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UNIVERSAL REGIME OF FIDELITY DECAY
IN REALISTIC QUANTUM COMPUTATIONS

ELAUS M. FRAHM, ROBERT FLECKINGER, DIMA L. SHEPELYANSKY
Labaratoire de Physique Théorique, UMER 5152 du CNRS,
Université Paul Sabafier, 51062 Toulouse Ceder 4, Fronce

We determing the universal scaling law for fidality decay in quantum computations of complex
dynamics in presence of internal static imperfections in a gquantum computer. Based on
random matrix theory we show that this decay is governed by an exponential decay with
Fermi's golden rule decay rate for time scales smaller than the Heisenberg time end a gaussian
decay for larger time scales. The thearetical predictions are tested and confirmed in extensive
numerical simulations of & quantum algorithm for quantum chacs in the dynamical tent map
with up to 18 qubits and with ten orders of magnitude for the relevant sealed fidelity interwal.

Recently a great deal of attention has been attracted 22 to the problem of quantum com-
putation. A quantum computer is viewed as a system of qubits. Each qubit can be considered
a5 & two-level quantum system, e.g. one-half spin in a magnetic field. For ny qubits the whole
systemn is characterized by a finite-dimensional Hilbert space with N = 2™ guantum states. It
has been shown that all unitary operations in this space can be realized with certain elementary
quantum gates** acting on one or two particular qubits. A quantum computation can be much
faster than a classical one due the massive parallslism of many-body quantum mechanics since
any step of a quantum evolution is a multiplication of a vector by a unitary matrix. There
are computational algorithms that can be represented as & sequence of such elementary pates
involving only a pelynomial number (in ng) of gates such as the Shor algerithm ® for factoriza-
tion of integers with ng digits, the Grover algorithm ® for a search in an unstructured database
and the quantum Fourier transform ¥ (QFT), With the help of QFT the quantum evolution
of certain many-body quantum systems can be performed in a polynomial number of gates ™8,
Other examples can be found in the evolution of quantum dynamical systems which are chaotic
in the classical limit ®1%. Such systems are described by chaotic quantum maps and include
the quantum baker map !, the quantum kicked rotator 12, the quantum saw-tooth map ¥ and
the quantum double-well map 4. We furthermore mention the gquantum simulation of the An-
derson metal-insulator transition '® and the study of classical chaotic dynamics where quantum
computation provides a more effecient access to some new information, 1517

For potential experimental implementations of a quantum computer one has to take into ac-
count errors caused either by decoherence induced by unavoidable couplings to external world 12
or by internal static imperfections inzide the quantum computer. These static imperfections
penerate residual couplings between qubits and variation of energy level-spacing from one qubit
to another, Such imperfections lead to emergence of many-body quantum chacs in a quantum
computer hardware if a coupling strength exceeds a quantum chaos threshold. ' To analyze the
effects of errors one may consider the fidelity f defined as f(t) = | < ue(t)|(t) = |* where
[s{t) = is the quantum state at time t computed with perfect (or ideal) gates, while [ (t) = is
the guantum state at time t computed with errors, If the fidelity is close to unity then a quantum
computation with imperfections is close to the ideal one while if f is significantly smaller than
1 then the computation gives, generally, wrong results. The fdelity decay for generic quantum
evolution with different models of dynamical evolution and perturbations has attracted & con-
siderable interest over the last vears (see e.g. [20,21] and references therein). In this work we
consider the Rdelity decay in quantum computation due to static imperfections & case previously
studied only in a few works, '3222 We present analytical results of a random matrix approach
valid for a regime of complex quantum dynamics and a numerical study of a particular quantum
map with 18 qubits.
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We consider a kicked rotator whose classical dynamics is governed by the map,
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Here the kick-potential V{#) is composed of two parabolic pieces. The parameter k determines
the kick strength and T gives the rotation of phase between kicks. This map is similar in structure
to the Chirikov standard map. 2* The derivative V'(#) has a tent form and is continuous but
not differentiable at § = 0 and § = #. This is an intermediate case between the standard map®
with a perfectly smooth kick-potential and the saw-tooth map!? with a non-continuous potential
derivative. The dynamics of the classical tent map (1) depends only on one dimensionless
parameter K = kT, its properties have been studied in [25,26]. For small values of K the
dynamics is governed by a KAM-scenario with the Kolmogorov-Arnold-Moser (KAM) invariant
curves and a stable island at # = 37/2, p = 0 and a chaotic layer around separatrix starting
from the unstable fixed point (saddle) at # = 7/2, p = 0. At K = 4/3, the last invariant curve
is destroved and one observes a transition to global chaos with a mixed phase space containing
big regions with regular dynamics. 252! In the following, we are particularly interested in a
typical ease K = 1.7, which exhibits global chaos with quite large stable islands in phase space
related to the main and secondary resonances.
The quantized version of the classical map (1) is given by the unitary quantum map,

