PHYSICAL REVIEW A 67, 052312 (2003
Dynamical localization simulated on a few-qubit quantum computer
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We show that a quantum computer operating with a small number of qubits can simulate the dynamical
localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the
system is computed efficiently up to a tinies¢, and then the localization length can be obtained with
accuracyr by means of order 1f computer runs, followed by coarse-grained projective measurements on the
computational basis. We also show that in the presence of static imperfections, a reliable computation of the
localization length is possible without error correction up to an imperfection threshold which drops polyno-
mially with the number of qubits.
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I. INTRODUCTION studied in the quantum kicked rotator modé&b] and has
profound analogies with Anderson localization of electronic
Recent experimental progress in nuclear magnetic resdransport in disordered materiglél]. Dynamical localiza-
nance(NMR)-based quantum processors allowed the demontion has been observed experimentally in the microwave ion-
stration of quantum algorithm{4 ], including Grover’s algo- ization of the Rydberg aton4.2] and is now actively stud-
rithm [2] and quantum Fourier transforf8]. More recently, ied in experiments with cold atonj&3].
it has been possible to implement the simplest instance of In this paper, we study dynamical localization for the
Shor’s algorithm, namely, the factorization of 15, using 7quantum sawtooth map, using the algorithm developed in
qubits and a sequence of about 300 spin-selective radidRef.[14]. This algorithm has some specific advantages with
frequency pulse§4]. In parallel, thanks to the development respect to similar algorithms for the simulation of other dy-
of techniques for the manipulation of cold atoms in linearnamical systems, for instance, the kicked rotaid]. There
traps, the realization of up to 50 two-qubit controlledT  are no extra work space qubits, namely, all the qubits are
gates within the relevant decoherence time scale is currentlysed to simulate the dynamics of the system. This implies
becoming possiblg5,6]. Solid state realizations are also un- that less than 40 qubits would be sufficient to make simula-
der way in several experimental groups working with varioustions inaccessible to present day supercomputers. We note
solid-state devices. In particular, it has been demonstratetthat this figure has to be compared with more than 1000
that a superconducting tunnel junction circuit can behave aqubits required to Shor’s algorithm to outperform classical
an artificial spin-1/2 atom, whose evolution can be controlledcomputations. We will also show that in this model dynami-
by applying microwave pulses. The quality factor of quan-cal localization could be observed already with six qubits.
tum coherence is sufficiently high to envisage the realization Finally, we will discuss the stability of quantum comput-
of two-qubit gates based on capacitively coupled circuits oing of dynamical localization in the presence of static imper-
this type[7]. fections in the quantum computer hardware. It has been
In this context, it is of primary importance to find efficient pointed out in Refs[16,17] that unwanted mutual interac-
guantum algorithms, which could be usefully simulated withtions between qubits can be a source of error in quantum
a small number of qubits. Such algorithms would naturallycomputation, and some characteristic features of this type of
become the ideal software for demonstrative experiments ierror have been studied, also in connection with error correc-
the coming generation of quantum processors. Dynamicaion [18,19. This kind of error may be relevant in practical
models represent a natural testing ground for quantum inforimplementations of quantum computation. For instance, in
mation processors. The algorithm for the quantum baker'she ion-trap quantum processof5,6], magnetic dipole-
map [8] has been recently implemented on a three-qubitipole interactions couple qubits. In NMR quantum comput-
NMR quantum processd®]. These experiments tested the ing, residual unwanted interactions survive after nonperfect
sensitivity to perturbations, in a system that is characterizedpin echoeg$l]. Therefore, it is important to study the stabil-
by chaotic unpredictable dynamics in the classical limit. ity of quantum information processing in the presence of
In this paper, we show that quantum computers can simurealistic models of hardware imperfections and in concrete
late efficiently the quantum localization of classical chaosexamples of quantum algorithm. In this paper, we determine
Dynamical localization is one of the most interesting phe-the tolerance bounds for reliable quantum computation of the
nomena that characterize the quantum behavior of classicallpcalization length. We will show that, in the presence of
chaotic systems: Quantum interference effects suppress chstatic imperfections, such a computation is possible without
otic diffusion in momentum, leading to exponentially local- error correction up to an imperfection threshold which drops
ized wave functions. This phenomenon was first found angbolynomially with the number of qubits.
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The paper is organized as follows. In Sec. Il, we describehe memory capabilities grow exponentially with the number
the sawtooth map model, focusing on the regime of dynamief qubits, already with less than 40 qubits, one could make
cal localization. In Sec. lll, we show that a quantum com-simulations of systems inaccessible for today’s supercomput-
puter operating with few qubits can indeed perform simula-ers. Similar to other models of quantum chdd®], the
tions of dynamical localization. In Sec. IV, we discuss howquantum interference in the sawtooth map leads to suppres-
to extract information(the localization length from the  sion of classical chaotic diffusion after a break time
guantum computer wave function. In Sec. V, we study the
stability of those computations in the presence of static im- t*~D,~(7%3)k?, (3
perfections in the quantum computer hardware. In Sec. VI,
we discuss the transition to quantum chaos, induced by statighereD,, is the classical diffusion coefficient, measured in
imperfections, in the quasienergy spectral statistics. In Seciumber of levels(((An)®~D,t). For t>t* only An~D,

