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Spin-Polarized Ground State for Interacting Electrons in Two Dimensions
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We study numerically the ground state magnetization for clusters of interacting electrons in two di-
mensions in the regime where the single particle wave functions are localized by disorder. It is found
that the Coulomb interaction leads to a spontaneous ground state magnetization. For a constant elec-
tronic density, the total spin increases linearly with the number of particles, suggesting a ferromagnetic
ground state in the thermodynamic limit. The magnetization is suppressed when the single particle states
become delocalized.
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Ferromagnetic instabilities result from the interplay be-
tween the electronic Coulomb interaction and the Pauli
principle. In the Pauli picture, electrons populate the non-
interacting orbitals of a system, such as a quantum dot or a
metallic grain, in a sequence of spin-up–spin-down elec-
trons. The resulting minimum spin state minimizes the
kinetic energy: it costs energy to flip a spin since it must
be promoted to a higher energy level. Thus the total spin
of the system is S � 0 when the number of electrons N
is even and S � 1�2 at odd N . In contrast, the maximum
spin allows a maximally antisymmetric coordinate wave
function, thus reducing the effect of the Coulomb repulsion
(a familiar example of this is Hund’s rule for atoms). This
leads to the Stoner instability [1], which gives a sponta-
neous magnetization when the typical interaction exchange
energy between two particles close to the Fermi level is of
the order of the single particle level spacing.

Spontaneous ground state magnetization gives rise to in-
teresting effects, which are in the focus of many recent
studies. In quantum dots, a ground state spin polariza-
tion can explain the absence of an even-odd asymmetry
in the addition spectra in the Coulomb blockade regime
[2–4]. Also, the addition of an electron to the dot may
flip the spin of other electrons already in the dot: if the
total spins of the ground states of a successive number of
electrons differ by more than 1�2, spin selection rules sup-
press the corresponding conductance peak (spin blockade)
[5]. Spontaneous magnetization effects could also explain
the presence of kinks in the magnetic field dependence of
the Coulomb blockade peak positions [6,7]. The stability
of the minimum spin ground state in a quantum dot was
analyzed for weak interactions in [8]. Within perturbation
theory, the effective interaction strength is enhanced by the
presence of disorder, leading to a ferromagnetic instabil-
ity already below the Stoner threshold [9]. In the diffu-
sive regime, recent studies have also considered the effect
of mesoscopic wave function fluctuations [10] and off-
diagonal interaction matrix elements beyond the mean field
treatment [11]. The appearance of local magnetic moments
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was also discussed in the strongly correlated limit, at the
quantum melting of the Wigner crystal [12].

Although the Stoner instability signals the presence of
short-range magnetic ordering, it is not clear if it will also
lead to a ferromagnetic ground state in the thermodynamic
limit. Actually, the Stoner criterion is obtained within the
mean field Hartree-Fock approximation and overestimates
the long-range magnetic ordering, predicted also in one
and two dimensions for the Hubbard model at finite tem-
peratures, thus violating the Mermin and Wagner theorem
[1]. The possibility of a ferromagnetic phase in strongly
correlated two-dimensional (2D) systems was considered
in [13,14] (see also Refs. [15,16]) and has recently re-
ceived experimental support in dilute 2D electron gases
[17]. At the same time, recent studies of fermionic models
with random two-body interactions show that the ground
state polarization is strongly reduced by off-diagonal in-
teraction matrix elements [11,18].

In this Letter, we investigate numerically the possibil-
ity of a ferromagnetic ground state in the regime where
the single particle localization length is smaller than the
system size. Without interaction this condition is always
satisfied in two dimensions in the limit of large system
size [19].

We study a disordered square lattice with N fermions on
L2 sites. The Hamiltonian is defined by
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where c
y
is �cis� creates (destroys) an electron at site i with

spin s, nis � c
y
iscis is the corresponding occupation

number, the hopping term V between nearest neighbors
characterizes the kinetic energy, random site energies wi
are taken from a box distribution over �2W�2, W�2�, UH

and U measure the strength of the on-site Hubbard interac-
tion and Coulomb interaction, respectively, and ji 2 jj is
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the interparticle shortest distance computed on a 2D torus
(periodic boundary conditions are taken in both directions).
In the following we choose UH � U.

