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Stable Quantum Computation of Unstable Classical Chaos
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We show on the example of the Arnold cat map that classical chaotic systems can be simulated with
exponential efficiency on a quantum computer. Although classical computer errors grow exponentially
with time, the quantum algorithm with moderate imperfections is able to simulate accurately the unstable
chaotic classical nonlinear dynamics for long times. The algorithm can be easily implemented on systems
of a few qubits.

DOI: 10.1103/PhysRevLett.86.5393 PACS numbers: 03.67.Lx, 05.45.Ac, 05.45.Mt
A great deal of attention has been attracted recently by
the possibility to perform numerical simulations on a quan-
tum computer. The massive parallelism allowed by quan-
tum mechanics enables one to operate on an exponential
number of states using a single quantum transformation,
as was stressed by Feynman [1]. However, even if expo-
nential gain may be possible in such quantum simulations,
compared to the computations on classical computers, only
a few problems have been found where an explicit quan-
tum algorithm displays such efficiency. The most famous
of them is the factorization of large integers, for which
Shor [2] constructed an explicit algorithm which is expo-
nentially faster than any known classical algorithm. An-
other well-known algorithm, invented by Grover [3], also
shows that quantum mechanics can enormously acceler-
ate the search problem in an unsorted database, although
the gain is not exponential. Although quantum-mechanical
problems are computationally very hard for classical simu-
lations, at present only a few physical systems are known
which can be simulated with exponential efficiency on a
quantum computer. Such systems include certain spin lat-
tices [4], some types of many-body systems [5], and since
recently the kicked rotator model of quantum chaos [6].
The advances in the field of quantum computation [7–9]
generated many proposals for the experimental realization
of such a computer. This computer is viewed as a system
of qubits (two-level systems) on which one-qubit rotations
and two-qubit transformations allow one to realize any uni-
tary transformation in the exponentially large Hilbert space
(see reviews [7–9]). At present operations with two qubits
were realized with cold ions [10], and the Grover algorithm
was performed on a three-qubit system built on nuclear
spins in a molecule [11].

It may seem natural that quantum computers can simu-
late efficiently the evolution of certain quantum systems.
Such systems are very hard to simulate on classical
computers due to the exponentially large Hilbert space.
However, there also exists a large class of classical Hamil-
tonian systems which are very hard to simulate accurately
on a classical computer. Indeed, the systems displaying
dynamical chaos are characterized by an exponential local
instability of trajectories in the phase space [12,13]. As a
result, standard round-off errors of a usual computer grow
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exponentially with time, and give a complete change of a
dynamical trajectory with given initial parameters after a
few characteristic periods of the system motion. In this
situation, the simulation of a full phase space density
even for moderate times needs an exponential number of
orbits and soon exceeds the capacity of modern classical
computers. To our knowledge, the problem of perform-
ing such simulations on a quantum computer was not
addressed until now. Indeed, it may look surprising that
quantum mechanics may help in simulations of classical
dynamics. In this paper, we show that a well-known
example of a classical chaotic system can be simulated on
a quantum computer with exponential efficiency compared
to classical algorithms. Moreover, even if due to chaos
the classical errors grow exponentially with time, the
quantum simulations with moderate quantum errors still
enable one to reproduce accurately the time evolution in
the classical phase space. The resolution of this apparent
paradox is rooted in the fundamental differences between
classical and quantum mechanics.

One of the most famous examples of classically chaotic
systems is the Arnold cat map, an automorphism of the
torus [12,13]. The dynamics of the map is given by

ȳ � y 1 x�mod1�, x̄ � y 1 2x�mod1� , (1)

where bars denote the new values of the variables after one
iteration. This is an area-preserving map, in which x can be
considered as the space variable and y as the momentum.
In this way, the first equation can be seen as a kick which
changes the momentum y, while the second equation de-
scribes the free phase rotation. This map belongs to the
class of Anosov systems, with homogeneous exponential
divergence of trajectories and positive Kolmogorov-Sinai
entropy h � ln��3 1

p
5 ��2� � 0.96. Hence, a typical

computer round-off error of order 10216 will change com-
pletely the position of a trajectory in the phase space torus
after only 38 iterations. Although the exact dynamics of
(1) is time reversible [14], the round-off errors make it ef-
fectively irreversible after a short time.

Usually computer round-off errors are not symplectic,
and destroy the area-preserving property of the map. How-
ever, it is possible to consider a discretized map which
remains area preserving after discretization. It is known
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that such symplectic discretization describes the continu-
ous dynamics in the most appropriate way [15]. It re-
mains close to the exact map dynamics up to the time
scale tE � lnN�h where N2 is the number of points of
the discretized torus, so that the discrete cells have the
area 1�N2. For the cat map (1) the discretized map is es-
pecially simple, consisting of the dynamics through (1) of
the N2 points �xi , yj�, xi � i�N , and yj � j�N , i, j �
0, . . . , N 2 1. Even after discretization, the exponential
instability still manifests itself through the rapid disappear-
ance of any structure in phase space (for example, the cat
image) after few iterations; see Fig. 1 (left). The discrete
map preserves time reversibility [14]; however, any small
imprecision at the time of inversion destroys this reversibil-
ity as is illustrated on Fig. 1 (left). Here for N � 128, the
smallest error (of one cell size) destroys reversibility al-
ready after 10 iterations. On a classical computer, one map
iteration requires O�N2� additions to simulate the evolution
of a phase-space density distribution.

