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Magnetic field effect for two electrons in a two-dimensional random potential
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We study the problem of two particles with Coulomb repulsion in a two-dimensional disordered potential in
the presence of a magnetic field. For the regime when without interaction all states are well localized, it is
shown that above a critical excitation energy electron pairs become delocalized by interaction. The transition
between the localized and delocalized regimes is similar to the metal-insulator transition at the mobility edge
in the three-dimensional Anderson model with broken time reversal symmetry.
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I. INTRODUCTION

The interplay of disorder and interactions in electron
systems is a central problem in condensed matter phys1

Two-dimensional~2D! systems are of particular interes
since the scaling theory of localization2 predicts that nonin-
teracting electrons are always localized in a 2D disorde
potential, while a metal-insulator transition has been repo
in transport measurements with 2D electron and hole gas3

The study of this many-body problem is very complicate
for both analytical and numerical analysis. It is therefo
highly desirable to have some relatively simple models t
could be solved and would lead to a better understandin
the effects of interactions in the presence of disorder. T
problem of two interacting particles~TIP’s! in a random po-
tential has received much attention in the last few years
has been shown4 that TIP’s can propagate coherently for
lengthl c that is much larger than the one-particle localizati
length l 1, which can lead to an enhancement of transpo5

This problem has been studied recently by different gro
in one4–11 and two dimensions12–15 and it has been under
stood that the pair delocalization is related to the enhan
ment of interaction in systems with complex, chaotic eige
states. The delocalization factor is determined by the den
of two-particle states coupled by the interaction,r2, and by
the interaction induced transition rateGe . At ke5Ger2;1
the interaction matrix elements become comparable with
two-particle level spacing and the collisions between p
ticles give a strong increase of the ratiol c / l 1.

Most studies of the TIP problem have considered a sh
range interaction. In this case, when two particles are lo
ized at a distanceR@ l 1, the overlap of their wave function
is exponentially small, and such states are localized in m
the same way as in the noninteracting case. On the o
hand, when the average distance between particles is la
than l 1, the screening of charges in the case with a giv
charge density is problematic. Because of that for suc
regime it is natural to consider the bare Coulomb interact
in the simple TIP problem. Recently, it has been show15

that the Coulomb repulsion can delocalize two partic
~electrons! in a two-dimensional disordered lattice, even
the particles are separated by a distanceR@ l 1. The delocal-
ization of two-electron states takes place in a way simila
0163-1829/2001/63~23!/235103~6!/$20.00 63 2351
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the single-particle Anderson transition in three dimensio
Indeed, the pair center of mass moves in the 2D plane, w
electrons rotate around it, which gives an effective third
mension. The rotation occurs on a ring of widthl 1 and radius
R} l 1

4/3 fixed by energy conservation. As a result the tw
particle states are delocalized for excitation energiese.ec

} l 1
24/3 (ke.1).15 This expectation has been confirme

numerically15 by a study of the level spacing statisticsP(s),
which displays a transition from the Poisson distribution~for
e,ec) to the Wigner-Dyson distribution~for e.ec). It was
also found that at a critical point (e5ec) the P(s) statistics
is close to the distribution found in the 3D Anderson mod
at the mobility edge.16,17

In this paper we consider the effect of a magnetic field
the TIP problem with Coulomb repulsion in two dimension
We summarize our findings as follows:~1! we numerically
compute TIP wave functions and give direct evidence t
the Coulomb interaction leads to delocalization of excit
states;~2! we show that with increase of the excitation e
ergy the level spacing statisticsP(s) exhibits a transition
from the Poisson distribution to the Wigner-Dyson distrib
tion and that at the critical pointP(s) is similar to the critical
statistics found in the 3D Anderson model with broken tim
reversal symmetry.18

The paper is organized as follows. The model is int
duced in Sec. II. In Sec. III we review the analytical arg
ments developed15 for the TIP problem in two dimension
with Coulomb repulsion and we discuss the influence o
magnetic field on this theory. In Secs. IV and V we discu
our numerical data for this problem when the time rever
symmetry is broken by a magnetic field. A number of typic
examples of interaction induced pair delocalization is sho
in Sec. IV. The transition in the level spacing statistics fro
the Poisson distribution to the Wigner-Dyson distribution
analyzed in Sec. V. There we present a comparison of
results with the data for the 3D Anderson transition w
time reversal symmetry broken by a magnetic field. In S
VI we present a summary of the results.

