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Repulsive trap for two electrons in a magnetic field
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We study numerically and analytically the dynamics of two classical electrons with Coulomb interaction in
a two-dimensional antidot superlattice potential in the presence of crossed electric and magnetic fields. It is
found that near one antidot the electron pair can be trapped for a long time, and the escape rate from such a trap
is proportional to the square of a weak electric field. This is qualitatively different from the case of noninter-
acting electrons which are trapped forever by the antidot. For pair propagation in the antidot superlattice, we
found a broad parameter regime for which the pair is stable, and where two repulsive electrons propagate
together for an enormously large distance.

DOI: 10.1103/PhysRevB.63.165310 PACS number~s!: 72.20.My, 45.05.1x, 05.45.Mt
a
na
d
f

ar
.
he
a
he
is
d
u

b
ie

a
e
d
el
p

el
lin
th
in
-
e

m
r
d

t
-

th
he

as

ical
or
y-

ons
ap-

en-

fly
ssed

o
o-
In

ag-
ed

c

o-
I. INTRODUCTION

Recent technological developments allowed one to cre
various types of surface superlattices for two-dimensio
~2D! electron gas in semiconductor heterostructures, an
investigate their transport properties in the presence o
magnetic field. Experiments with antidot lattices were c
ried out by different experimental groups~see, e.g., Refs
1–4!, and the contribution of classical periodic orbits in t
resistivity peaks at certain values of magnetic field w
clearly identified. In fact, the size of the antidots and t
distance between them are relatively large, and an analys
classical trajectory dynamics can be successfully applie
understand a number of unusual transport properties in s
antidot arrays.5,6 Due to the nonlinearity of motion in the
vicinity of an antidot potential, the classical dynamics can
chaotic, which leads to diffusive spreading of trajector
even for perfectly periodic lattices.5,6 If the distance between
antidots is large or comparable to the cyclotron radius of
electron in a magnetic field perpendicular to the lattice, th
one should first understand, the properties of electron
namics near one antidot. In the absence of an electric fi
the dynamics is integrable for an antidot of circular sha
due to angular momentum conservation, and an electron
ways regularly rotates around the antidot. An electric fi
applied in the 2D plane of the superlattice breaks the cy
drical symmetry, and can lead to electron escape from
antidot to infinity. The problem of electron dynamics,
crossed electricE and magneticB fields near a circular elas
tic disk ~antidot!, was studied in Ref. 7. It was shown that th
dynamics can be described by a simple area-preserving
which depends only on one dimensionless parametee
5(2pm/ae)(E/B2), wherem and e are electron mass an
charge, anda is the disk radius. For smalle,ec the electron
dynamics in a phase space of angular momentuml and a
conjugated angle f is bounded by the invarian
Kolmogorov-Arnold-Moser~KAM ! curves so that the elec
tron always remains near the disk. Conversely, fore.ec the
KAM curves are destroyed, global chaos sets in, and
electron escapes to infinity after a few collisions with t
disk.

Until now the classical dynamics in antidot lattices w
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studied only for noninteracting electrons.5–7 In this paper, we
analyze the effect of Coulomb interaction between class
electrons in the vicinity of an antidot. We show that, f
sufficiently strong interaction between electrons, their d
namics becomes chaotic. Due to this, one or two electr
can escape from the antidot, even in an arbitrary weak
plied electric fieldE that corresponds toec→0 contrary to
ec.0 in the absence of interaction. We determine the dep
dence of the average escape rateG on e, showing that, in the
limit of a small electric field,G}e2. After this we also dis-
cuss two-electron propagation in the antidot superlattice.

The paper is organized as follows. In Sec. II we brie
discuss the one-electron dynamics near the antidot in cro
magnetic and electric fields. In Sec. III the dynamics of tw
interacting electrons is analyzed in detail. The electron m
tion in the antidot superlattice is considered in Sec. IV.
Sec. V we summarize the obtained results.