On the contrary, we found that on a quantum computer
the discretized Arnold cat map can be simulated exponen-
tially faster. Our quantum algorithm operates on 3nq 2 1
qubits. The first two quantum registers, each with nq

qubits, describe the position xi and the momentum yj of
N2 points of the discretized classical phase space, with
N � 2nq . The remaining nq 2 1 qubits are used as work
space. An initial classical phase-space density can then be
represented by a quantum state

P
i,j aijjxi� j yj� j0�. The

map dynamics requires additions of integers modulo (N)
(modular additions). The quantum algorithm we use for
this operation is similar to the one described in [16] (see
also [17]). The third register holds the carries of the ad-
dition, and the result is taken modulo (N) by eliminat-
ing the last carry. One map iteration requires first adding
the first register to the second, and then adding the sec-
ond register to the first. After that, the coefficients aij

describe the classical phase-space density after one map
iteration. To perform these additions, 8nq 2 12 Toffoli
gates and 8nq 2 10 controlled-NOT gates are needed per
map iteration, giving a total of 16nq 2 22 operations for
nq $ 3 [18]. This means that the quantum computer
can iterate this classical chaotic map exponentially faster
than the classical computer, which requires O�22nq � opera-
tions per iteration. Hence, the quantum evolution obeying
the Schrödinger equation describes the classical Arnold
cat map, and we will call this quantum dynamics the
Arnold-Schrödinger cat map.

If the quantum gates are perfect, then the quantum al-
gorithm describes exactly the classical density evolution.
But physical systems are never perfect, and to be really
efficient the quantum algorithm should be stable against
imperfections. In view of the exponential instability of
classical computer errors in this problem, this may look
rather doubtful. To study the effects of imperfections on
this algorithm, we introduced some random unitary noise
in the gate operations. For each gate transformation, the
nondiagonal part was diagonalized, and each eigenvalue
5394
FIG. 1. Dynamics of Arnold-Schrödinger cat simulated on a
classical (left) and quantum computer (right), on a 128 3 128
lattice. Upper row: initial distribution; second row: distributions
after 10 iterations; third row: distributions at t2r � 20, with time
inversion made at tr � 10; bottom row: distributions at t2r �
400, with time inversion made at tr � 200. Left: inversion is
done with classical error of one cell size (e � 1�128) at t � tr
only; right: all quantum gates operate with quantum errors of
amplitude e � 0.01; grayness is proportional to the probability
jaijj

2; nq � 7 [21].

was multiplied by a random phase exp�ih�, with 2e ,

h , e. We leave the interesting question of nonunitary er-
rors to further studies. We also assume that imperfections
due to residual static coupling between qubits are small
enough, and that the quantum computer operates below the
quantum chaos border discussed in [19].
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To investigate the stability of the algorithm with respect
to quantum imperfections, we used first a time-inversion
test. Namely, starting from a given classical density (repre-
senting the cat’s smile), we perform tr iterations forwards,
then invert all momenta (time inversion), and perform
again tr iterations. Without imperfections, the density re-
turns exactly to its initial distribution at t2r � 2tr . On the
left of Fig. 1, one can see the dramatic effect of small ran-
dom classical computer errors of size e � 1�N � 1022,
performed only at the moment of the time inversion: it
completely destroys reversibility after a few iterations. On
the contrary, the quantum errors of similar amplitude, al-
though present at each map iteration, practically do not af-
fect the smile of the Arnold-Schrödinger cat after t2r � 20
iterations, and only slightly perturb it after t2r � 400. This
shows the power of quantum computation, which even in
the presence of relatively strong imperfections is able to
simulate classical chaotic dynamics. Thus natural errors
behave in an absolutely different way for classical and
quantum computers. We stress that an exponential growth
of quantum errors would have offset the advantage of quan-
tum parallelism. We also note that quantum systems with
chaotic classical limit (e.g., the kicked rotator) are also
stable with respect to time inversion [20].