The Hamiltonian (1) commutes with the total spin
��Ŝ2, Ĥ� � 0� and its component along an arbitrary z
direction ��Ŝz , Ĥ� � 0�. Therefore Ĥ can be written in
a block-diagonal form, with N 1 1 blocks, where Sz �
2N�2, 2N�2 1 1, . . . , N�2. We consider the block
with Sz � 0 only, since it is sufficient for analysis of the
ground state magnetization. Indeed, due to spin rotational
symmetry, the system has a 2S 1 1 degeneracy (where S
is the total spin), with Sz � 2S, . . . , 1S; therefore all
of the eigenvalues of the Hamiltonian (1) belong to the
spectrum of the Sz � 0 subspace.

The numerical studies of the model (1) at a finite den-
sity of interacting particles above a frozen Fermi sea are
performed in the following way.

(i) Single particle eigenvalues ea and eigenstates (or-
bitals) fa�i� �a � 1, . . . , L2� are obtained via numerical
diagonalization of the Hamiltonian (1) at UH � U � 0.

(ii) The Hamiltonian (1) is written in the basis of non-
interacting orbitals obtained in (i):
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(iii) The Fermi sea is introduced by restricting the sums
in (2) to orbitals with energies above the Fermi energy
eMF : a, b, g, d . MF . We consider a filling factor nF �
MF�L2 � 1�4 (corresponding to 2MF frozen electrons
due to spin degeneracy) and a finite density r � N�L2 of
N interacting particles above the Fermi level. The frozen
Fermi sea approximation is introduced for the sake of sim-
plicity, since it allows us to avoid the band tail, where the
single particle density of states and the one-body local-
ization length have a strong energy dependence. The ad-
vantages of such an approach were demonstrated in [20].
However, we have also checked that the results presented
in this Letter are qualitatively similar when MF � 0.

(iv) The basis of the Slater determinants, built from the
single particle orbitals fa, is energetically truncated at
high energy orbitals by means of the condition

PN
i�1�mi 2

MF� # M. Here mi is the orbital index for the ith quasi-
particle �mi . MF�. The truncated Hamiltonian still com-
mutes with the total spin when Sz � 0.

(v) We diagonalize the many-body truncated Hamilto-
nian. Then the total spin of a given eigenstate jCi� is
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found via the application of the operator Ŝ2: Ŝ2jCi� �
Si�Si 1 1� jCi� (we take h̄ � 1).

We consider N � 2, 4, 6, and 8 particles on a square lat-
tice of size L � 8, 11, 14, and 16, respectively, at an ap-
proximately constant density r � N�L2 � 1�32, 0.5 #

U�V # 2, and 2 # W�V # 10. In particular, we fo-
cus on the localized regime W � 10V , where the single
particle localization length l1 � 4 , L. Data are aver-
aged over a number of disorder configurations between 200
and 5000.

The distribution of the energy differences dE between
the ground state energies E0�S� in spin sectors S � 1 and
S � 0 is shown in Fig. 1 for N � 8 particles in the local-
ized regime with W � 10V �dE � E0�S � 1� 2 E0�S �
0��. One can see the mesoscopic Stoner mechanism:
electron-electron interactions give a spontaneous magneti-
zation �dE , 0�, with a probability of having a polarized
state increasing with the growth of interaction. The inset
of Fig. 1 demonstrates that our results are stable when the
size NH of the truncated Hilbert space is changed by a
factor of 5. Even though we cannot exclude the existence
of very slow NH variations this check shows that the
truncation does not significantly affect the ground state
polarization.

The main result of our Letter is shown in Fig. 2: when
the number of particles is increased (at a constant elec-
tronic density) the ground state can be found with high
probability at larger and larger spin values. In the inset,
one can see that the ground state average magnetization
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FIG. 1. Normalized distribution of the energy differences dE
between the ground state energies E0�S� in the spin sectors
S � 1 and S � 0. Here dE � E0�S � 1� 2 E0�S � 0�, and
�jdEj� is the absolute value of dE averaged over disorder con-
figurations. Data are shown for N � 8 particles on a square lat-
tice of size L � 16, disorder strength W � 10V , and interaction
strengths U � 0.5V (circles), U � V (squares), and U � 2V
(diamonds). The inset shows the distribution at U � 2V as a
function of the size of the truncated Hilbert space: NH � 932
(triangles up), 2097 (diamonds), and 4354 (triangles left).
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FIG. 2. Probability distribution p�S� of the ground state spin
for W � 10V , U � 2V . Here, N � 2, L � 8 (circles), N � 4,
L � 11 (squares), N � 6, L � 14 (diamonds), and N � 8,
L � 16 (triangles). Inset: ground state average spin as a func-
tion of the number of particles for U � 0.5V (circles) and
U � 2V (squares). The straight lines give linear fits, with
�S�U � 0.5�� � 0.06N and �S�U � 2�� � 0.34N . Here and in
the next figures the error bars show the size of statistical errors.

increases linearly with the number of particles, �S� �
a�U�N [21], with the slope a�U� growing with U, which
determines the strength of the interaction exchange term.
The extrapolation of the results presented in this figure
would give a ferromagnetic ground state in the thermo-
dynamic limit.

