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Magnetic field effect for two electrons in a two-dimensional random potential
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We study the problem of two particles with Coulomb repulsion in a two-dimensional disordered potential in
the presence of a magnetic field. For the regime when without interaction all states are well localized, it is
shown that above a critical excitation energy electron pairs become delocalized by interaction. The transition
between the localized and delocalized regimes is similar to the metal-insulator transition at the mobility edge
in the three-dimensional Anderson model with broken time reversal symmetry.
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I. INTRODUCTION the single-particle Anderson transition in three dimensions.
Indeed, the pair center of mass moves in the 2D plane, while
The interplay of disorder and interactions in electronicelectrons rotate around it, which gives an effective third di-
systems is a central problem in condensed matter physicsmension. The rotation occurs on a ring of widi{rand radius
Two-dimensional(2D) systems are of particular interest, Rocl‘l"3 fixed by energy conservation. As a result the two-
since the scaling theory of localizatfopredicts that nonin- particle states are delocalized for excitation energies,
teracting electrons are always localized in a 2D disordered:|; #* («,>1)° This expectation has been confirmed
potential, while a metal-insulator transition has been reportedumerically® by a study of the level spacing statistiegs),
in transport measurements with 2D electron and hole gaseswhich displays a transition from the Poisson distributitar
The study of this many-body problem is very complicated,e<¢,) to the Wigner-Dyson distributioffor e>¢.). It was
for both analytical and numerical analysis. It is thereforealso found that at a critical poink €.) the P(s) statistics
highly desirable to have some relatively simple models thafs close to the distribution found in the 3D Anderson model
could be solved and would lead to a better understanding aft the mobility edgé®*’
the effects of interactions in the presence of disorder. The |n this paper we consider the effect of a magnetic field on
problem of two interacting particle§1P’s) in a random po-  the TIP problem with Coulomb repulsion in two dimensions.
tential has received much attention in the last few years. I{ye summarize our findings as follow&t) we numerically
has been shovrthat TIP’s can propagate coherently for a compute TIP wave functions and give direct evidence that
lengthl ; that is much larger than the one-particle localizationthe Coulomb interaction leads to delocalization of excited
length |1, which can lead to an enhancement of transport. states;(2) we show that with increase of the excitation en-
This problem has been studied recently by different groupgrgy the level spacing statistid(s) exhibits a transition
in oné* and two dimensior§~° and it has been under- from the Poisson distribution to the Wigner-Dyson distribu-
stood that the pair delocalization is related to the enhanceion and that at the critical poif(s) is similar to the critical
ment of interaction in systems with complex, chaotic eigen-statistics found in the 3D Anderson model with broken time
states. The delocalization factor is determined by the densityeversal symmetry?
of two-particle states coupled by the interactipp, and by The paper is organized as follows. The model is intro-
the interaction induced transition ralg . At k.=I'¢p,~1  duced in Sec. Il. In Sec. Ill we review the analytical argu-
the interaction matrix elements become comparable with thenents developéa for the TIP problem in two dimensions
two-particle level spacing and the collisions between parwith Coulomb repulsion and we discuss the influence of a
ticles give a strong increase of the ratjdl . magnetic field on this theory. In Secs. IV and V we discuss
Most studies of the TIP problem have considered a shordur numerical data for this problem when the time reversal
range interaction. In this case, when two particles are localsymmetry is broken by a magnetic field. A number of typical
ized at a distanc®>1,, the overlap of their wave functions examples of interaction induced pair delocalization is shown
is exponentially small, and such states are localized in muchh Sec. IV. The transition in the level spacing statistics from
the same way as in the noninteracting case. On the othehe Poisson distribution to the Wigner-Dyson distribution is
hand, when the average distance between particles is largghalyzed in Sec. V. There we present a comparison of our
than|,, the screening of charges in the case with a giverresults with the data for the 3D Anderson transition with
charge density is problematic. Because of that for such @me reversal symmetry broken by a magnetic field. In Sec.
regime it is natural to consider the bare Coulomb interaction/I we present a summary of the results.
in the simple TIP problem. Recently, it has been shbwn
that the Coulomb repulsion can delocalize two particles
(electrons$ in a two-dimensional disordered lattice, even if
the particles are separated by a distaReel ;. The delocal- We consider two particles with Coulomb repulsion in a
ization of two-electron states takes place in a way similar tdwo-dimensional disordered square lattice, in the presence of