ho(t + 1)> = U |p(t)> = e 7772V yp(e)> . (2)

where the |1(t)> is the quantum state at the (integer) time ¢ and the variables § and & are
operators with the commutator [f,6] = —i. They have integer eigenvalues p for p and real
sigenvalues @ in the interval [0,2x| for . Furthermore & = 1 and the quasiclassical limit
correspond to T — 0, k — oo with K = kT = const. For the quantum dynamics we concentrate
our studies on the case K = kT = 1.7 and T = 2x/N that corresponds to the evolution on one
classical cell (see Fig. 1) with N quantum states.

The quantum map (2) can be efficiently simulated on a quantum computer. For this we
represent the quantum state [J(¢)> by a quantum register with ny qubits with a total number
of N = 2™ different basis states. The eigenstates of [p> of § are identified with the quantum
register states |ap>gla1>) ... [an,-1>n,—1 with p = E?iaiaj? e{0, ..., N—1}and aj £
{0, 1}. Here [0 and |1>; correspond to the two basis states of the 7—th qubit.

For quantum computations one typically assumes that the quantum computer can be con-
structed with quantum gates that manipulate at most two qubits such as the simple phase-shift,
controlled phase-shift, controlled-NGT and the Hadamar gate. 44 Without entering into the
details we mention that it is pessihfeﬂ to express the unitary operator [7 in the quantum map
(2) in terms of ng = %ng - %21“-? + 4 elementary quantum gates, For a moderate number of
qubits {ny = 10 ~ 20) it is possible to test the quantum algorithm on a classical computer. 2!
For example in the first and third panel of Fig. 1, we show the density plot of the Husimi
function of a quantum state which was obtained by such a quantum computation of the quan-
tum map (2} after a large number of iterations. As an initial state we have used a minimal
coherent wave packet placed in the chactic or integrable component [near the unstable fix point
at § = w/2, p = (V for the first panel and in the main stable island at § = 5.35, p = 0 for the
third panel). In both cases the classical behavior iz well reproduced, i. e. in the first case the
chaotic region is ergodically filled up while for the regular initial condition the wave packet stays
close to the classical invariant curve.

We have investigated the stability of the quantum algorithm for the tent map with respect
to errors. For this we note that quantum algorithm of the tent map?®! is given by the expression
U = [I;4, Uy where U; are the unitary operators associated to the elementary gates and n, is
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Figure 1: Density plots of the Husimi functions of the quantum state |¢{¢)> with an initial state [y(0)> chosen
as & minimal coherent (gaussian) wave packet located at the positions of the red/grey circles. The first amd
second panels (from left Lo right) correspond to the iteration number ¢ = 5625, qubit number ny = 16 and to a
chaotic initial condition closely located to the saddle at # = # /2, p = 0. The third and fourth panels correspond
to ¢t = 22783, n; = 14 and to a regular initial condition at & = 5.35, p = 0. The second and fourth panels are
obtained from a quantum computation with static errors with & = 7. 1077, fidelity f = 0.9388 (second panel) and
g =05.10"7, fidelity f = 0.5 (fourth panel). The density is minimal for blue/black and maximal for red/white.
The dashed |||ue in the third panel correponds to the invariant curve to which the classical trajectory s restricted.

the number of these gates. The errors are modelized by the replacement U; — U ™ where

4Hj is a hermitian operator representing a perturbation. There are two models of imperfections.
The first one represents random noise errors in quantum gates Auctuating in time from one gate
to another with 6H; ~ £ random and different at each j and ¢. In this case the fidelity F|E'l."'ﬂ.].
is clearly exponential *' for very long time scales, f(t) = exp(—t/t,) with t, = 1/(0.005¢* rr,.lj
The second model describes only static :uup{ rfections. 143215 I this case we chose §H; = &H

independant of j and t with : §H = }:"*ﬁ & .-:rt ) 4 - 3 pes "3 1.":'fr_r+:J where -7} ! are the Pauli
matrices acting on the jth qubit and &;, J; € [-/3¢, ﬁs] are random coefficients which are
drawn only once at the beginning and kept fixed during the simulation. In the second and fourth
pangl of Fig. 1 we show the Husimi functions of two quantum states obtained by a guantum
computation with such static imperfections

We now introduce the effective operator 6 Huy for the full static error at one complete iter-
ation with the quantum map (2) by: ”n9 (U, ey = U edHen | As5 it was shown by Prosen et

al.? in the limit (1 - f) < 1 one can express the fide |.J|'.I‘|- in terms of a correlation function, 22!
P t-1
f':ﬂ"*l————z_(ft—?'}{"{ } v C(r) =t U7 dHal 6 Hur))g - {3)

I:

Here {{---))g denotes the quantum expectation value and the time scale ¢, = 1/{{§H."))g
ensures the normalisation C(0) = 1 of the correlation function.

