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Dynamical Localization and Repeated Measurements in a Quantum Computation Process
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We study numerically the effects of measurements on dynamical localization in the kicked rotator
model simulated on a quantum computer. Contrary to the previous studies, which showed that
measurements induce a diffusive probability spreading, our results demonstrate that localization can
be preserved for repeated single-qubit measurements. We detect a transition from a localized to a
delocalized phase, depending on the system parameters and on the choice of the measured qubit.

DOI: 10.1103/PhysRevLett.92.037902 PACS numbers: 03.67.Lx, 03.65.Ta, 03.67.Pp, 05.45.Mt
for the realization of the readout procedure in quantum
optics systems [15,16] and solid state devices [17–20].

strength and the rotation phases, so that the classical limit
corresponds to k! 1, T ! 0 with the chaos parameter
In 1979, the dynamical localization of quantum chaos
was discovered in numerical simulations of the kicked
rotator model [1]. It was found that the unbounded clas-
sical diffusion typical of chaotic dynamics is suppressed
by quantum interference effects [1,2]. This interesting
phenomenon found its explanation on the basis of an
analogy with the Anderson localization in disordered
lattices [3] (see also [4]). Manifestations of dynamical
localization appear in various physical systems. Its first
experimental observation was obtained with hydrogen
and Rydberg atoms in a microwave field [5]. Recently,
significant technological progress in manipulating cold
atoms by laser fields allowed one to experimentally build
up the kicked rotator model and to study dynamical
localization in real systems in great detail [6–8].

Since localization appears due to quantum interfer-
ence, it is natural to expect that it is rather fragile and
sensitive to noise and interactions with the environment.
Indeed, in theoretical and experimental studies it was
shown that even a small amount of noise destroys coher-
ence and localization [7–9]. Measurements represent an-
other type of coupling to the environment [10], and it is of
fundamental importance to understand their effects on
dynamical localization. Theoretical and numerical stud-
ies show that measurements destroy localization and in-
duce a diffusive energy growth such as in the case of a
noisy environment [11–13]. For weak continuous mea-
surements, discussed in [11], the rate of this growth can
be much smaller than the diffusion rate induced by
classical chaos. However, in the limit of strong coupling
to the measurement device, the quantum diffusion rate
becomes close to its classical value. A similar situation
takes place in the case of projective measurements, con-
sidered in [12,13].

The interest in measurement procedures grew enor-
mously in the past few years due to progress in quantum
information processing [14]. Indeed, the extraction of
information from a quantum computation is always re-
duced to a final measurement of the quantum register.
Various experimental implementations were discussed
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Moreover, it has been shown that a quantum computation
can be performed completely by a sequence of measure-
ments applied to an initially entangled state [21]. At the
same time, measurements represent an important part of
various quantum algorithms, including the famous Shor
algorithm for the factorization of integers [22]. Therefore
it is important to investigate the effects of measurements
on quantum computers operating nontrivial algorithms.

An interesting example is the quantum algorithm pro-
posed in [23] which allows one to simulate the evolution
of the kicked rotator on a quantum computer. This algo-
rithm essentially uses the quantum Fourier transform
(QFT) and controlled-phase gates. It realizes one map
iteration in a polynomial number of quantum gates
[O�n3q�] for a wave vector of size N � 2nq . Here nq is
the number of qubits (two-level quantum systems) onto
which a kicked rotator wave function is encoded. For
moderate kick amplitudes, this algorithm can be replaced
by an approximate one which uses all the qubits in an
optimal way and performs one map iteration in O�n2q�
elementary gates [24]. In this form, the algorithm can
simulate complex dynamics, e.g., the Anderson transition,
with only a few (�7) qubits. This makes it accessible for
possible future realization on NMR based quantum com-
puters. Indeed, all the elements of the algorithm have
already been implemented on NMR quantum computers
[25,26]. Therefore it represents an interesting testing
ground for the investigation of the measurement effects
on dynamical localization in a quantum computation.

The quantum evolution of the kicked rotator is de-
scribed by the unitary operator ÛU acting on the wave
function  [4]:

 � ÛU � ÛUkÛUT � e�ik cos�̂�e�iTn̂n
2=2 : (1)

Here  is the wave function after one map iteration, ÛUk
represents the effects of the kick in the phase representa-
tion, and ÛUT describes the free rotation in the momentum
basis n with n̂n � �i@=@� (we use units with �h � 1). The
dimensionless parameters k, T determine the kick
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FIG. 1 (color online). Dependence of the second moment hn2i
on time t. Here T � 2, k � 2, and color marks the value of nq.
The upper group of four curves corresponds to the measure-
ments of the least significant qubit m � nq for nq � 12, 11, 10,
and 9, from top to bottom. In the lower group of two curves,
one of most significant qubits is measured with m � nq � 8 for
nq � 12 (black) and 9 (yellow/gray) (data for nq � 10; 11 give
same superimposed curves and are not shown). The lowest
seventh fluctuating curve is the evolution without measure-
ments. The dashed line shows the diffusive growth hn2i � t.
The inset shows the dependence of the IPR � on t (order of
curves is as in the main plot, the dashed line shows the
diffusive growth ��

��
t

p
).
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K � kT constant. Here we study the regime of dynamical
localization corresponding to l� N, where l 	 k2=2 is
the localization length [4].