Il. THE MODEL
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a constant magnetic field perpendicular to the plane. We retion domain of sizd ;. Therefore, wheriR>1, it is possible

strict our investigations to the triplet case, which correspondso expand the interaction for electron displacemets, Ar ,

to the study of two spinless fermions. The singlet case, inof typical lengthl; near their initial positions;,r,. The

vestigated in one and two dimensions for the on-site Hubterms up to the first order in the expansion of the Coulomb

bard interactiort? should give similar results. The Hamil- potential give only mean-field corrections to the one-particle

tonian of the model reads potential. The first term beyond mean field has a dipole-
dipole form, and is of the order of

H=— 2 v,,,,cIcr,+2 E/n+Hine. (1) ! uI2
(r,r> Udd~——3Ar1~Ar2~—31. (6)
The vectors = (x,y) denote theL X L sites of a square lat- R R

tice with periodic boundary conditions applied in both direc-
tions;c;r (c,) createqdestroy$ an electron at the site The
occupation number at the siteis n,=cc,. The uncorre-
lated random energids, are distributed with constant prob- U
ability within the interval —W/2 W/2], whereW denotes the (QZ%)ddN - 2 Arq- Ar2¢a(rl)¢ﬁ(r2)¢;(rl)¢g(r2).
magnitude of the disorder. The nearest neighbor hopping R¥ryr

terms on the square lattice include the magnetic field, and are @)
given by V, , =V exp(ti2may) for r—r'=(+1,0), while  The sum in Eq(7) runs overl? sites for each electron, so
for r—r'=(0,+1) they areV,, =V. This choice corre- that in total the sum contains of the order|éfterms with
sponds to the Landau gauge for the vector poterial 5nqom signs. Each term is of the orderl op*~17% As a
(—Bya0,0), with the magnetic fiel@ perpendicular to the oq it the typical dipole-dipole transition matrix element in

plane. The number of flux quanta per unit cell of the lattice isy,q ergodic approximation and with eigenstates given by Eq.
a=eB&/h=Ba? ¢, and in the following the lattice spac- (3) is of the order of

ing constanta is taken to be unity. The magnetic field is

This gives dipole-dipole matrix elements between noninter-
acting eigenstates:

chosen to be commensurate with the lattice, icesk/L, U
with k integer. The last term in E¢l) gives the interaction: QYP~ = (8)
] nn,: . . . .
Hy=m > ———, 2 On the basis of this result we can estimate the typical
2 G r=r| interaction induced transition rat&, between noninteracting
where U is the strength of the Coulomb repulsion afrd two-particle eigenstates by means of the Fermi golden rule:
—r’| is the interparticle nearest distance computed on a 2D U2
torus. —(oyn2, 1
I'e~(Qdd)“p2 ROV (€)

IIl. ANALYTICAL ESTIMATES . . .
Here we took the density of states coupled by the interaction

We consider the case with the average distance betweédn the middle of the energy band of widlB~V, i.e., p,
electronsR=|r,—r,| much larger than their one-particle lo- ~19/V. Due to localization, one-electron jumps over a dis-
calization length:R>1;. In the localized regime the one- tance larger thah, give exponentially small matrix elements
body Anderson localized orbitals can be represented in thand these transitions can be excluded from consideration.

lattice basis as The mixing of two-electron states takes place when
1 r=ra| U4\
Po(r)~ LR Ti6,(r) ], 3 Ke=T"epo~ VR >1, (10

wherer,, marks the center of the localizedh single-particle  \yhich corresponds t&<1,(Ul,/V)¥3 For U~V one gets
eigenstate, and,(r) is a random phase. Interaction matrix R<I‘1"3, and the conditiorR>1, is still satisfied when

elements between noninteracting two-particle eigenstates 1 1 therefore the physical picture is qualitatively different
|aB) and|ys) are given by from the case of a short range screened interaction, where

