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Quantum computation of the Anderson transition in the presence of imperfections
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We propose a quantum algorithm for simulation of the Anderson transition in disordered lattices and study
numerically its sensitivity to static imperfections in a quantum computer. In the vicinity of the critical point the
algorithm gives a quadratic speedup in computation of diffusion rate and localization length, comparing to the
known classical algorithms. We show that the Anderson transition can be detected on quantum computers with
7-10 qubits.
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The problem of metal-insulator transition of noninteract-rithm involve one qubit rotations, controlled phase shift
ing electrons in a disordered potential was pioneered by (¢) and controlledNoT gate Cy. The important compo-
Anderson in 19541]. Since then it continues to attract an nent of the algorithm is the well-known quantum Fourier
active interest of researchers all over the woidge, e.g., transform(QFT) described in Ref[8]. All these quantum
Refs.[2—4], and references thergirin addition to analytical operations have been already realized for 3—7 qubits in the
and experimental studies of the problem an important contriNMR-based quantum computations reported in Refs.
bution to the understanding of its properties was made withi15,16. Thus the main obstacle for experimental detection of
the help of numerical simulations based on various computhe Anderson transition in quantum computations is related
tational methods adapted to the physics of this phenomenoto the effects of external decohererfé@] and residual static
Indeed, the numerical studies allowed one to obtain soménperfections[18] which restrict the number of available
values of critical exponents in the vicinity of the transition quantum gates. The results obtained for operating quantum
and to study certain system characteristics at the criticahlgorithms[14,19 show that the effects of static imperfec-
point including level spacing statistics and conductance fluctions affect the accuracy of quantum computation in a stron-
tuations for the cases of different symmetries and systerger way comparing to the case of random noisy gate errors.
dimensiongsee, e.g., Ref$3—7]). These numerical simula- Due to that in this paper we concentrate our studies on the
tions are performed with the help of modern supercomputersase of static imperfections investigating their impact on the
and are at the border of their computational capacity. system properties in the vicinity of the Anderson transition.

The recent progress in quantum computation demon- To study the effects of static imperfections in quantum
strated that due to quantum parallelism certain tasks can b@mputations of the Anderson transition we choose the gen-
performed much faster on a quantum compusee Ref[8],  eralized kicked rotator model described by the unitary evo-
and references therginrhe most known example is the Shor lution of the wave functiony:
algorithm for factorization of large integef®], which is
exponentially faster than any known classical algorithm. A =Uyg=ex —iV(6,t)Jexd —iHo(n)]¢. )
number of efficient quantum algorithms was also proposed
for simulation of quantum evolution of certain Hamiltonians —. . . :
including many-body quantum systefi1®,11] and problems Here ¢ is the new value of} after one map iteration given
of quantum chaokl2—14. In Ref.[13] it was shown that the bY the unitary operatod, Ho(n) gives the rotational phases
evolution propagator in a regime of dynamical or Andersonin the basis of momentum= —i4d/d6, the kick potential
localization can be simulated efficiently on a quantum comV(6,t) depends on the rotator phageand timet measured
puter. However, the algorithm proposed there requires a sign number of kicksy(0+2m) = (6). For V(6,t)=Kk cosé
nificant number of redundant qubits and is not accessible foandH,=Tn?/2, one has the kicked rotator model described
an experimental implementation with a first generation ofin detail in Ref.[20]. The evolution given by Eq.1) results
quantum computers composed of 5-10 qubits. from the HamiltoniarH =Hg(n) +V(6,t) §;(t), whered;(t)

In this paper we propose a quantum algorithm for a quanis a periodicé function with period 1, andr(,#) are conju-
tum dynamics in the regime of Anderson localization. Thisgated variables. In the case when the potentidb,t)
algorithm requires no redundant qubits thus using the avail= —2tan [ 2k(cosé+ cosw;t+coswt)] depends quasiperi-
ablen, qubits in an optimal Way The propagation on a unitodically on timet the model can be exactly reduced to the
time step is performed ||®(nq) qguantum elementary gates three-dimensional3D) Lloyd model[21]. Indeed, the time
while any known classical algorithm requir€§2"a) opera- dependence o¥(#6,t) can be eliminated by introduction of
tions for a vector of siz&l=2"a. Due to these properties the extended phase space with a replacemelgt—Hg(n)
Anderson transition can be already detected on a quantumt w{n;+ w5n,. Then the linear dependence on quantum
computer with 7—10 qubits. The basic elements of the algonumbersn, , gives fixed frequency rotations of the conju-

gated phase8; ,= w; ;. The extensive studies performed in
Ref. [21] showed that this model displays the Anderson
*URL: http://www.quantware.ups-tlse.fr metal-insulator transition d=Kk.~0.5 with the critical ex-
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ponents being close to the values found in other 3D solid
state models. In this paper following R¢22] we choose in
Eq. (1) the potential