VII, we present our conclusions. levels are populated and the localization length An for
the average probability distribution is approximately equal
II. THE MODEL [22]:
The quantum sawtooth map is the quantized version of {~D,. (4

the classical sawtooth map, which is given by
B . . Thus the quantum localization can be detectetlig smaller
n=n+k(6—m), 0=6+Tn, (1) than the system sizN.

_ _ _ In the following, we consideK =2, two values ofk,
where (0,0) are conjugated action-angle variables<(@ k= /3 andk=2, and 6<n,=<21, so that the above analyti-
.<277'), and the over bars denote the variables after one-magy) estimate gived (k= \/§)%10 andf¢(k=2)~13<N. We
iteration. Introducing the rescalgd momen_tum variaple  5ssume that at=0 the system is in a momentum eigenstate,
=Tn, one can see that the classical dynamics depends on (n=s Since this is a quantum register state, it can be
on the single parameté&=kT. The map(1) can be studied - g ] ) ] ' ]
on the cylinde{ p e (—,+%)], which can also be closed obtained inO(ngy) one-qubit operations starting from the fi-
to form a torus of length 2L, wherelL is an integer. For ducial state(“ground state”) n of the quantum computer
K>0, the motion is completely chaotic and exhibits normalhardware.
diffusion: ((Ap)?)~D(K)t, wheret is the discrete time
measured in units of map iterations and the avefage) is 1. SIMULATION OF DYNAMICAL LOCALIZATION
performed over an ensemble of particles with initial momen- ] o )
tum p, and random phases<09<2. For K>1 the diffu- _ An gxponentlally efficient quant_um algorlth_m for the
sion coefficient is well approximated by the random phaseimulation of mag2) was developed in Ref14]. It is based
approximation D (K) ~ (72/3)K2. on the forward and backward quantum Fourier transffitin

The quantum evolution in one map iteration is described®&tWeen mort‘ma_ntun:hanglcoor?inate basets. 3uchda_n aEpproach
by a unitary operatot) (called the Floquet operatoacting Is convenient since the Floquet operaltrintroduced in Eq.

on the wave functiony: (2), is the product of two operatord), =€/~ ™2 and
Ur=e T2 which are diagonal in thé andn representa-
J: UJIZ e~ iTn%2gik(6— ﬂ)2/2¢,, 2) tions, respectively. Our quantum algorithm requires the fol-
lowing steps for one map iteration.
where n=—i3d/36 and ¢(6+27)=y(6) (we seth=1). (i) We applyU, to the wave function/(6). In order to

The classical limit corresponds tk—, T—0, and K  decompose the operatd¥ in one- and two-qubit gates, we
=kT=const. In Refs[14,20,21, we studied mag2) in the first of all write 6 in binary notation:

semiclassical regime. This is possible by increasing the num-

ber of qubitsn,=log, N (N is the total number of levels Ng .

with T=27L/N, K=const. In this way, the number of lev- 0=277_2 a;2”) (5
els inside the “unit cell’—7<p<a (L=1) grows expo- =1
nentially with the number of qubits{N/2<n<N/2), and

the effective Planck constarftez~#fi/k~1/N—0 when N with o <{0,1;. From this expansion, we get