_ — Y _ Ay mixing is possible only for states at a distariRell,. For
(v8lHind @B)= Q= Qu @) ke>1 the pair jumps on a typical length and its diffusion
with rate is
r r')y¢i(r)ds(r' \Y;
r#r! r—r 1

Due to one-particle exponential localization, Coulomb re- The transition from localization to pair diffusion takes
pulsion can induce electron jumps only inside the localizaplace in a way qualitatively similar to that in the Anderson
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model in 3D. The pair center of mass can move in the 2D  0.12
plane and in addition the electrons diffusively rotate around

it in a ring of radiusk and widthl,, keeping their Coulomb 0.08
energyE..~U/R constant. The number of effective sites in

the third direction M~ 7R/l is given by the number of &
circles of sizel, in the ring. Therefore, following standard 0.04
results for the quasi-2D Anderson mod&the pair localiza-

tion lengthl, is given by 0.00
le TRk, 80 ]
—Nequefgz)"’eX ) (12) N
I Iy 60

whereg,~ k. is the two-particle conductaricend the above W40
estimate is valid in the metallic phase for the corresponding

3D Anderson model#.>1). SinceR~17° whenk,~ 1 (for

U~V), at the transition the TIP localization length jumps 0
from I.~1, to an exponentially large value

_ 1/3
o~ lexp(arly™). (13 FIG. 1. Single-particle density of statgg (top) and inverse

The TIP diffusion will eventually be localized due to the participation ratio¢;~1% (bottom in the 2D Anderson model as a
finite number of planes in the third direction. However, if function of energy, for system size=24, disorder strengtiw
disorder is not too strongl {>1), the Coulomb interaction =7V, and rescaled magnetic field=1/6 (full line) and a=0
gives rise to an exponentially sharp localization length en{dashed ling Data are averaged ovéiz=10" disorder realiza-
hancement, with a “critical” behavior similar to that the 3D tons.
Anderson model for finite system sizés>L>1,. We re- ) . .
mark that, due to disorder, the ring is not rigid and the eleche density of states near the band edges, which brings about
tronic motion adapts to the fluctuations of the random poten2 decrease imy.” For the parameters of Fig. 1 the results
tial so that the total energy remains constant even with som@und in Ref. 15 give the critical delocalization energy
variation of the ring radius. This effect should increase the~1.2V, counted from the energy of the ground stpfég.
number of planedV . of the effective quasi-2D Anderson 1(c) therd, which corresponds t&~ —3.8v in Fig. 1 here.
model, giving a stronger delocalization effect. At this energyé;(a=1/6)~ &;(«=0) [see Fig. 1(bottom]
Since the excitation energy is related to the pair dis- Which implies|;(a=1/6)~I,(a=0), and hence we expect

tance,e~U/R, the condition of pair delocalizatiork{>1) that the critical energy for the delocalization transition in the
implies presence of a magnetic field will remain approximately the

same:e;(a=1/6)~e;(a=0) .2

e> el M3 (14)
the scaling reIationsCI‘l"gz const is in agreement with the IV. TIP DELOCALIZATION
numerical results obtained in Ref. 15. In order to study the eigenstate properties of our model

Finally we discuss the influence of a magnetic field on thewith interaction, we diagonalize the Hamiltoniél) numeri-
theory presented in this section. For a typical magnetic fielctally. In this way we determine the two-particle probability
corresponding tax=1/6 flux quanta per plaquette, the dis- distribution F(r,r,)=|W(ry,r,)|? for the kth eigenfunc-
order strengthdV/=7V and W=10V are strong enough to tion W (r,,r,)=(r,r,|¥,) written in the lattice basis. From
mix different Landau levels, as illustrated in Fig(tbp): the  this we extract the one-particle probability,

single-particle density of states ®¥=7V is only slightly
changed with respect to the zero magnetic field case. In Fig.1 _ E
(bottom we evaluate the energy dependence of the single- fi(ra)= = Filry,ra), (16

particle inverse participation rati§, (IPR):
and the probability of the interparticle distance,