The quantum algorithm simulating the evolution (1)
operates as described in [23,24]. The wave function  in
the momentum representation with N � 2nq levels is en-
coded on a quantum computer with nq qubits. In this way
n � �N=2
 j, where the index j � 0; . . . ; N � 1 is writ-
ten in the binary representation as j � �a1; a2; . . . ;
am; . . . ; anq�, with am � 0 or 1. As the initial state, we
choose the momentum eigenstate at n � n0 � 0, which
can be efficiently prepared from the ground state. Then, as
described in [23], the rotation ÛUT is performed in O�n2q�
controlled-phase gates. After that, the QFT transforms
the wave function to � representation in O�n2q� quantum
elementary gates (see [14]). The kick operator ÛUk is
realized in O�n3q� gates with the help of an additional
register [23] or, for moderate k values, it can be approxi-
mately implemented in O�nq� gates without any ancilla,
following [24]. Finally,  is transformed back to the
momentum basis by the inverse QFT. Here we assume
that the gates are implemented without errors, keeping
the analysis of imperfection effects for further studies.

To study the effects of measurements on the dynamics
given by the above algorithm, we assume that after each
map iteration (1) a projective measurement of a chosen
qubit m is performed. The measurement can be repre-
sented as the action of two projection operators P0�m�
and P1�m� giving for am an outcome 0 or 1 with the
probability jjP0�m� jj2 or jjP1�m� jj2, respectively.
The measurement projects the wave function onto one
of two subspaces of the total Hilbert space, correspond-
ing to momentum states labeled by the indexes j �
�a1; a2; . . . ; am; . . . ; anq� with fixed am � 0 or am � 1.
Each subspace is composed of N=2 states, given by the
direct sum of 2m�1 cells of L � 2nq�m consecutive mo-
mentum states. For example, for m � 1 the most signifi-
cant qubit is measured and  is projected onto momentum
states with �N=2 � n < 0 (a1 � 0) or 0 � n � N=2� 1
(a1 � 1); for m � nq, the least significant qubit is mea-
sured and  is projected onto even and odd momentum
states. Such a measurement is the most natural one for the
quantum computation process.

Thus, the evolution with measurements is given by the
following equation for the density matrix �̂�:

�̂� � P0�m�ÛUkÛUT�̂�ÛU
y
TÛU

y
kP0�m�


 P1�m�ÛUkÛUT�̂�ÛU
y
TÛU

y
kP1�m�: (2)

Here, �̂� is the density matrix after one map iteration with
measurement. The direct simulation of this equation is
quite costly, since N2 components should be iterated. To
avoid this difficulty, we used the method of quantum
trajectories [27]. In this method, for one quantum trajec-
tory, the wave function  evolves according to (1); after
each map iteration  in the momentum, representation is
projected on the subspaces with am � 0 or 1 according to
037902-2
the probability jjP0�m� jj
2 or jjP1�m� jj

2, respectively.
After the renormalization, this gives the wave function
 n in the momentum basis. The density matrix and the
expectation values of observables are then obtained by
averaging over M quantum trajectories.

To characterize the quantum evolution with measure-
ments, we compute the following quantities: the proba-
bility distribution �nn 	 hj nj

2i, obtained by averaging
j nj2 over M quantum trajectories; the second moment of
the probability distribution, given by hn̂n2i � Tr�n̂n2�̂�� 	P
nn

2hj nj2i; the inverse participation ratio (IPR) � �

1=
P
n�

2
nn 	 1=

P
njhj nj

2ij2 which determines the number
of states on which the average probability is distributed.
Within statistical fluctuations, these quantities remain
unchanged for a variation of M from 20 to 500 and we
represent them for M � 50.