— 00,
Differently from previous studies, in this paper we study 20 g2 % a4, 1 aj, 1 "
map (2) in the deep quantum regime of dynamical localiza- (0—m) =4m [Tt i1 z_nq oi2 z_nq . ©

tion. For this purpose, we kedpK constant. Thus the effec-

tive Planck constant is fixed and the number of CEIFOWS  This term can be put into the unitary operattéy, giving the
exponentially with the number of qubitd € TN/27). In decomposition

this case, one studies the quantum sawtooth map on the cyl-

inder[ne (—o,+%)], which is cut-off to a finite number of Ng . ‘
cells due to the finite quantunfor classical computer elk(0-m?/2_ 11 ei2w2k(a,-1/211—1/2wq)(aj2/212—1/2nq), 7
memory. We stress again that, since in a quantum computer j1.02=1
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FIG. 1. Exact quantum computation of probability distribution
over the momentum basis Wiﬂlh 6 qubits fork= /3 and initial
momentumny=0; the average is taken in the intervalsli3<20
(full curve) and 296<t<300 (dashed curve The straight-line fit,
W,cexp(—2|n|/€), gives a localization lengtli~12. Here and in
the following figures, the logarithms are decimal.

which is the product oﬁg two-qubit gategcontrolled-phase
shifts), each one acting nontrivially only on the qubijtsand

J2-
(i) The change from th@ to then representation is ob-

tained by means of the quantum Fourier transform, which

requiresn, Hadamard gates and,(ny—1)/2 controlled-
phase-shift gateil].

(iii) In the n representation, the operatbr; has essen-
tially the same form as the operatfjrk in the 6 representa-
tion, and therefore it can be decomposechﬁmontrolled—
phase shift gates, similar to E().

(iv) We go back to the initiab representation by applica-
tion of the inverse quantum Fourier transform.

Thus, on the whole the algorithm requireg= 3n§+ Ng
gates per map iteration 03— nq controlled-phase shifts and
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FIG. 2. Probability distributions fok=2, n,=11, ny=0, J
=0. From bottom to tope=0, 10 * (gray ling, 10 2 (shifted up
by a factor of 4, and 10°? (shifted up by a factor of )8 The straight
line gives a localization lengtfi~15.

comparison of the probability distributions taken immedi-
ately aftert™ (full curve in Fig. J and at a much longer time
t=300~25" (dashed curve in the same figure

We also note that the asymptotic tails of the wave-
functions decay as a power laisee Fig. 2,

1

W, o ——.
In—nel*

(€)

This happens due to the discontinuity in the kicking force of
Eq. (1), f(#)=k(6— ), when the angle variablé=0. For

that reason the matrix elements of the one-period evolution
operatorU for quantum may2) decay as a power law in the
momentum eigenbasit! ,,=(n|U|m)~1/n—m|*, with a

=2. This case was investigated for random matrices, where
it was shown that eigenfunctions are also algebraically local-
ized with the same exponent [23]. We also note that dy-

2n, Hadamard gatgsThis number has to be compared with namical localization in discontinuous systems was studied in
the O(NInN) operations required to a classical computer toRef, [24]. Since the localization picture is not very sensitive

simulate one map iteration by means of the fast Fourieto the behavior of the tails of the wave function, a rough

transform. estimate of the crossover between the exponential d&)ay

In Fig. 1, we show that, using our quantum algorithm, and the power-law deca) is given by their crossing point,
exponential localization can be clearly seen already with
=6 qubits. After the break tim&*, the probability distribu- 3 10
Ne~=¢In€, Wy(ny)~——— 10

Cc 2 n( C) €4In€
2|n—ny

¢

tion over the momentum eigenbasis decays exponentially,
This implies that by increasing the exponential localization
is pushed to larger momentum windows and down to smaller

probabilities.
with ng=0 the initial momentum value. Here the localiza-

tion length is€~12, and classical diffusion is suppressed
after a break tima*~{, in agreement with estimate8)—
(4). This requires a numbeﬂg~3n2€~10°’ of one- or two- We now discuss how it would be possible to extract in-
gubit quantum gates. The full curve of Fig. 1 shows that arformation(the value of the localization lengtfrom a quan-
exponentially localized distribution indeed appears$=at™. tum computer simulating the above described dynamics. The
Such a distribution is frozen in time, apart from quantumlocalization length can be measured by running the algorithm
fluctuations, which we partially smooth out by averagingseveral times up to a time>t*. Each run is followed by a
over a few map steps. The localization can be seen by thgtandard projective measurement on the computatiognes