6=12 [¢(]* h~VE. (15)
, fa(R)=2 F(R+r2,rp) (17
This convenient characteristég determines how many sites 2
contribute to an eigenstate and is simply related to the localwith R=r;—r,.
ization lengthl ;. The magnetic field gives an increase&f Typical examples of probability distributions are shown
in the middle of the energy band. It is known from weakin Fig. 2 atW=10V for a system sizé.=30. They clearly
localizatiorf’ that, in the presence of a magnetic field, coher-show that the two-particle ground stéfég. 2 (top)] remains
ent time-reversed paths are eliminated and therefore backecalized in the presence of interaction, with the particles
scattering is suppressed. On the contrary, the magnetic fiektaying far from each other in order to minimize Coulomb
shrinks the band and &= 7V there is a slight reduction of repulsion. Similar conclusions apply to low-energy eigen-
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FIG. 3. Density plots for the case of Fig.(thiddle) (two top
plots, U=2V) and for the case of Fig. Zbottom (two bottom
plots,U=0). Black corresponds to the minimum of the probability
distribution and white to the maximuieolor plots are available at
http://arXiv.org/abs/cond-mat/0011461

15- 15

FIG. 2. Probability distribution$ (left) andf4 (right) from Egs. 5
(16) and (17) for two interacting particles in a 2D lattice of size &=1 rE fo(ry). (18
L =30, with disorder strengtiV= 10V, and rescaled magnetic field 1
a=1/6. Top: Coulomb repulsiok) =2V, ground state, number of In this way &g gives the number of lattice sites occupied by
sites occupied by one particle given by IRR=8; middle: U  one particle in an eigenstate. For the case of Fig. 2, the
=2V, rescaled one-electron excitation energyB=0.71 B  Coulomb interaction does not significantly charige=8 for
=4V), £=320; bottom: same excitation energy butla&0, £ the ground state, while for an excitation energy8=0.71
=14.7. there is a huge delocalization effect frofg=14.7 atU=0

to £,=320 atU=2V.

states. On the contrary, for higher excitation enerfi€8
=0.71 in Fig. 2(middle), wheree= SE/2, the excitation en- V. SPECTRAL STATISTICS
ergy of the TIP eigenstatéE is counted from the ground
state, andB=4V is the bandwidth atW=0] the probability
distributionf spreads over the whole lattice, whilg shows
a hole at smalR and a depletion for largR. The first prop-
erty is a simple consequence of Coulomb repulsion, whil
the second one is in agreement with the general discussion
the model(1). Following the analytical argumenfssumma-
rized in Sec. lll, we believe that this ring structysee also
Fig. 3 (top)] _would becqme more_ewdent_at Iarger_system Po(s)=exg —s) (19)
sizes, with maximum interparticle distance
Rma=L/25>1%2 2 |t is impossible to fully satisfy such a con- When the system siz&>|,. Delocalized wave functions
dition within numerically tractable system sizes, if one con-Yield correlated spectra and Wigner-Dyson statistics with the
siders that the condition>1 should be satisfied at the same Wigner surmise
time 2* We stress that this pair delocalization takes place in a
regime of strong localization for the one-particle wave func- 32¢? 452
tions. This is demonstrated in Fig. (®ottom and Fig. 3 PU(S):?GX% )
(bottom), which show the probability distributions for the
noninteracting problem{=0) at the same excitation en- in the absence of time reversal symmetry. The striking ad-
ergy. As a quantitative measure of the interaction inducedantage of such an approach is that it deals only with the
charge delocalization one can take the inverse participatioapectrum and does not involve heavy numerical calculations
ratio &5 for the one-particle probability. of conductivity or eigenfunctions.

The qualitative change of the structure of the eigenstates
also leads to a change in the level spacing statistics. In the
one-particle problem spectral fluctuations proved to be a
very useful tool to characterize the 3D Anderson transitron.