To be more quantitative, we computed the fidelity of the
quantum state in the presence of errors, namely f�t� �
j�ce�t� jc0�t��j2. Here jc0�t�� is the quantum state after t
perfect iterations, while jce�t�� is the quantum state after
t imperfect iterations. The data in Fig. 2 clearly show that
f�t� drops very slowly with t, confirming the stability of
quantum dynamics. In view of the exponential growth of
classical errors, this may look as a paradox. Indeed, as
is illustrated in Fig. 1, exponentially small classical errors
of size 1�N destroy practically immediately any structure.
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FIG. 2. Quantum fidelity f of Arnold-Schrödinger cat as a
function of time t for quantum errors e � 0.003, 0.01, 0.03
(dashed and dotted curves from top to bottom, respectively).
Initial state: cat’s smile as in Fig. 1 (dashed curves) and line
x � 1�2 (dotted curves). Full curve shows the drop of fidelity
when a minimal classical error is done at t � 200 (see text).
The resolution of this paradox lies in the fact that a small
classical error can be very large from the viewpoint of
quantum mechanics. This fact is shown in Fig. 2, where
after a small classical error affecting only the smallest bit
in the positions xi , yj the fidelity of the quantum state drops
immediately to a very small value. Curiously enough, after
this drop, perfect iterations of the map do not change the
fidelity, although the classical error (i.e., distance between
exact and perturbed orbits) starts to grow exponentially due
to trajectory divergence in phase space.

In this situation, one may wonder where in the quan-
tum dynamics is hidden the classical exponential instabil-
ity. In fact, it is always present even if quantum dynamics
remains stable. Indeed, the drop in the fidelity induced
by classical errors depends exponentially on the moment
of time te when the error is made. This fact is illus-
trated by Fig. 3, which shows the classical fidelity fc,
defined in the same way as the fidelity for quantum er-
rors: fc�t, te� � j�ce�t, te� jc0�t��j2 where jce�t, te�� is
the quantum state after the classical error is done at time
te , t and jc0�t�� is the quantum state without error. This
function fc�t, te� can also be computed purely classically.
As seen in Fig. 2, for given te and t . te, the fidelity fc

remains exactly constant, since fc is preserved by unitary
transformations. However, its value depends strongly on
te, as is shown in Fig. 3, where fc is computed at time t �
2te. The data clearly show the exponential drop of classical
fidelity with te. This reflects the existence of exponential
instability in the cat map dynamics. If a time inversion
with errors is done at tr � te, as in Fig. 3, then the value
of fc gives the recovered fraction of the initial distribution
(cat’s smile) at t � 2tr . This whole process can be made
on the quantum computer with imperfections, and Fig. 3
shows that even with imperfections the quantum computer
gives practically the same classical fidelity which drops
exponentially. Hence a quantum computer can simulate
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FIG. 3. Classical fidelity fc�2te� vs time te when the minimal
classical error (e � 1�128) is made (full curve). Dashed curve
shows the same fc obtained by the quantum computer with
imperfections of amplitude e � 0.01 (see text).
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accurately the exponential growth of classical errors in the
regime of chaos.

To study quantitatively the dependence of the fidelity
f�t� on the magnitude of errors, we determine the fidelity
time scale tf by the condition f�tf � � 0.5. For quantum
errors, Fig. 4 shows that tf � 0.63��e2nq�. Indeed, the
probability of transition from the exact state to other states
is of order e2 for each gate operation. After tf map itera-
tions, tfnq such operations are done, so that the fidelity
drops by e2nqtf 	 0.5, giving the above estimate. This
estimate is rather general, and it corresponds to a gen-
eral property of quantum mechanics due to which the fi-
delity can drop only polynomially with unitary noise and
the number of imperfect gates applied. On the contrary,
in the classical case tf extracted from the classical fi-
delity fc�te � tf� � 0.5 (see Fig. 3) is of the order of
tf � 1.4 ln�1�e�, comparable with tE for e 	 1�N .

We stress that the Arnold-Schrödinger cat is very simple
to implement. For example, one map iteration with nq �
4 requires only 11 qubits and 42 gates, and can be experi-
mentally realized in the near future. The time inversion test
explained above can be performed experimentally and can
be used to test the actual accuracy of the quantum com-
puter. Indeed, an initial distribution in the form of the line
x � 1�2 can easily be prepared, and from a few measure-
ments of the jx� register at the return moment t � t2r one
can estimate the probability of nonreturn which allows one
to determine the amplitude of quantum errors. The inset of
Fig. 4 shows an example of such a final state. It is inter-
esting to note that nq � 20 needs only 59 qubits and will
permit one to make computations inaccessible to super-
computers of today, with memory size �200 Gb. In this
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FIG. 4. Fidelity time scale tf as a function of e2nq: nq � 4
(circles), 5 (squares), 6 (diamonds), 7 (triangles up), 8 (triangles
down); filled symbols are for quantum errors (0.003 # e #
0.1), open ones are for classical errors (0.003 , e , 0.1); the
full line gives tf � 0.63��e2nq�. Inset: Probability distribution
Wx in jx� at the moment of return t2r � 400 for time inversion
at tr � 200, and quantum imperfections e � 0.03, for nq � 7
with x � 1�2 at t � 0.
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regime global quantities inaccessible by classical compu-
tation can be obtained. For example, the main harmon-
ics of the density distribution can be obtained with the
help of the quantum Fourier transform followed by a few
measurements.

Thus, despite the common lore that quantum comput-
ers are very vulnerable to noise, our study of the Arnold-
Schrödinger cat dynamics shows that classical unstable
motion, for which classical computers display exponen-
tial sensibility to errors, can be simulated accurately with
exponential efficiency by a realistic quantum computer.
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