II. ONE-ELECTRON DYNAMICS

The dynamics of an electron in crossed electric and m
netic fields in two dimensions with one antidot is describ
by the Hamiltonian

H05~p2eA!2/2m1U~x,y!2eEr , ~1!

where A is the vector potential, andU(x,y) describes an
antidot potential which depends only on the radiusr
5Ax21y2 with U50 for r>a. For convenience, following
Ref. 5, we introduce the dimensionless variablesx̃5x/a, ỹ

5y/a, t̃ 5t/t0 , H̃05H0/2eF , Ũ5U/2eF , B̃5B/B0, and
Ẽ5E/E0 where eF(vF) is the Fermi energy~velocity!, t0
5(2eF /ma2)21/25a/vF , and the magnetic and electri
fields are scaled byB05(meF)1/2/ea and E052eF /ea, re-
spectively. In these units a magnetic fieldB5B0 gives the
cyclotron radiusRc5a for an electron with energyeF

5mvF
2/2. We choose the Landau gaugeA5(2By,0,0).

Then, omitting the tildes, the Hamiltonian equations of m
tion read
©2001 The American Physical Society10-1
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dx/dt5vx , dvx /dt5Bvy2dU/dx2Ex , ~2!

dy/dt5vy , dvy /dt52Bvx2dU/dy2Ey

where vx5px1yB and vy5py . To model the antidot, we
chose the potential:

U~x,y!5U0~12r !6. ~3!

Usually we chooseU0 to be much larger than the electro
energyH0, so that this potential becomes very similar to
absolutely rigid disk with an effective radiusae f f about 15%
smaller thana.

Far from the antidot the equations of motion are exac
solvable, and give an electron rotation over a circle of cyc
tron radiusRc5v/vc , with a cyclotron frequencyvc5B. In
addition, this circle moves with the drift velocityvd5E/B in
a direction perpendicular to the electric and magnetic fie
As found by Berglundet al.7, near the antidot, the dynamic
depends strongly on the dimensionless parametee
5vd2p/vc52pE/B2. For e@1 the electron scatters on th
antidot, and escapes to infinity after one collision. Co
versely, the situation with not very largee is much richer.7 In
this case the electron can collide many times with the a
dot, and this process is described by a simple area-prese
map7

f̄5f1p22 sin21b, ~4!

b̄5b2e sinf̄,

where bars denote the values of variables after collision,f is
the scattering angle measured in respect to the directio
the drift velocity, andb is the scattering impact paramet
divided by the antidot radius. In this wayb varies in the
interval ~-1, 1!. We note thatb can be also considered as th
orbital momentuml of the electron divided by the maxima
momentuml max5av, at which electron still collides with the
antidot. The real dynamics is correctly described by the m
if Rc@1, that corresponds tov@B. Fore!1 the variation of
b is bounded by the invariant KAM curves, and the electr
is trapped near the antidot. The last KAM curve is destroy
for e.ec'0.45,7 so that orbits with initialb'0 can escape
from the antidot to infinity. Of course, fore.ec some is-
lands with regular motion inside still remain, but they b
come very small as soon ase becomes significantly large
thanec .

To study the electron dynamics in Eq.~1!, the Hamil-
tonian equations of motion are solved numerically by
Runge-Kutta method of fourth order, so that the elect
energy is conserved with a relative precision better th
1026. The examples of the Poincare´ cross sections con
structed atx50 andvx.0, for trajectories trapped near th
antidot, are shown in Figs. 1 and 2. In Fig. 1,e'0.16 is
rather small, and almost all the phase space is filled by i
grable KAM curves. For Fig. 2, the parametere'0.42 is
close toec , and KAM curves become more deformed a
the chaotic component becomes visible. This case can
compared with Fig. 3 in Ref. 7, where the cross section
the map@Eqs. ~4!# is given for a close value ofe. Here we
16531
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should mention that formally the description provided by t
map @Eqs. ~4!# is valid only atv@B.7 However, in our nu-
merical simulations we found that the map is already eff
tively valid for v'2B ~see Figs. 1 and 2!. For example, the
exact simulations give the escape borderec with 10% accu-
racy. This result, however, assumes that the potential of
antidot is rather steep. The case with a smooth antidot po
tial is rather different, as shown in Ref. 5.

It is interesting to note that the map@Eqs.~4!# cannot be
valid if orbits haveubu'1 or ubu.1. For example, if the
antidot is inside a large cyclotron circle, then the electr
will make many rotations before this slowly drifting circl
will cross the antidot. This situation is not taken into accou
by the first equation in Eq.~4!. An example of the electron

FIG. 1. Poincare´ cross section for Hamiltonian~1! constructed
at x50, andvx.0 for H058.725, B522, andE50.1, so that
e'0.16. The antidot determined by potential~3! is located at~0, 0!;
U051000.