9 pcalized wave functions yield uncorrelated spectra with
oisson statistics, characterized by a distributigs) of the
energy spacings between successive levels going to

(20
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FIG. 4. Dependence of, on the rescaled one-electron energy
€/B for W=7V, a=1/6, U=2V, system sizek =6 (circles, num-
ber of disorder realizationlg=2x 10*, number of spacings for
each point of the graphg>4x10%), L=12 (stars,Ng=5X 10,
Ng>1.1x10%, L=18 (diamonds,Ng=10?, Ng>1.4x10%, and
L =24 (triangles,Ng= 10, Ng>3X 10%).
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To analyze the evolution of th@(s) distribution with
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FIG. 5. Transition from the Poisson distributiéiashed curve
to the Wigner surmiséull curve) in the level statistic®(s) for the
case of Fig. 4 a.=18: 0<e/B<0.1 (diamonds,7,;=0.89, Ng
=45x10°) and 0.4 e/B<0.5 (circles, 5,=0.06, Ng=3.5
x10%.

ments given in Sec. Ill. This 3D critical statistics also gives
a good approximation for the 2D critical statistics \t

respect to the excitation energy, it is convenient to use the= 10V (see Fig. 6, with 7,.~0.29. The small difference in

parameter

f;“[ms)—Pu(s)]ds

= sy ’ (21)
fo [Pp(s)—Py(s)]ds

wheres;=0.50% . . . is thefirst intersection point oPp(Ss)
and Py(s). In this way Pp(s) corresponds topy=1 and
Pu(s) to ny=0. The dependence af, on the one-electron
excitation energye= J6E/2 is shown in Fig. 4. This figure
shows that, at fixed interactidh= 2V, disordetW= 7V, and
rescaled magnetic field=1/6, curves at different system
sizes 6=L=<24 intersect ate./B~0.33, with 7,.~0.26.

While for e<e, the level spacing statistics approaches the

Poisson limit (7y—1) when the system size increases, for
e> €. the tendency is toward the Wigner-Dyson distribution
(nyu—0). We note that the critical excitation energies/ét
=7V andW=10V (e.~0.67, data not showrare similar to

the values found in, Ref. 15 in agreement with the the ex-

pectations of Sec. lll.

The level spacing statistidd(s) is shown in Fig. 5 near
the ground state and for excitation energiese., for a
system sizd. =18. The transition from Poisson to Wigner-
Dyson statistics is evident.

The P(s) statistics near the critical poirt= €. is shown

in Fig. 6. The curves at different system sizes display a size-

the 7y values atW=7V, and 1 (already observed at

=0; see Ref. 1pcan be attributed to the fact that the jump in
the localization length at the “transition,” I./1;
~exp(?), is not sufficiently sharp. This is due to the not
very large values of; accessible for numerical simulations.
Investigation of cases with largér would require a signifi-
cant increase of the system size, in order to satisfy the con-
dition L>R~113. We also note that the finite statistics and
the limited system sizes prevent us from precisely evaluating
the critical excitation energy, and the critical valuey. .
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FIG. 6. Level statistic®(s) at the critical point, folJ =2V and

independent intermediate distribution, which exhibits level ,_1/6: w=7v. 032 ¢/B<035 L=6 (circles, Ng=8x 10%)

repulsionP(s)xs? at smalls and a Poisson-like taiP(s)

and L=18 (diamonds,Ng=2X 10*); W=10V, 0.65<&/B<0.70,

xexp(—asg), with a~1.9. The close agreement between thesq =12 (squaresNg=2x 10%, Ng=10%). The thick line shows the

distributions and the critical statistics found in the 3D Ander-

critical P(s) in the 3D Anderson model in the presence of a mag-

son model with broken time reversal symmetry at the mobilnetic field (data taken from Fig. 1 of Ref. 16with the larges
ity edge, taken from Ref. 18, supports the analytical arguexponential decap(s)=exp(—«s), k=1.87, shown in the inset.
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VI. CONCLUSIONS small electron density and/or large disorder fluctuations,
when the distance between electrons is larger than the size of

We have shown that Coulomb interaction can delocallngeir localization length in the absence of interaction.

electron pairs in a 2D disordered potential in the presence
a magnetic field, above a critical excitation energy, in a way
similar to the Anderson transition in 3D. The close relation
between these two transitions is reflected in the close simi- We thank Isa Zharekeshev for the possibility of using the
larity of level statistics at the critical point. The results ob- data of Ref. 18, and the IDRIS in Orsay and the CICT in
tained in this paper should be relevant for experiments atoulouse for access to their supercomputers.
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