The dependence of hn̂n2i and � on the number of map
iterations t is displayed in Fig. 1 for different nq and m.
The probability distribution hj nj

2i for nq � 10 is shown
in Fig. 2. These data clearly show that the measurement of
the least significant qubit completely destroys localiza-
tion generating a diffusive behavior. Indeed, the second
moment hn̂n2i and the IPR � grow diffusively (see Fig. 1)
up to spread of the probability over the whole computa-
tional basis, as shown in Fig. 2. The extended distribution
037902-2
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FIG. 3. Dependence of the averaged IPR h�i on k for mea-
surements of one of the most significant qubits m � nq � 8, for
nq � 9 (squares), 10 (diamonds), 11 (triangles), and 12 (stars).
IPR values are averaged over 1000 kicks around t � 5� 105;
T � 2. The inset shows the same dependence in the absence of
measurements.
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FIG. 2 (color online). Probability distribution for k � 2,
T � 2, and nq � 10 at t � 5� 105. Measurements are done
for m � nq � 8 that preserves localization (black curve) and
for m � nq that leads to extended distribution (red/gray flat
curve). The distribution for evolution without measurements is
shown by green/gray curve. Data are averaged over 50 quantum
trajectories. The inset shows j nj

2 for a single quantum tra-
jectory (same colors).
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hj nj
2i is formed by a superposition of probabilities j nj2

generated by single quantum trajectories [see Fig. 2 (in-
set), which shows that each j nj2 is relatively narrow]. On
the contrary, the measurement of one of the most signifi-
cant qubits does not destroy localization, as clearly illus-
trated in Figs. 1 and 2. This striking result is very
different from the previous studies [11–13] where local-
ization was always destroyed by measurements.

To understand the origin of this behavior, we investi-
gate the dependence of the averaged IPR h�i on the kick
amplitude k for different number of qubits nq (see Fig. 3).
For k � kc 	 6, the IPR is independent of nq, correspond-
ing to a localized regime. On the contrary, for k > kc the
IPR starts to grow with the system size N � 2nq , indicat-
ing a transition to a delocalized phase. We explain the
appearance of this transition in the following way. The
measurement process determines the cell size L � 2nq�m

inside which the coherence of quantum dynamics is pre-
served. If the unperturbed localization length l is much
smaller than the cell size, then measurements do not
destroy dynamical localization. While, if l� L, the
wave function propagates over different cells, measure-
ments destroy quantum coherence between nearby cells,
and this leads to a diffusive propagation over the compu-
tational basis.

According to our data, the delocalization transition
takes place when

�0 	 2l 	 k2 	 L=5; (3)

where �0 is the IPR for the dynamics without measure-
ments (see the inset of Fig. 3). This relation shows that the
transition can be obtained by tuning k at fixed nq �m or
by an appropriate variation of m at fixed k. Our numerical
037902-3
data confirm this estimate. Indeed, for m � nq � 9, we
find that k � 10 is localized, while at k � 12 delocaliza-
tion takes place (data not shown). It is interesting to note
that the oscillations of h�i in Fig. 3 are correlated with the
oscillations of �0, thus confirming that the delocalization
border is determined by the unperturbed localization
length l (these oscillations are produced by dynamical
correlations which affect the classical/quantum diffu-
sion rate related to the localization length l as discussed
in [28]).

To study the quantum dynamics at larger time scales,
we use the random quantum phase method proposed in
[12]. It is based on the fact that after a projection on a
given quantum state induced by a measurement the quan-
tum phase is not defined. Therefore one can assume that
states associated to different outcomes of the measure-
ment procedure have a random relative quantum phase.
Thus, after a measurement of the mth qubit, the state j�i
is replaced by ei 0P0�m�j�i 
 ei 1P1�m�j�i, where the
phases  0;1 are random. This approach allows one to
reduce significantly the computational cost of the simu-
lation, since it effectively integrates the dynamics over
many quantum trajectories.

The comparison of the two computational methods is
presented in Fig. 4, for diffusive, localized, and critical
regimes. Both methods give consistent results for hn2i
(Fig. 4) and the IPR (data not shown). With the random
quantum phase method, we can follow the evolution for
very large times (up to t � 107) at which localization is
still preserved [see Fig. 4(b)]. This computational method
allows one also to understand in a better way why local-
ization is not destroyed by measurements. Indeed, the
effects of random phase fluctuations  0;1 appear only at
037902-3



10
1

10
3

10
5

t

10
1

10
3

10
5

<
n2 >

10
1

10
3

10
5

10
7

t

10
0

10
1

10
2

10
3

<
n2 >

a)

b)

FIG. 4 (color online). Time dependence of the second mo-
ment hn2i of the quantum distribution obtained by the compu-
tation with quantum trajectories (blue/black curves) and with
the random quantum phase method (yellow/gray and green/gray
curves); T � 2, nq � 10. Panel (a) shows diffusive regime for
k � 6 (upper two curves) and k � 2 (lower two curves), for
m � nq; the straight line gives the diffusive law hn2i � t.
Panel (b) shows a localized regime for k � 2 (lower curves)
and a near critical case for k � 6 (upper curves), form � 2; the
straight line shows anomalous diffusion hn2i � t0:2; colors are
as in panel (a).
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the cell boundaries. Hence, for L� l they do not affect
the momentum states located on a distance larger than l
from edges and localization is preserved [29]. We think
that the same mechanism qualitatively explains the re-
sults obtained in [30], where it was found that measure-
ments of a 1=2-spin detector coupled to the kicked rotator
do not destroy localization. In this case, the effective cell
size L is the total number of rotator momentum states and
thus localization is preserved since l� L.