II. THE MODEL

We consider two particles with Coulomb repulsion in
two-dimensional disordered square lattice, in the presenc
©2001 The American Physical Society03-1
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GIULIANO BENENTI AND DIMA L. SHEPELYANSKY PHYSICAL REVIEW B 63 235103
a constant magnetic field perpendicular to the plane. We
strict our investigations to the triplet case, which correspo
to the study of two spinless fermions. The singlet case,
vestigated in one and two dimensions for the on-site H
bard interaction,12 should give similar results. The Hami
tonian of the model reads

H52 (
^r ,r8&

Vr ,r8cr
†cr81(

r
Ernr1Hint . ~1!

The vectorsr5(x,y) denote theL3L sites of a square lat
tice with periodic boundary conditions applied in both dire
tions;cr

† (cr) creates~destroys! an electron at the siter . The
occupation number at the siter is nr5cr

†cr . The uncorre-
lated random energiesEr are distributed with constant prob
ability within the interval@2W/2,W/2#, whereW denotes the
magnitude of the disorder. The nearest neighbor hopp
terms on the square lattice include the magnetic field, and
given by Vr ,r85V exp(6i2pay) for r2r 85(61,0), while
for r2r 85(0,61) they areVr ,r85V. This choice corre-
sponds to the Landau gauge for the vector potentialA5
(2Bya,0,0), with the magnetic fieldB perpendicular to the
plane. The number of flux quanta per unit cell of the lattice
a5eBa2/h5Ba2/f0 and in the following the lattice spac
ing constanta is taken to be unity. The magnetic field
chosen to be commensurate with the lattice, i.e.,a5k/L,
with k integer. The last term in Eq.~1! gives the interaction:

Hint5
U

2 (
rÞr8

nrnr8

ur2r 8u
, ~2!

where U is the strength of the Coulomb repulsion andur
2r 8u is the interparticle nearest distance computed on a
torus.

III. ANALYTICAL ESTIMATES

We consider the case with the average distance betw
electronsR5ur12r2u much larger than their one-particle lo
calization length:R@ l 1. In the localized regime the one
body Anderson localized orbitals can be represented in
lattice basis as

fa~r !'
1

l 1
expS 2

ur2 r̄au
l 1

1 iua~r ! D , ~3!

wherer̄a marks the center of the localizedath single-particle
eigenstate, andua(r ) is a random phase. Interaction matr
elements between noninteracting two-particle eigenst
uab& and ugd& are given by

^gduHintuab&5Qab
gd 2Qab

dg , ~4!

with

Qab
gd 5U (

rÞr8

fa~r !fb~r 8!fg
!~r !fd

!~r 8!

ur2r 8u
. ~5!

Due to one-particle exponential localization, Coulomb
pulsion can induce electron jumps only inside the locali
23510
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tion domain of sizel 1. Therefore, whenR@ l 1, it is possible
to expand the interaction for electron displacementsDr1 ,Dr2
of typical length l 1 near their initial positionsr1 ,r2. The
terms up to the first order in the expansion of the Coulo
potential give only mean-field corrections to the one-parti
potential. The first term beyond mean field has a dipo
dipole form, and is of the order of

Udd;2
U

R3
Dr1•Dr2;

Ul 1
2

R3
. ~6!

This gives dipole-dipole matrix elements between nonint
acting eigenstates:

~Qab
gd !dd;2

U

R3 (
r1 ,r2

Dr1•Dr2fa~r1!fb~r2!fg
!~r1!fd

!~r2!.

~7!

The sum in Eq.~7! runs overl 1
2 sites for each electron, s

that in total the sum contains of the order ofl 1
4 terms with

random signs. Each term is of the order ofl 1
2f4; l 1

22. As a
result, the typical dipole-dipole transition matrix element
the ergodic approximation and with eigenstates given by
~3! is of the order of

Qdd
typ'

U

R3
. ~8!

On the basis of this result we can estimate the typi
interaction induced transition rateGe between noninteracting
two-particle eigenstates by means of the Fermi golden ru

Ge;~Qdd
typ!2r2;

U2l 1
4

R6V
. ~9!