A 1
wn=|w<n>|2wzexp( - ®

IV. MEASUREMENTS
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mentun) basis. Since the wave function at tinhecan be to check if a system is truly localized. We also note that this
written as is a difficult task not only in many-body quantum systems,

but also in single-particle models such as the Harper model

5 25].

[w0)=3 Hn.vln), y 12

) ) ) V. EFFECTS OF STATIC IMPERFECTIONS
with |n) momentum eigenstates, such a measurement gives

outcomen with probability In order to study the effects of static imperfections on the
stability of the above described algorithm, we model the
W= |(F|g//(t))|2=|g7/(ﬁt)|2. (12) quantum computer hardware as a linear array of qubits with

static imperfections, represented by fluctuations in the indi-
A first series of measurements would allow us to give avidual qubit energies and residual short-range interqubit cou-
rough estimate of the variandg¢An)?) of the distribution ~ Plings[17]. The model is described by the following many-
W, . In turn, V{(An)?) gives a first estimate of the localiza- body Hamiltonian:
tion length€¢. After that, we can store the outcomes of the
measurements in histogram bins of widtnecd A= (Ag+8)o?+ >, Ji oo, (13)
~ (An)2>. Finally, the localization length is extracted [ i< .
from a fit of the exponential decay of this coarse-grained ~
distribution over the momentum basis. Elementary statisticalvhere theg;i’s are the Pauli matrices for the quiitandA,
theory tells us that, in this way, the localization length can bés the average level spacing for one qubit. The second sum in
obtained with accuracy after the order of %/ computer Eq. (13) runs over nearest-neighbor qubit pairs, zero bound-
runs. It is important to note that it is sufficient to perform a ary conditions are applied, ani,J;; are randomly and uni-
coarse grained measurement to generate a coarse-grairfedmly distributed in the interval§— 6/2,6/2] and[—J,J],
distribution. This means that it will be sufficient to measurerespectively. We model the implementation of the above al-
the most significant qubits, and ignore those that would givegorithm on this hardware architecture as a sequence of in-
a measurement accuracy below the coarse-graifing stantaneous and perfect one- and two-qubit gates, separated
Thus, the number of runs and measurements is independeby a time intervalry. Therefore, we study numerically the
of €. evolution in the time of the quantum computer wave function
We now come to the crucial point, of estimating the gainin the presence of the following many-body Hamiltonian:
of quantum computation of the localization length with re- R L
spect to classical computation. First of all, we recall that it is H(7)=Hs+Hgy(7), (14
necessary to make abotit~¢ map iterations to obtain the
localized distributiorfsee Eqgs(3) and(4)]. This is true, both ~ Where
for the present quantum algorithm and for classical compu-
tatior_l. It_ is reasonable to use a bas_is shte ¢ to d_eteqt |:|g(T)=E S(r— kTg)ﬁk- (15)
localization(let us sayN equal to a few times the localization K
length. In such a situation N~¢), a classical computer
needsO(¢?In ¢) operations to extract the localization length, Here h, realizes thekth elementary gate according to the
while a quantum computer would requi@(€(In¢)?) el-  sequence prescribed by the algorithm. We assume that the
ementary gates. In this sense, forN=2"4 the quantum phase accumulation given hy, is eliminated by standard
computer gives ajuadratic speed upsince both classical spin echo techniqud4]. In this case, the remaining terms in
and quantum computers perfo@(N) map iterations. How- the static Hamiltonian(13) can be seen as residual terms
ever, for a fixed number of iteratiorishe quantum compu- after imperfect spin echog4] and give unwanted phase ro-
tation gives anexponential gain since, in this case, one tations and qubit couplings.
should compareO(t(InN)?) gates (quantum computation The effect of static imperfections on the probability dis-
with O(tN In N) gates(classical computationWe note that, tribution over the momentum basis is shown in Fig. 2, for
as explained above, these quantum simulations up totimek=2, n,=11, t=100, J=0, and different rescaled imper-
can also be used to estimate the variafi@en(t))?). From  fection strengthg= 574. Fore=10"*, the localization peak
this quantity, it is possible to get an important characteristids reproduced with high fidelity, while the tails of the wave
related to the transport properties of the system, namely, thieinction are strongly enhanced. This is due to the fact that
diffusion coefficientD ,~((An(t))?)/t. errors affecting the most significant qubits can induce a di-
Finally, we note that in more complex transport problemsrect transfer of probability very far in the momentum basis
quantum computation of the localization length could pro-[26,14. For e=10"3, a measurement of the decay of the
vide new important physical insights. Indeed, the quantuniocalization peak would overestimate the localization length
computer has enormous memory capabilities, since the sizey a factor of 2, while fore=10"?, any trace of dynamical
of the Hilbert space grows exponentially with the number oflocalization has been destroyed.
qubits. This would be very useful in the study of complex In order to study in a more quantitative way the stability
many-body systems. In these problems, it would be highlyof quantum computation in the presence of static imperfec-
desirable to access huge Hilbert-space dimensions, in ordéons, we consider the following two quantities.
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FIG. 4. Time dependence of the inverse participation rétior
FIG. 3. Dependence of the wave-function second moment ork=2, ny=11 qubits,J=0 (solid lines, andJ= & (dashed lines