FIG. 2. Same as in Fig. 1, but forE50.3 ande'0.42.
0-2
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REPULSIVE TRAP FOR TWO ELECTRONS IN A . . . PHYSICAL REVIEW B63 165310
dynamics in this case is given in Fig. 3. Heree'0.16 is
small, and the motion is still regular. We should stress t
such a trajectory separates orbits which escape to infinity
those which collide with the antidot on each cyclotron p
riod. For an antidot superlattice with an antidot spacing co
parable toRc , this type of orbit~see Fig. 3! is of special
importance, since these orbits can easily jump from one
tidot to another, leading to a global diffusion in the syste
We will discuss this situation in Sec. III.

III. EFFECTS OF COULOMB INTERACTION
ON ELECTRON DYNAMICS

Let us now consider how the Coulomb interaction b
tween two electrons affects their dynamics near the anti
In this case the Hamiltonian of the system reads

H5H0~p1,r 1!1H0~p2,r 2!1e2/ur 12r 2u. ~5!

While in free space the Coulomb interaction repels the e
trons and leads to their separation, the situation is more c
plicated in the presence of a magnetic field. In the case w
out any antidot the total momentum of the two electrons
conserved, and as a result each electron rotates regularly
cyclotron circle, which in addition rotates around the cen
of mass of the system. Without an external electric fieldE
50) the center of mass is fixed and inert, whereas in
presence of the field (uEu.0) the center of mass drifts with
a constant velocityvd5E/B, but the average distance b
tween electrons remains constant. However, this elec
pair can be trapped by the repulsive potential of the antid
so that the electrons will spend a long time colliding w
this antidot. An example of the electron dynamics in th
case is shown in Fig. 4. It shows that an electron can esc
from the antidot even in the situation withe,ec , when,
without the interaction, the electrons remain trapped near

FIG. 3. Electron dynamics in the (x,y) plane near the antidot o
Fig. 1 for H059.7, B522.0, E50.1, ande'0.16.
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antidot. In our numerical simulations we observed differe
cases where one electron or both electrons escape to infi

To investigate how the escape rate depends on
strength of an external electric fieldE, we studied an en-
semble of 100 paths. In each path the positions and mom
tums of each electron are chosen randomly in the interv
24<x,y<4, 22<px ,py<2 in such a way that the tota
energy isH'1560.5. We remind the reader that the antid
with potential~3! is placed at (0,0) andU051000. The es-
cape rateG is defined asG51/T, whereT is the time after
which the distance of one of the electrons from the antido
greater thanResc'5Rc'10. This distance is sufficiently
large, and as soon as it is reached an electron escap
infinity and never returns to the antidot. The average value
G is obtained by averaging over 100 values obtained for 1
randomly chosen paths.

The dependence of the escape rateG on the strength of
the applied electric fieldE is presented in Fig. 5. It definitely

FIG. 4. Dynamics of two electrons in the (x,y) plane for H
515.65, B522.0, E50.15, ande'0.24, and an initial distance
between electrons ofur12r2u'0.5. After many cyclotron periods
the first electron escapes from the antidot to infinity~upper figure!,
while the second remains trapped forever~bottom figure!.
0-3



c
-
th

fo
e
e

nt

-

tid

ee
o
ot
e
fo

e
a
a
b

h
ef

in
the
that
his
two
e is
an
f
een

tron
tial.
. III,
ther;
M

irs.
ely
e

0

the
the

A. D. CHEPELIANSKII AND D. L. SHEPELYANSKY PHYSICAL REVIEW B63 165310
shows that the escape takes place even at very weak ele
fields with e!ec , when, without Coulomb interaction, elec
trons are forever trapped near the antidot. According to
obtained numerical data~see Fig. 5!, in the limit of e→0 the
escape rate is

G/vc'e2. ~6!

Our understanding of this dependence is based on the
lowing argument. Due to the Coulomb interaction betwe
electrons, their dynamics in the vicinity of the antidot b
comes chaotic. Therefore, the phasef in the map@Eqs.~4!#
changes randomly between electron collisions with the a
dot, andb grows diffusively with the number of collisionsn,
so that (Db)2'Dn, with D5e2/2. This diffusion results in
the escape rateG/vc;D;e2, in agreement with the numeri
cal data in Fig. 5.