In conclusion, we studied the effects of measure-
ments on dynamical localization in a quantum algo-
rithm simulating the kicked rotator. Contrary to the
common lore, the localization is not always destroyed
by measurements, and a transition from localized to
diffusive dynamics takes place when system parameters
are varied. We note that the result that repeated measure-
ments do not destroy the dynamical localization has
certain interesting similarities with quantum nondemo-
lition measurements actively discussed for linear and
nonlinear dynamics [31–33].

The authors acknowledge useful discussions with S.
Bettelli and B. Georgeot. We thank CalMiP in Toulouse
and IDRIS in Orsay for access to their supercomputers.
This work was supported in part by the EC projects RTN
QTRANS and IST-FET EDIQIP, and the NSA and ARDA
under ARO Contract No. DAAD19-01-1-0553.
037902-4
[1] G. Casati, B.V. Chirikov, F. M. Izrailev, and J. Ford, Lect.
Notes Phys. 93, 334 (1979).

[2] B.V. Chirkov, F. M. Izrailev, and D. L. Shepelyansky, Sov.
Sci. Rev., Sect. C 2, 209 (1981).

[3] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev.
Lett. 49, 509 (1982).

[4] F. M. Izrailev, Phys. Rep. 196, 299 (1990); S. Fishman, in
Quantum Chaos, edited by G. Casati, I. Guarneri, and
U. Smilansky (Elsevier, Amsterdam, 1992).

[5] See a review by P. M. Koch and K. A. H. van Leeuwen,
Phys. Rep. 255, 289 (1995).

[6] F. L. Moore et al., Phys. Rev. Lett. 75, 4598 (1995).
[7] H. Ammann et al., Phys. Rev. Lett. 80, 4111 (1998).
[8] M. K. Oberthaler et al., Phys. Rev. Lett. 83, 4447

(1999).
[9] D. L. Shepelyansky, Physica (Amsterdam) 8D, 208

(1983); E. Ott, T. M. Antonsen, Jr., and J. D. Hanson,
Phys. Rev. Lett. 53, 2187 (1984).

[10] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[11] T. Dittrich and R. Graham, Europhys. Lett. 11, 589

(1990); Phys. Rev. A 42, 4647 (1990).
[12] B. Kaulakys and V. Gontis, Phys. Rev. A 56, 1131 (1997).
[13] P. Facchi, S. Pascazio, and A. Scardicchio, Phys. Rev.

Lett. 83, 61 (1999).
[14] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[15] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[16] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 642

(1993); H. M. Wiseman, Phys. Rev. Lett. 75, 4587
(1995).

[17] S. A. Gurvitz, Phys. Rev. B 56, 15215 (1997).
[18] A. N. Korotkov, Phys. Rev. B 60, 5737 (1999).
[19] D.V. Averin, Phys. Rev. Lett. 88, 207901 (2002).
[20] M. H. Devoret and R. J. Schoelkopf, Nature (London)

406, 1039 (2000).
[21] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86,

5188 (2001).
[22] P.W. Shor, in Proceedings of the 35th Annual Symposium

Foundations of Computer Science, edited by S. Gold-
wasser (IEEE Computer Society, Los Alamitos, CA,
1994), p. 124.

[23] B. Georgeot and D. L. Shepelyansky, Phys. Rev. Lett. 86,
2890 (2001).

[24] A. A. Pomeransky and D. L. Shepelyansky, Phys. Rev. A
69, 014302 (2004).

[25] L. M. K. Vandersypen et al., Nature (London) 414, 883
(2001).

[26] Y. S. Weinstein et al., Phys. Rev. Lett. 89, 157902 (2002).
[27] H. J. Carmichael, An Open Systems Approach to Quan-

tum Optics (Springer-Verlag, Berlin, 1993); T. A. Brun,
Am. J. Phys. 70, 719 (2002).

[28] D. L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986).
[29] We cannot exclude that this noise may produce hardly

observable unlimited diffusion with a rate / exp��2L=l�.
[30] S. Sarkar and J. S. Satchell, Europhys. Lett. 4, 133 (1987).
[31] V. B. Braginsky and Yu. I. Vorontsov, Usp. Fiz. Nauk 114,

41 (1974) [Sov. Phys. Usp. 17, 644 (1975)].
[32] C. M. Caves et al., Rev. Mod. Phys. 52, 341 (1980).
[33] M. B. Mensky, R. Onofrio, and C. Presilla, Phys. Rev.

Lett. 70, 2825 (1993).
037902-4