time, fork=2, ny=11, J=0 (full symbols, andJ= & (empty sym-  From bottom to topie=0, 5x107%, 1073, 2x10°3, 5x1073.

bolg at e=0 (circles, 5X10°° (squares 10 * (diamond$, and  The curves are averaged as in Fig. 3.

2x10* (triangles. The straight line fits give the diffusion coeffi-

cientD,(€). The curves are averaged over 10 disorder realization%loub”ng of the diffusion coefficiend ,(ep) = 2D,(0). The

. - n n .

and 10 initial conditionsioe[—5,9. data of Fig. 7 show thatp drops exponentially witm,.

This result is similar to that found in R€R26] for noisy gate

errors and can be explained by means of the following argu-

ment. Static imperfections can couple states very far in mo-
tum space via a single spin flip. As a consequence, they

An)2)=~D (et 16 Men . i, .
((An%)=~Dy(e) (16 createn, peakd 26] with probabll|tpr~e§ﬂt in each peak.

. . - 2 _ 2. - ,
This is an important characteristic related to transport propHere ee~ ong7q= eng is the effective perturbation strength,

(i) The diffusion coefficienD,(€), obtained from the re-
lation

erties of the system; with ngrg time between the Hadamard gates acting on a
(il) The inverse participation ratio given qubit. These gates transfer the accumulated phase error
€qf INto amplitude errors. Integrating the contribution of each
1 peak, one gets
6= (17 o
((An)“)~W,N*~D t (18

this quantity determines the number of basis states signifi- .
cantly populated by the wave function and gives an estimat¥/ith
of the localization length of the system. We stress that, dif-
ferently from the previous quantity,is local in the localized
regime, i.e., it is insensitive to the behavior of exponentially
small tails.
In Fig. 3 we show((An)?) as a function of time, fon,
=11 qubits,J=0, and different imperfection strengtls By
means of these curves we extract the diffusion coefficients
D,(e) from linear fits extended to the first few map steps. In o
the same figure, we show that similar curves are obtained for 2
J= 6. The dependence of the inverse participation ratid on
is shown in Fig. 4, again fdt=2, n,=11. We note that, for
imperfection strengths strong enough to induce huge varia-
tions in the diffusion coefficientld,(e)>D,(0)), & is only
slightly modified [£(e)=~£(0)]. Iterating map (2) long
enough[t>£&(€)], we get the saturation valug.(e€). This
guantity increases witle and one has complete delocaliza-
tion when¢..(e)~N (this is evident fore=5x10"° in Fig. FIG. 5. Dependence of the diffusion coefficieDj, on the im-
4; in this case sgtu_rates after<100 map _|terat|or)sAga|n, perfection strengthe for k=2, J=0 (full symbols, ng=6 (tri-
we note that similar curves are obtained for 6 (see  angles down 8 (stars, 10 (triangles up, 12 (square 15 (dia-
Fig. 4. monds, 18 (circles, and forJ= 6, ny=10 (empty triangles The
In Fig. 5, we plot the dependence of diffusion coefficientstraight lines show the theoretical dependeBeee? [full line, see
D, on € for differentn, values. From each curve we extract Eq.(19)] and the result without imperfectionB(e=0)~ 16 (chain