IV. TWO-ELECTRON PROPAGATION
IN ANTIDOT SUPERLATTICE

We also studied the electron dynamics on a square an
superlattice, when the antidot potential is given by Eq.~3!
and the distance between antidots isd.2. In this case our
results for one-electron dynamics are in qualitative agr
ment with the conclusions drawn in Refs. 5 and 6. As so
as the cyclotron radiusRc becomes comparable to the antid
spacingd, the trajectories start to move diffusively on th
whole lattice. Trapped orbits near one antidot exist only
2Rc,d ande,ec . For Rc.d/2, the cyclotron circle starts
to drift in a way similar to that shown in Fig. 3. After a tim
td;d/vd , a collision with another antidot takes place th
finally originates a sequence of irregular jumps between
tidots. The diffusion rate on the superlattice originated
this process can be estimated asDlat;d2/td;d vd . This dif-
fusion is important in the limitRc;d@1. However, we note
that even atE50, atRc.d/2, there are chaotic orbits whic
diffuse over the whole lattice, as discussed in detail in R
5 and 6, and this diffusion is dominant ford;1.

FIG. 5. Dependence of the escape rateG on the electric fieldE
for electrons initially in the vicinity of the antidot atB522.0, H
'15.060.5, and U051000. Here, averaging is done over 10
paths,vc52,e52pE/B2, points give the numerical results forG,
and the straight line gives the dependence@Eq. ~6!#. Logarithms are
decimal.
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It is interesting to understand how two electrons move
such a superlattice. Intuitively, one would expect that
Coulomb repulsion would separate the electrons and
they would not propagate together. In fact, we found that t
is not necessarily the case, and there are regimes where
electrons propagate together. An example of such a cas
shown in Fig. 6. In this case the electron pair moves with
average drift velocityvd'E/B, and the total displacement o
the pair is about 100 times larger than the distance betw
the two electrons~Fig. 6!.

The physical reason for the appearance of such elec
pairs is quite clear in the absence of a superlattice poten
In this case, as discussed above at the beginning of Sec
electrons rotate around one another, and propagate toge
their dynamics are integrable. Then, according to the KA
theorem, a weak perturbation will not destroy such pa
Indeed, in the case of Fig. 6 the antidot potential is relativ
weak (U051!H/2'25), and the pair is not destroyed. W
checked numerically that, providedU0;H/2, the pair size

FIG. 6. Dynamics of two electrons in the (x,y) plane of an
antidot superlattice forH'51, B522.0, E50.4, and e'0.63
and initial distance between electronsur12r2u'4. The antidots are
placed on a square superlattice with period 4 andU051 in Eq.~3!.
The upper figure shows the propagation of the first electron in
plane (x,y), while the bottom figure shows the distance between
electronsDx5x12x2 andDy5y12y2.
0-4
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REPULSIVE TRAP FOR TWO ELECTRONS IN A . . . PHYSICAL REVIEW B63 165310
starts to grow diffusively due to random scattering on
strong antidot potential, and eventually the pair is destro
and electrons continue to propagate separately. ForU0@H,
the separation occurs after a few collisions with antido
Conversely, forU0!H, the lifetime of the classical pair be
comes infinite, in agreement with the KAM theorem.

V. CONCLUSIONS

In this paper we investigated the effects of Coulomb
teraction between two electrons on their classical dynam
in an antidot superlattice in crossed electric and magn
fields. We found that for a weak electric field the electr
pair can be trapped for a long time near an antidot, eve
eventually one or two electrons escape from the antidot.
escape rateG decreases proportionally to the square of
electric field. This behavior is qualitatively different from th
case of noninteracting electrons, which are trapped fore
near the antidot in the limit of a small electric field.
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The study of the electron pair dynamics in the antid
superlattice showed that the Coulomb repulsion can cre
stable pairs propagating for a large distance. In agreem
with the KAM theorem, such pairs are stable when the a
dot potential strength is relatively weak compared to
electron energy. Conversely, in the opposite limit the pa
become unstable, and electrons are quickly separated
one another. On the basis of this phenomenon it is poss
to make a conjecture that in two-dimensional heterostr
tures with high mobility the impurity potential is relativel
weak, and such electron KAM pairs will be stable and can
detected experimentally. We note that in recent experime8

with 2D electron gas, carriers of charge 2e were detected. It
is possible that these carriers are related to the KAM p
found in this paper.
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