Here we took the density of states coupled by the interac
in the middle of the energy band of widthB;V, i.e., r2

; l 1
4/V. Due to localization, one-electron jumps over a d

tance larger thanl 1 give exponentially small matrix element
and these transitions can be excluded from considerat
The mixing of two-electron states takes place when

ke5Ger2;S Ul 1
4

VR3D 2

.1, ~10!

which corresponds toR, l 1(Ul 1 /V)1/3. For U;V one gets
R, l 1

4/3, and the conditionR@ l 1 is still satisfied whenl 1

@1.19 Therefore the physical picture is qualitatively differe
from the case of a short range screened interaction, wh
mixing is possible only for states at a distanceR, l 1. For
ke.1 the pair jumps on a typical lengthl 1 and its diffusion
rate is

De; l 1
2Ge;

Vke

l 1
2

. ~11!

The transition from localization to pair diffusion take
place in a way qualitatively similar to that in the Anderso
3-2
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model in 3D. The pair center of mass can move in the
plane and in addition the electrons diffusively rotate arou
it in a ring of radiusR and widthl 1, keeping their Coulomb
energyEee;U/R constant. The number of effective sites
the third direction,Me f'pR/ l 1, is given by the number o
circles of sizel 1 in the ring. Therefore, following standar
results for the quasi-2D Anderson model,20 the pair localiza-
tion lengthl c is given by

l c

l 1
;exp~Me fg2!;expS pRke

l 1
D , ~12!

whereg2;ke is the two-particle conductance5 and the above
estimate is valid in the metallic phase for the correspond
3D Anderson model (ke.1). SinceR; l 1

4/3 whenke;1 ~for
U;V), at the transition the TIP localization length jump
from l c; l 1 to an exponentially large value

l c; l 1exp~p l 1
1/3!. ~13!

The TIP diffusion will eventually be localized due to th
finite number of planes in the third direction. However,
disorder is not too strong (l 1@1), the Coulomb interaction
gives rise to an exponentially sharp localization length
hancement, with a ‘‘critical’’ behavior similar to that the 3
Anderson model for finite system sizesl c@L@ l 1. We re-
mark that, due to disorder, the ring is not rigid and the el
tronic motion adapts to the fluctuations of the random pot
tial so that the total energy remains constant even with so
variation of the ring radius. This effect should increase
number of planesMe f of the effective quasi-2D Anderso
model, giving a stronger delocalization effect.

Since the excitation energye is related to the pair dis
tance,e;U/R, the condition of pair delocalization (ke.1)
implies

e.ec} l 1
24/3; ~14!

the scaling relationecl 1
4/35const is in agreement with th

numerical results obtained in Ref. 15.
Finally we discuss the influence of a magnetic field on

theory presented in this section. For a typical magnetic fi
corresponding toa51/6 flux quanta per plaquette, the di
order strengthsW57V and W510V are strong enough to
mix different Landau levels, as illustrated in Fig. 1~top!: the
single-particle density of states atW57V is only slightly
changed with respect to the zero magnetic field case. In F
~bottom! we evaluate the energy dependence of the sin
particle inverse participation ratioj1 ~IPR!:

j151/(
r

uf~r !u4, ł 1;Aj1. ~15!

This convenient characteristicj1 determines how many site
contribute to an eigenstate and is simply related to the lo
ization lengthl 1. The magnetic field gives an increase ofj1
in the middle of the energy band. It is known from we
localization20 that, in the presence of a magnetic field, coh
ent time-reversed paths are eliminated and therefore b
scattering is suppressed. On the contrary, the magnetic
shrinks the band and atW57V there is a slight reduction o
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the density of states near the band edges, which brings a
a decrease inl 1.21 For the parameters of Fig. 1 the resu
found in Ref. 15 give the critical delocalization energyec
'1.2V, counted from the energy of the ground state@Fig.
1~c! there#, which corresponds toE'23.8V in Fig. 1 here.
At this energyj1(a51/6)'j1(a50) @see Fig. 1~bottom!#
which implies l 1(a51/6)' l 1(a50), and hence we expec
that the critical energy for the delocalization transition in t
presence of a magnetic field will remain approximately t
same:ec(a51/6)'ec(a50).22