the critical imperfection strengtlep(n,) corresponding to line).
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' ' ' ' ‘ ‘ (i) ez, to get an inverse participation ratio equal to a
given fraction of the full Hilbert space, for examplé,
=N/4. This threshold characterizes the transition to ergodic
completely delocalized wave functions.

(i) €, to double the exact inverse participation ratio. We
stress that this quantity gives a rough estimate of the imper-
fection threshold for reliable quantum computation of local-
ization in the absence of error correction.

The dependence & ande; on ng is shown in Fig. 7.
These quantities drop polynomially with,, in sharp con-
trast with the exponential drop ef, . This algebraic thresh-
old can be understood as follows. The eigenstates of the
unperturbed é=0,J=0) Floquet operatot) in Eq. (2) can
be written as

N

FIG. 6. Dependence of the saturation valfie of the inverse $0= > My, (21
participation ratio on the imperfection strengthwith same param- =

eter values and same meaning of symbols as in the previous figure. &h th t ¢ ¢ tat Inth
The straight line shows the result without imperfectiods(e ereuy are the quan um registemomentum states. In the

—0)~14. localized reglmeca )'s are randomly fluctuating inside the
localization domain of sizé, and exponentially small out-
side it. Wave-function normalization imposgs™ |~ 1/\/¢.

Due to exponential localization, static imperfections couple
_ -~ significantly the unperturbed eigenfunctions only when their
One can estimate the critical valug to double the exact |ocalization domains overlap. We estimate in this case the
(e=0) diffusion coefficient fromD .=D,(e=0), giving transition matrix elements according to perturbation theory.

For J=0, they have a typical value

D~ €2ngN2, (19

vD,(0) n
€0 T o (20 O « "z (0)
N V= (#5712, 8107 7gngl 6

in good agreement with the data of Fig. 7. q R

In Fig. 6 we show the dependence of the inverse partici- ~7gn| 2 €S 51 (ugloup)l
pation ratio£(e) on e for different number of qubits,. mn=1 =1
From each curve, we extract two critical imperfection

strengths. ~end?d X, ecMeM M|~ end2 12 (22)
m=1
In this expression, the typical phase errowign, 7™ (sum
of n, random detunings;’s), with 7™ random sign, and
TgNg™ |s the time taken by the quantum computer to
simulate one map step. The last estimate in @8) results
I - from the sum of ordert terms of amplitude]c”c{™*|
w 5 ‘Q\. . ~1/¢ and random phases. Since the spacing between signifi-
_8’ - e cantly coupled quasienergy eigenstatesAE~1/¢, the
-6 e q threshold for the breaking of perturbation theory can be es-
L timated as
-7 \‘Q 4
oo Viyp/ AE~ €eny 2\~ 1. (23
8 L p
— T ? The analytical result
6 8 10 12 14 18 18 20
nq 1 (24)
€E™ "5 —
FIG. 7. Dependence of the critical imperfection strengths on the ¢ nﬁ’zﬁ

number of qubits fok=2, J=0: thresholdse, (circles, e (full ) _ ) _

diamond$, and e, (empty diamonds The full line gives the theo- IS confirmed by the numerical data of Fig. 7. For the case
retical dependenceg=An, 52 with the f|tt|ng constanA~0.5.  J=4, the threshold is reducedsee Fig. 4since residual
The dashed lines givep= B\/D(e 0)2~" ‘2, with the fitting  interqubit interactions introduce further couplings between
constantB~3.6. the Floquet eigenstates. However, an estimate similar to Eq.
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(22), which does not modify the functional dependef28), 1.0
can be derived. We stress the striking difference between this
polynomial scaling and the exponential scaling for the mix- 0.8
ing of unperturbed eigenstates obtained in the ergodic regime
(in which €~N) and in the more general quasi-integrable
regime[20,21]. We also note that the different sensitivity of __os
local and nonlocal quantities was pointed out in R&6]. K2
However, the authors of Ref26] considered the effect of o 0.4
noisy gates, while we consider internal static imperfections.
0.2
VI. SPECTRAL STATISTICS
In this section, we show that spectral statistics is an ide- 0.0 5
ally suited tool to detect the destruction of localization by 00 05 10 15 20 25 30
static imperfections. We study the spectral statistics of the S