For an initial state in the chaotic region we may assume that the unitary gquantum map
U can be modeled by a random matrix drawn from Dyson's circular orthogonal en
Performing the l}rlSE‘[]lblE average with respect to Uf, we obtain T,h{' following scaling expression
for the Adelity: 2

N [t iz 2 e [ 2 \
—I:|I:|f{t]:luﬁi—x($) v X(s)ms+28 = flt)mexp|-x--—|] 1)
- : T LelH

where N corresponds to the number of “chaoctic” states nx!r.; the dimension of the random
matrix 7. In (4) we have replaced N = oty where o is the 1 of the chaotic part of phase
gpace (o = 0.65 for K = 1.7T) This result gives a clear t
decay at £ = ty if £, <€ ty. Il L. % ty the exponential re
the gaussian decay. We have numerically verified this scaling behavior for ny between 6 and 18,

n from exponential to gaussian

barely visible and dominated by
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for £ between 107 and 5-10~7 and for 10 orders of magnitude of the rescaled fdelity (see Fig. 2).
We have performed a scaling analysis of the fidelity for the chaotic and regular initial condition.

] ]

1 b
tfty

Figure 2: Left: scaling representation of the fidelity f for the initial condition in the chastic region. The upper
scaling eurve shows: — In( f)f./ty as a function of {8y with the two theoretical thme scales ¢, = {e'nn}) ™" and
i = 2%. The full line in the upper curve corresponds ta the scaling curve (4). The lower scaling curva (shifted
down by a factor 0.01) correspond to — In{ )i /&y versus /8y with the times scales f. and fx chtained from the
fit y = 2+2* (with y = — In{ f)i./fu and = = /i) for each value of n, and £, Full line &y = 2+ 2% Middle: iy
versus ¢y for the chaotic initial condition for 8 < ng £ 18, ¢ = 5. 1077 [data points (a)] and ¢ = 1075 [data points
(b)]. The data points (¢} are obtained from an ensemble average over 200 realizations of static imperfections
for each value of ng = 6, 8, 10, 12, 14 and £ = 5- 1077 The full line correspands to the theoretical expression
fn = (o/2)ty. Right: Iy versus ty for the initial condition in the Integrable region.

In particular, we have determined for each value of n; and £ two time scales i, and fy by a
numerical least square fit of In(f(t)) = —t/t. — £*/(f.8y) (with appropriate weight factors. 21
We find that for both types of initial conditions this fit works quite well and that the first time
scale £: coincides quite well with its theoretical expression: ?! ¢, = ll."l:r:*ﬂqng}. The situation
is different for the second time scale iy which coincides with its theoretical value (o/2) ty only
for the chaotic initial condition (see middle and right part of Fig. 2). This ohservation is in
agreement with a natural expectation that random matrix theory iz not applicable to regular
dynamics.

The scaling result (4) provides a universal description of the fidelity decay in quantum
algorithms simulating complex dynamics on a realistic quantum computer with static imper-
fections. This decay determines the time scale t; of reliable quantum computation [defined by
fity) = 0.9] according to t7 = £./10 for ty > ¢, [corresponding to € > €4 = 27"/2/(n, MAg)] or
ty e 0.2ty for ty < t. (£ < £.). Therefore the total number of gates which can be performed
with fidelity f > 0.9 is given by N, = tyn, = 1/(10e?nyn,) (for & > £4) or N, = 2"/2(5¢, /m17)
{for & < £44). The first éase compares to the behavior for random errars 21 Ny = 5/ with the
same dependence on £ while the second case, which may be dominant for 10-15 qubits, is com-
pletely different. This difference should play an important role for the quantum error correction
codes. &8

This work was supported in part by the EC IST-FET project EDIQIP and the NSA and
ARDA under ARO contract No. DAAD19-01-1-0553 and by the French goverment grant ACI
Nanescierces-Nanotechnologies LOGIQUANT. We thank CalMiP at Toulouse and IDRIS at
Orsay for access to their supercomputers.
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