IV. TIP DELOCALIZATION

In order to study the eigenstate properties of our mo
with interaction, we diagonalize the Hamiltonian~1! numeri-
cally. In this way we determine the two-particle probabili
distribution Fk(r1 ,r2)5uCk(r1 ,r2)u2 for the kth eigenfunc-
tion Ck(r1 ,r2)5^r1r2uCk& written in the lattice basis. From
this we extract the one-particle probability,

f k~r1!5(
r2

Fk~r1 ,r2!, ~16!

and the probability of the interparticle distance,

f dk~R!5(
r2

Fk~R1r2 ,r2! ~17!

with R5r12r2.
Typical examples of probability distributions are show

in Fig. 2 atW510V for a system sizeL530. They clearly
show that the two-particle ground state@Fig. 2 ~top!# remains
localized in the presence of interaction, with the partic
staying far from each other in order to minimize Coulom
repulsion. Similar conclusions apply to low-energy eige

FIG. 1. Single-particle density of statesr1 ~top! and inverse
participation ratioj1; l 1

2 ~bottom! in the 2D Anderson model as
function of energy, for system sizeL524, disorder strengthW
57V, and rescaled magnetic fielda51/6 ~full line! and a50
~dashed line!. Data are averaged overNR5103 disorder realiza-
tions.
3-3
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GIULIANO BENENTI AND DIMA L. SHEPELYANSKY PHYSICAL REVIEW B 63 235103
states. On the contrary, for higher excitation energies@e/B
50.71 in Fig. 2~middle!, wheree5dE/2, the excitation en-
ergy of the TIP eigenstatedE is counted from the ground
state, andB54V is the bandwidth atW50# the probability
distribution f spreads over the whole lattice, whilef d shows
a hole at smallR and a depletion for largeR. The first prop-
erty is a simple consequence of Coulomb repulsion, wh
the second one is in agreement with the general discussio
the model~1!. Following the analytical arguments15 summa-
rized in Sec. III, we believe that this ring structure@see also
Fig. 3 ~top!# would become more evident at larger syste
sizes, with maximum interparticle distanc
Rmax'L/2@ l 1

4/3.23 It is impossible to fully satisfy such a con
dition within numerically tractable system sizes, if one co
siders that the conditionl 1@1 should be satisfied at the sam
time.24 We stress that this pair delocalization takes place
regime of strong localization for the one-particle wave fun
tions. This is demonstrated in Fig. 2~bottom! and Fig. 3
~bottom!, which show the probability distributions for th
noninteracting problem (U50) at the same excitation en
ergy. As a quantitative measure of the interaction indu
charge delocalization one can take the inverse participa
ratio js for the one-particle probabilityf:

FIG. 2. Probability distributionsf ~left! and f d ~right! from Eqs.
~16! and ~17! for two interacting particles in a 2D lattice of siz
L530, with disorder strengthW510V, and rescaled magnetic fiel
a51/6. Top: Coulomb repulsionU52V, ground state, number o
sites occupied by one particle given by IPRjs58; middle: U
52V, rescaled one-electron excitation energye/B50.71 (B
54V), js5320; bottom: same excitation energy but atU50, js

514.7.
23510
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js51Y (
r1

f 2~r1!. ~18!

In this wayjs gives the number of lattice sites occupied
one particle in an eigenstate. For the case of Fig. 2,
Coulomb interaction does not significantly changejs'8 for
the ground state, while for an excitation energye/B50.71
there is a huge delocalization effect fromjs514.7 atU50
to js5320 atU52V.

V. SPECTRAL STATISTICS

The qualitative change of the structure of the eigensta
also leads to a change in the level spacing statistics. In
one-particle problem spectral fluctuations proved to be
very useful tool to characterize the 3D Anderson transition25

Localized wave functions yield uncorrelated spectra w
Poisson statistics, characterized by a distributionP(s) of the
energy spacings between successive levels going to

PP~s!5exp~2s! ~19!

when the system sizeL@ l 1. Delocalized wave functions
yield correlated spectra and Wigner-Dyson statistics with
Wigner surmise

PU~s!5
32s2

p2
expS 2

4s2

p D ~20!

in the absence of time reversal symmetry. The striking
vantage of such an approach is that it deals only with
spectrum and does not involve heavy numerical calculati
of conductivity or eigenfunctions.