Floquet operator for a quantum computer running the quan- FIG. 8. Level spacing statistics fk=2, n,=11, J=0, e
tum sawtooth map algorithm in the presence of static imper. 15-5 (circles, ande=2.6x 103 (squares Theq dashed and full

fections, curves give the Poisso(27) and the Wigner-Dyson distributions
o (28), respectively. In order to reduce statistical fluctuations, data are
UE=eX _if 9 ngﬂ(T) , (25) averaged oveNE_,=5 _random realizations of;’s, so that the total
0 number of spacings islpN~10%

whereH(7) is the Hamiltonian(14) andng is the number of
gates per map iteration. We construct numerically the Flo-

uet operator in the computatior@iomenturh basis, usin duce a crossover from the localized regime with the Poisson
d P P ' 9  statistics to guantum chaos characterized by the Wigner-

the fact that a single-map iteration of each quantum registe% tatistics. We h | tudied thi
state gives a column in the matrix representation of this op; yson staustics. WWe have aiso studie IS crossover as a

erator. Then we diagonalize the Floguet matrix and get théunctlon of the number of qubitsdata not shown 'ghe
so-called quasienergy eigenvalueéf) and eigenvectors thresholde.(n,) for the emergence of quantum chaos is con-
© sistent with the scaling,(ng)>n, °, in agreement with the
a

threshold(24) obtained for the mixing of unperturbed eigen-
functions.

U =exp(in() ol (26)

A convenient way to characterize the spectral properties VIl. CONCLUSIONS

of the system is to study the level spacing statisis), In summary, we have shown that a quantum computer
whereP(s)ds gives the probability to find two adjacent lev- operating with a small number of qubits can simulate effi-
els (quasienergigswhose energy difference, normalized to giently the quantum localization effects. The evaluation of
the average level spacing, belongs to the intefs@+ds]  the |ocalization lengttt with accuracyv requires a number
(see, e.g., Ref$27,28)). In the localized regime, the Floquet s computer runs of order ##, followed by a projective
eigenvectors with very close eigenvalues may lay so far apagheasurement in the computatior@omentur basis. We
that their overlap is negligible. As a consequence, eigenvakyress that, in the presence of static imperfections, a reliable
ues are uncorrelated, that is, their spectral statistic is given bé’omputation of the localization length is possible even with-

the Poisson distribution, out quantum error correction, up to an imperfection strength
_ threshold that drops only algebraically with the number of
Pp(s)=exp(—s). 27) qubits. We also stress that localization is a purely quantum

On the contrary, in the delocalized regime wave functions a:fhenomenon, which is quite fragile in the presence of noise

; : . - . . [29,26]. Therefore, we believe that the simulation of the
ergodic, and their overlap gives a significant coupling matri . A ; ; )

. . hysics of localization can be an interesting testing ground

element between states nearby in energy. In this case, the

spectral statistic®(s) follows the Wigner-Dyson distribu- 1or the coming generation of quantum processors operating
tion in the presence of decoherence and static imperfections.

3252 p( 452

Puo(S) = —ex (29) This research was supported in part by the EC RTN Con-
o

tract No. HPRN-CT-2000-0156, the NSA and ARDA under
ARO Contracts No. DAAD19-01-1-0553 and No. DAAD19-
typical of random matrices in the absence of time-reversaD2-1-0086, the project EDIQIP of the IST-FET program of
symmetry[27,28 (static imperfections break this symme- the EC, and the PRIN-2000 “Chaos and localization in clas-
try). In Fig. 8, we show that static imperfections indeed in-sical and quantum mechanics.”
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