V(6,t)=k(1+0.75 cosw,t cOSw,t)coséd

with w1=277)\_1, w2=277)\_2,

and\=1.3247 . .. being the real root of the cubic equation
x3—x—1=0. The rotation phased,(n) are randomly dis-
tributed in the interval (0,2). This model shows the Ander-
son transition ak.~ 1.8 [22] with the characteristics similar
to those of the Lloyd model studied in R¢21].

The quantum algorithm simulating the time evolution
of this model is constructed in the following way.
The quantum state®=0,... N—1 are represented by
one quantum register witm, qubits so thatN=2"a.
The initial state with all probability ah,=0 corresponds to
the state|00...0> (momentumn changes on a circle
with N levelg. The phase rotatiordr=exd—iHq(n)] in
the momentum basis is performed with the help of 3
guantum random phase generator built from two unitary op;
eratorsU{" andU{?). The operatot){=1171 €' 419} gives
rotation of qubitj by a random phase;. Here and below
o*,0Y,0% are Pauli matrices. To improve the independ- FIG. 1. (Color onling The time evolution of the probability
ence of quantum phases we then apply the operdtdt dis_tributic_)n|l//n|2 in the localized(left column, k=1.2) and cri]elo-
:HyzlcN(iM—k,jM—k)Hy:19i¢1,kUiZkCN(ikajk)- This trans- calized (right column,k=2.4) phases fon,=7 qubits (N=2"q),

: ' with 0<t<400 (vertical axi3 and —N/2<n=<N/2 (horizontal
formation repr,eszents a random sequence Witone-qubit axis); k,=1.8. The color is proportional to probability: blue/black
phase shift®'%i,%i, and controlledNoT gatesCy(iy,jy) fol- for zero and red/white for maximal values. The strength of static
lowed by the inversed sequence of controlienlr gates imperfections ise==0 for top row ande= x=10"* for bottom
Cn(im—ksJm—k)- HereCy(ik,ji) inverts the qubitj, if the  row.

qubitiy is 1;iy,jx, and phase&{k are chosen randomly. The

resulting random quantum phase generdtar=U{?U{")  nated using the symmetric representati®y),(6)R,(— 0)
gives more and more independent random phases with the HS!He (VoIS 2He (V2o i R2He~ (V4oiH S~ 1H
increase oM. We useM ~2n,, (atn,~10), which according _ _-is?y cos@) - PR

to our tests generates googl ranc?om phase values. This stgpe_ Y +O(73); Tlhus the3 kick operator is given by
involves 3Vl +n, quantum gates. After that the kick operator k=[Ry2(O)Ryo(— 6) '+ O(1y%), where the number of
U= exf —ik(t)cosd] is performed as follows. First, with the stepsl =k/y, and we used in our nur_nerlcal simulations the
help of the QFT the wave function is transformed from mo-small parametery=k/I~0.2 that givesl|~5-10 for k
mentumn to phased representation irﬁ)(né/Z) gates. Then ~1-2. After that the state is transferred to the momentum
6 can be written in the binary representation a@s  representation by the QFT. Thus an iteratigihis performed
=043, . .., With ;=0 or 1. Itis convenient to use the for 2" ztates inng elementary gates wherg=2[k/y](nq
notation /= ma, + 6 to single out the most significant qubit. +2)+ g+ 6ng+3M+9 with the square brackets denoting

. — — . the integer part. This algorithm is optimal for the kicked
_ a- —
Then due to the relation c@s-(—1) 1c030—011c050£he kick rotator model with moderate values &fwhere Ng value

operator takes the foriy,=e'k(Ne0s?=g 171K0cs? ‘where  yemains reasonable. It can be easily generalizeddto
o act on the first qubit. This operator can be approxi-dimensions.