FIG. 3. Density plots for the case of Fig. 2~middle! ~two top
plots, U52V) and for the case of Fig. 2~bottom! ~two bottom
plots,U50). Black corresponds to the minimum of the probabili
distribution and white to the maximum~color plots are available a
http://arXiv.org/abs/cond-mat/0011461!.
3-4
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To analyze the evolution of theP(s) distribution with
respect to the excitation energy, it is convenient to use
parameter

hU5

E
0

sU
@P~s!2PU~s!#ds

E
0

sU
@PP~s!2PU~s!#ds

, ~21!

wheresU50.5076 . . . is thefirst intersection point ofPP(s)
and PU(s). In this way PP(s) corresponds tohU51 and
PU(s) to hU50. The dependence ofhU on the one-electron
excitation energye5dE/2 is shown in Fig. 4. This figure
shows that, at fixed interactionU52V, disorderW57V, and
rescaled magnetic fielda51/6, curves at different system
sizes 6<L<24 intersect atec /B'0.33, with hUc'0.26.
While for e,ec the level spacing statistics approaches
Poisson limit (hU→1) when the system size increases,
e.ec the tendency is toward the Wigner-Dyson distributi
(hU→0). We note that the critical excitation energies atW
57V andW510V (ec'0.67, data not shown! are similar to
the values found in, Ref. 15 in agreement with the the
pectations of Sec. III.

The level spacing statisticsP(s) is shown in Fig. 5 near
the ground state and for excitation energiese.ec , for a
system sizeL518. The transition from Poisson to Wigne
Dyson statistics is evident.

The P(s) statistics near the critical pointe5ec is shown
in Fig. 6. The curves at different system sizes display a s
independent intermediate distribution, which exhibits le
repulsionP(s)}s2 at small s and a Poisson-like tailP(s)
}exp(2as), with a'1.9. The close agreement between the
distributions and the critical statistics found in the 3D And
son model with broken time reversal symmetry at the mo
ity edge, taken from Ref. 18, supports the analytical ar

FIG. 4. Dependence ofhU on the rescaled one-electron ener
e/B for W57V, a51/6, U52V, system sizesL56 ~circles, num-
ber of disorder realizationsNR523104, number of spacings for
each point of the graphNS.43104), L512 ~stars,NR553102,
NS.1.13104), L518 ~diamonds,NR5102, NS.1.43104), and
L524 ~triangles,NR510, NS.33103).
23510
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ments given in Sec. III. This 3D critical statistics also giv
a good approximation for the 2D critical statistics atW
510V ~see Fig. 6!, with hUc'0.29. The small difference in
the hUc values atW57V, and 10V ~already observed ata
50; see Ref. 15! can be attributed to the fact that the jump
the localization length at the ‘‘transition,’’ l c / l 1

;exp(pl1
1/3), is not sufficiently sharp. This is due to the n

very large values ofl 1 accessible for numerical simulation
Investigation of cases with largerl 1 would require a signifi-
cant increase of the system size, in order to satisfy the c
dition L.R' l 1

4/3. We also note that the finite statistics an
the limited system sizes prevent us from precisely evalua
the critical excitation energyec and the critical valuehUc .

FIG. 5. Transition from the Poisson distribution~dashed curve!
to the Wigner surmise~full curve! in the level statisticsP(s) for the
case of Fig. 4 atL518: 0,e/B,0.1 ~diamonds,hU50.89, NS

54.53103) and 0.47,e/B,0.5 ~circles, hU50.06, NS53.5
3104).

FIG. 6. Level statisticsP(s) at the critical point, forU52V and
a51/6: W57V, 0.32,e/B,0.35, L56 ~circles, NS583104)
and L518 ~diamonds,NS523104); W510V, 0.65,e/B,0.70,
L512 ~squares,NR523104, NS5105). The thick line shows the
critical P(s) in the 3D Anderson model in the presence of a ma
netic field ~data taken from Fig. 1 of Ref. 16!, with the large-s
exponential decayP(s)}exp(2ks), k51.87, shown in the inset.
3-5
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VI. CONCLUSIONS

We have shown that Coulomb interaction can deloca
electron pairs in a 2D disordered potential in the presenc
a magnetic field, above a critical excitation energy, in a w
similar to the Anderson transition in 3D. The close relati
between these two transitions is reflected in the close s
larity of level statistics at the critical point. The results o
tained in this paper should be relevant for experiments
a

od

,

ys

23510
e
of
y

i-

at

small electron density and/or large disorder fluctuatio
when the distance between electrons is larger than the siz
their localization length in the absence of interaction.
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