The dependence of the average magnetization on the
disorder strength is shown in Fig. 3. One can see that,
for sufficiently strong interaction, disorder favors ground
state spin polarization. Indeed, for U�V � 0.5 at strong
disorder, W�V � 10, the total spin remains less than 0.5,
while for U�V � 2 it becomes 5 time larger. The sig-
nificant average magnetization �S� appears in the localized
single particle phase �W�V � 7, 10�, while in the delocal-
ized regime �W�V � 2, 4� it remains rather weak.

This is further confirmed in Fig. 4, which shows the size
dependence of the average spin in the delocalized regime
W � 2V . With the change of the number of particles be-
tween N � 2 and N � 8 the average magnetization �S� re-
mains constant, with nonmonotonous fluctuations around
its average value. This is in a sharp contrast to magneti-
zation behavior in the localized phase (see inset in Fig. 2),
where �S� demonstrates a monotonous growth with N .

The ensemble of our results allows us to propose the
following physical scenario. In the regime when the Fermi
energy is larger than the electron-electron interaction the
perturbation theory [9] shows that the correction to the spin
susceptibility dx induced by interaction is inversely pro-
portional to the conductance of the sample g: dx ~ 1�g.
With the increase of disorder, g drops and becomes of the
order of 1 when the single particle localization length l1
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FIG. 3. Ground state average spin �S� as a function of disorder
strength W�V , for U � 0.5V (circles) and U � 2V (squares);
N � 6 (empty symbols) and N � 8 (filled symbols).

becomes comparable to the sample size. This indicates
that the spin effects become more important in the regime
of strong disorder, that is, in agreement with our results
(see Fig. 3). In the nonperturbative diffusive regime, non-
diagonal interaction matrix elements start to give quantum
fluctuations beyond mean field Stoner approach. These
interaction fluctuations favor small spin values, since the
number of off-diagonal scattering events is larger in the
lower spin sectors of the Hilbert space. This effect can
prevent the ground state spin from achieving a full polar-
ization [11]. However, in the localized regime the off-
diagonal fluctuations are strongly reduced: due to single
particle exponential localization, Coulomb repulsion can
induce electron jumps only inside the localization domains,
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FIG. 4. Ground state average spin �S� as a function of the
number of particles, for W � 2V , U � 0.5V (circles) and U �
2V (squares). The system size changes from L � 8 for N � 2
to L � 16 for N � 8.
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all the other scattering events giving an exponentially small
contribution. Therefore, a possible scenario is the follow-
ing: Stoner instability gives, at strong enough interaction
and/or disorder, spin polarization in domains of the size
of the single particle localization length, then the coupling
between these domains gives global magnetization. The
long-range nature of the Coulomb interaction seems to
play a crucial role in this physical picture. Indeed, recent
quantum Monte Carlo studies of the ground state mag-
netization in the half-filled Hubbard model with disorder
show the disappearance of any magnetic order at strong
disorder [22]. On the other hand, in the case of infinite
on-site interaction in the Hubbard model the exact diago-
nalization of small size clusters shows a disorder induced
enhancement of the ground state spin polarization [23].
We also note that, in the limit V�W ! 0, U�W � const.
the results from the random quantum Heisenberg model
show that spins are frozen into singlet coupled pairs, thus
preventing magnetic ordering [24]. Physically this limit-
ing case requires that the size of one particle orbitals be-
comes much smaller than the average distance between
particles. However, this regime is very far from our studies
where even at maximal disorder W � 10V the one particle
localization length is comparable with the interparticle
distance.

In summary, we have shown that Coulomb repulsion can
lead to spontaneous ground state magnetization. In the
regime with localized single particle wave functions, the
total spin increases linearly with the number of particles.
Even though we cannot exclude that this magnetic ordering
can become limited at some large finite sizes, our results
suggest the appearance of a ferromagnetic ground state
induced by disorder and localization in the thermodynamic
limit.
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