mated to an arbitrary precision by a sequence of one-qubit |n our numerical simulations we study the effects of static
gates applied to the first qubit and the diagonal operatorguantum computer imperfections considered in Refs.
S"=e'm&f The S operators are given by the productrgf  [14,18,19. In this case all gates are perfect but between
—1 two-qubit gates asS"=1119,Cyj(7m271"1) where  gatesy accumulates a phase factel® with ¢=3;(7;o7
controlled phase shift gatéjl,jz(qb) makes a phase shigt? +Mjg}<g}<+1)_ Here »;,u; vary randomly with j

if both qubitsj,, are 1. Then we introduce the unitary op- =1, ... nq, 7; represents static one-qubit energy shifts,
erator Ry(g) =HS!He (7201 HS 2He (Y271 HSlH  — el2<7;<€l2, andu; represents static interqubit couplings
whereH = (0 + 0%)/1/2 is the Hadamard gate. It can be ex- On @ circular chain;- u/2< p;<u/2. R
actly reduced to the form R 8) = co(y12) An example of time evolution of probability distribution

. = . . — L in the momentum representatiaris shown in Fig. 1. Below
—Slnz('y/Z)COS(Z‘))—IoﬁSIn7COS(0)+IO)1(SIn2(7iZ)SII’1(i219Z) :Qg the Anderson transition k<k,) the probability remains
hence for small y we have R, (6)=e '"1” bounded near initial valugy, while above it k>k.) a dif-

+ioX(#14)sin(20)+0(y%). The term withy? can be elimi- fusive spreading im takes place. Comparing to the ideal

014302-2



BRIEF REPORTS PHYSICAL REVIEW A9, 014302 (2004

600 0.6

Bk S S s

_124 ) . fhosi a5 ) ST RN
500 -250 0 250 500 -500 -250 O 250 500

200
500 | WMWMWWW

250—/

100 ‘
r ’ ‘ ‘ 1 11 U »
,Mﬁf%h Wbt ﬁw*’m . \
A IR e i W (full and dashed curves for left and right scales, respectivaty

0
0 5000 10000 0 5000 10000 the kick strengthk for n;=10 andt=10°, €=0,10°2x10°,
4x10°5,8x1075 (corresponding to curves from right to Igft

200

"

0
0.5

WWM“MWM
SU——— FIG. 3. Dependence of the IPRand the excitation probability

0

FIG. 2. Top row: logarithm of probability log| /% vs momen- -
tum n aftert=10 000 iterations; dark gray curves are shifted down'U‘_O'

by 5 (left) and 2(right). Bottom row: dependence of IPRon time . " . L . i

t. The left/right column corresponds to localized/delocalized phas@dditional transitions induced by static imperfections which

at k=1.2 andk=2.4, respectively. The three curves represent Naturally lead to a delocalization at a lower valuekafom-

=0,2x10"5,6x 10”5 with color changing from light gray to black pared to the ideal computation. Another method to detect the

with increase ofe; u=e¢, ny=10. position of the critical poink.(e) in presence of imperfec-
tions is to measure the two most significant qubits which

