of a superlattice potential.
finally originates a sequence of irregular jumps between anin this case, as discussed above at the beginning of Sec. I,
tidots. The diffusion rate on the superlattice originated byelectrons rotate around one another, and propagate together;
this process can be estimatedg,~d?/ty~dvy. This dif-  their dynamics are integrable. Then, according to the KAM
fusion is important in the limiR.~d>1. However, we note theorem, a weak perturbation will not destroy such pairs.
that even aE=0, atR.>d/2, there are chaotic orbits which Indeed, in the case of Fig. 6 the antidot potential is relatively
diffuse over the whole lattice, as discussed in detail in Refsweak U,=1<H/2~25), and the pair is not destroyed. We
5 and 6, and this diffusion is dominant fdr- 1. checked numerically that, providdd,~H/2, the pair size
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starts to grow diffusively due to random scattering on a The study of the electron pair dynamics in the antidot
strong antidot potential, and eventually the pair is destroyeduperlattice showed that the Coulomb repulsion can create
and electrons continue to propagate separately.\kgrH,  stable pairs propagating for a large distance. In agreement
the separation occurs after a few collisions with antidotswith the KAM theorem, such pairs are stable when the anti-
Conversely, folUy,<H, the lifetime of the classical pair be- dot potential strength is relatively weak compared to the

comes infinite, in agreement with the KAM theorem. electron energy. Conversely, in the opposite limit the pairs
become unstable, and electrons are quickly separated from

one another. On the basis of this phenomenon it is possible
to make a conjecture that in two-dimensional heterostruc-
tures with high mobility the impurity potential is relatively

V. CONCLUSIONS

In this paper we investigated the effects of Coulomb in-

teraction between two electrons on their classical dynamic
in an antidot superlattice in crossed electric and magneti
fields. We found that for a weak electric field the electron
pair can be trapped for a long time near an antidot, even i

eak, and such electron KAM pairs will be stable and can be
etected experimentally. We note that in recent experirfients
with 2D electron gas, carriers of charge ®ere detected. It
i{s possible that these carriers are related to the KAM pairs

eventually one or two electrons escape from the antidot. ThEUnd in this paper.

escape ratd" decreases proportionally to the square of the
electric field. This behavior is qualitatively different from the
case of noninteracting electrons, which are trapped forever We thank G. Casati, who pointed out the results found in
near the antidot in the limit of a small electric field. Ref. 7.
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