quantum computation the static imperfections lead to probcode the value of momentum After a few tens of measure-
ability transfer on levels located far away from the center ofents of first 2 qubits one determines the probabilty
the wave packet. This effect is related to the structure of the= =n=(nianm ¥l *. At sufficiently larget this probability
QFT where a mismatch in the quantum gates generates higfiows a sharp jump from a valié=0 to W~0.5 whenk is
harmonics. As a result, static imperfections create a plateay@ried. This allows to determine the critical point and gives
in the probability distribution which level grows with the the values ofk.(¢) close to those obtained via IPR(see
increase ofe and u (see Fig. 1 This leads to an artificial Fig- 3. N .
diffusion of the second moment of the distributign?) The shift of the critical pointk.(€) =k.—kc(¢) depends
= (o] (Nn—nNg)?|4). Since the plateau in probability extends ON €, i, andng. From the IPR data obtained for various
over all N levels the rate of this diffusion grows exponen- €.4.Nq, see Fig. 4, we find that the global parameter depen-
tially with n, at fixede, u (data not shown A similar effect ~ dence can be described by the scaling relation
was discussed in Ref23] for the quantum computation of
the kicked rotator with noisy gates. Due to that the most Akc(e)=Ae *, ‘e=engyn,. 2
appropriate characteristic to study is the inverse participation
ratio (IPR) ¢, which is extensively used in systems with 0.2
localization[3,4] and which determines the number of levels s
on which the wave function is concentrate® (y,|* |logAk, -
=1/¢). In contrast to(n?), the IPR¢ remains stable with
respect to noise in the gates during polynomially large times
[23]. 02|
The variation of¢ with time ande, . is shown in Fig. 2.
For moderate imperfections, during a rather long time inter- o4 | >
val £ remains close to its value in the exact algorithm. How- L
ever, at very large times=10° it saturates at some value - 4
which depends ok and e, . A typical example of such a 081 o=
dependence is presented in Fig. 3. Hefeshows a sharp
jump from small €~1) to large ¢€~N) values which takes 08 s s - s
place in a narrow interval df values. This is a manifestation -8 18 -t 12 - 08
of the Anderson transition from localized to delocalized F|G. 4. Dependence of the shift of the critical poik,(e)
states. The critical poink, can be numerically defined as —k —k (¢) on rescaled imperfection strengéh- engyng for e
such a value ok at which§ is at the middle between its two —2x10°5 (diamonds, 4x10°° (triangles, and 8<10°5
|Im|t|ng values. The data of Flg 3 show that the critical point (squarey open and full symbols are fqu=0, 8< Ng=< 13 andu
kc(e) decreases with the increase of the strength of imper=e¢, 8<n,<11, respectivelyk.=1.8. The dashed lines show the
fections. The physical origin of this effect is related to thescaling relation2). The logarithms are decimal.

log €
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The data fit givesA=3.0, «=0.64 for u=0 andA=4.8, play an important role. Further studies are required to clarify
a=0.68 for u=e€. This result can be understood from the this point.

following arguments. According to Ref$14,19 the time Finally, we compare the number of operations required for
scalets, on which the fidelity of quantum computation is classical and quantum computation of the Anderson transi-
close to unity, is determined by the parametett;~1/e).  tion in the d-dimensional case. For that we note that in the
Thus, an effective matrix element induced by static imper-vicinity of critical point in reald-dimensions the number of
fections between ideal localized eigenstates can be estimatsthtes grows with time as~t [3,4,7. Hence, up to time
asUef~~eQ~~e/Iﬁ, whereQ is a typical overlap of localized the classical computation may use oiNylevels in each di-
eigenstates which for the Anderson localizatiordidimen-  rection so that the total number of levels N§'~t. Other
sions can be estimated g~ # with B=d/2 and| being levels are only very weakly populated on this time scale and
the localization length for the exact algorithisee a discus- therefore they can be eliminated with a good accuracy.Thus,
sion in Ref.[24] for d=1). The imperfections induced de- the number of classical operations fokicks can be esti-
localization should take place whet; exceeds the level mated asng,~tN%og'N~t4og’t. At the same time the
spacing in a block of sizé (Uee>A ~119%). Taking into  guantum algorithm will need ~dnit~tlog’t gates assum-
account that near the critical point the localization lengthing d quantum registers with9=29"%~t states. The coarse-
scales as~Ak™" with »~1.5 (see Refs[3,21,29) we ob-  grained characteristics of the probability distribution can be
tain thata=1[v(d—B)]=2/vd. The obtained value ofr  determined from few measurements of most significant qu-
would give a reasonable value of 1.0 but in our mode{l)  pjts, e.g. W as in Fig. 3. Thus, even if each step in Egj. is

the situation is more complicated. Indeed, the dynamics irfficient, the speedup is only quadratic near the critical point.
Eqg. (1) takes place in one dimension and hence one expecighove the critical point we have diffusive growth witif
B=1/2 andv~0.6. The later value has a noticeable differ- _d2 3nq the speedup is stronger,~nit 92 for d>2.
ence from a usually expected val(ig,21,23. A possible 9

reason for this discrepancy can be related to the fact that in This work was supported in part by the NSA and ARDA
the algorithm the perturbations give far away transitiee under ARO Contract No. DAAD19-01-1-0553 and the EC
Fig. 1) which effectively decrease the value gf also near IST-FET project EDIQIP. We thank CalMiP at Toulouse and
the critical point the correlations in the matrix elements canDRIS at Orsay for access to their supercomputers.
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