
PRL 95, 164101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 OCTOBER 2005
Dissipative Quantum Chaos: Transition from Wave Packet Collapse to Explosion
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Using the quantum trajectories approach, we study the quantum dynamics of a dissipative chaotic
system described by the Zaslavsky map. For strong dissipation the quantum wave function in the phase
space collapses onto a compact packet which follows classical chaotic dynamics and whose area is
proportional to the Planck constant. At weak dissipation the exponential instability of quantum dynamics
on the Ehrenfest time scale dominates and leads to wave packet explosion. The transition from collapse to
explosion takes place when the dissipation time scale exceeds the Ehrenfest time. For integrable nonlinear
dynamics the explosion practically disappears leaving place to collapse.
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Technological progress leads to the investigation of
physical phenomena at smaller and smaller scales, where
both quantum and dissipative effects play a very important
role. At present, general theoretical concepts for the de-
scription of quantum dissipative systems are well devel-
oped and established [1]. A major tool is the master
equation that governs the evolution of the density matrix
[2]. For the simplest dynamics this equation can be solved
exactly. However, for complex nonlinear systems an ana-
lytical solution is absent and even numerical simulations
become very difficult. Indeed, for a system whose Hilbert
space has dimension N, one has to store and evolve a
density matrix of size N � N. In spite of these limitations,
numerical simulations of the master equation allowed us to
perform the first studies of the quantum dynamics of
classically chaotic dissipative systems showing a quantum
strange attractor [3].

Quantum trajectories are a very convenient tool to simu-
late dissipative systems [4,5]. Instead of direct solution of
the master equation, quantum trajectories allow us to store
only a stochastically evolving state vector of size N. By
averaging over many runs we get the same probabilities
(within statistical errors) as the ones obtained through the
density matrix directly. Besides their practical conve-
nience, quantum trajectories also provide a good illustra-
tion of individual experimental runs [6]. Indeed, modern
experiments often enable us to address a single quantum
system evolving under the unavoidable influence of the
environment.

It is known that for linear systems dissipation leads to
wave packet localization [7]. Numerical results as well as
theoretical arguments indicated that localization can occur
also in nonlinear systems [8,9]. On the other side, in
absence of dissipation it is known that the instability of
classical dynamics leads to exponentially fast spreading of
the quantum wave packet on the logarithmically short
Ehrenfest time scale tE � j ln@j=� [10,11]. Here � denotes
the Lyapunov exponent that gives the rate of exponential
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instability of classical chaotic motion, and @ is the dimen-
sionless effective Planck constant of the system. In this
Letter we show that for the dissipative quantum chaos there
exist two regimes: one with the wave packet explosion
(delocalization) induced by chaotic dynamics and another
with the wave packet collapse (localization) caused by
dissipation. We argue that the transition (or crossover)
from collapse to explosion takes place when the dissipation
time t� � 1=� becomes larger than the Ehrenfest time tE
(� is the dissipation rate). Even if the dissipative quantum
chaos has recently attracted significant interest [12] this
transition has not yet been discussed. This general physical
phenomenon is illustrated on an example of the well known
Zaslavsky map [13], which has been extensively used to
describe a wide range of nonlinear dissipative systems
[13,14].

We investigate the quantum evolution of a kicked system
subjected to a dissipative friction force. Assuming the
Markov approximation, we can write a master equation
in the Lindblad form [2]:

_̂� � �i�Ĥ; �̂� �
1
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X
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L̂��̂L̂
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where �̂ is the density operator, f; g denotes the anticom-
mutator, L̂� are the Lindblad operators, which model the
effects of the environment, and Ĥ is the Hamiltonian of the
system. This formulation of open quantum systems is very
general in nature [15] and, for Markovian systems, equiva-
lent to other approaches such as the influence functional
method [1] or the Kraus operators’ representation of super-
operators [16]. We consider a periodically kicked system,
described by the Hamiltonian

Ĥ � p̂2=2� k cosx̂
X�1

m��1

����m	; (2)

where the operators x̂ and p̂ � @n̂ � �i@d=dx come
from quantizing the classical variables x 2 �0; 2�� and
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FIG. 1 (color online). Top: Husimi functions in phase space for
a single quantum trajectory taken after t � 300 kicks, at K � 7,
@ � 0:012, � � 0:5 (left), and � � 0:01 (right). Here x (hori-
zontal axis) and p (vertical axis) vary in the intervals: 0 
 x <
2�, �25 
 p 
 25 (left), and �100 
 p 
 50 (right); the
width of the p interval is the same in both cases for comparison
purposes. The initial Gaussian wave packet is located at
�hxi; hpi	 � �5�=4; 0	. The color is proportional to density:
blue for zero and red for maximum. Bottom: quantum
Poincaré section (left), obtained from average quantum x; p
values for the case of top left panel and its classical counterpart
(right); here 0 
 x < 2� and �15 
 p 
 15.
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p 2 ��1;�1	. This Hamiltonian corresponds to the
kicked rotator [17], a paradigmatic model in the fields of
nonlinear dynamics and quantum chaos. The model is also
of interest to experimental investigations with cold atoms
in optical lattices [18]. We assume that dissipation is
described by the lowering operators

L̂1 � g
X

n

������������
n� 1
p

jnihn� 1j;

L̂2 � g
X

n

������������
n� 1
p

j � nih�n� 1j;
(3)

with n � 0; 1; . . . eigenvalues of the operator n̂. Within
the weak coupling and Markov approximations, these
Lindblad operators give the dissipation induced by an
interaction between the system and a bosonic bath at
zero temperature. As an example, we mention the quantum
optical master equation corresponding to the atomic decay
by spontaneous emission of a photon. In the classical limit
the evolution is described by the Zaslavsky map

pt�1 � �1� �	pt � K sinxt; xt�1 � xt � pt�1; (4)

where the discrete time t is measured in number of kicks
and 1� � � exp��g2	. This map describes a friction
force proportional to velocity. We have 0 
 � 
 1; the
limiting cases � � 0 and � � 1 correspond to
Hamiltonian evolution and overdamped case, respectively.
The classical limit corresponds to a small effective Planck
constant @! 0, K � @k � const, and p � @n.

The first two terms of Eq. (1) can be regarded as the
evolution governed by an effective non-Hermitian Hamil-
tonian, Ĥeff � Ĥs � iŴ, with Ŵ � �1=2

P
�L̂
y
�L̂�. In

turn, the last term is responsible for the so-called quantum
jumps. Taking an initial state j���0	i, the jump probabil-
ities dp� in an infinitesimal time d� are defined by dp� �
h���0	jL̂

y
�L̂�j���0	id�, and the new states after the jumps

by j��i � L̂�j���0	i=kL�j���0	ik. With probability
dp� a jump occurs and the system is left in the state
j��i. With probability 1�

P
�dp� there are no jumps

and the system evolves according to the effective
Hamiltonian Ĥeff . In this case we end up with the state
j�0i � �1� iHeffdt=@	j��t0	i=

������������������������
1�

P
kdpk

p
. The nor-

malization is also included in this case since the evolution
governed by Ĥeff is non-Hermitian. To simulate numeri-
cally the described jump picture, we use the so-called
Monte Carlo wave function approach [6]. The changing
state of a single open quantum system is represented
directly by a stochastically evolving quantum wave func-
tion, as for a single run of a laboratory experiment. We say
that a single evolution is a quantum trajectory.

We focus first on the chaotic regime for the kicked
rotator dynamics. Therefore, we consider K � 7, corre-
sponding to a positive Lyapunov exponent � � ln�K=2	 �
1:25. The localization-delocalization transition is clearly
illustrated in the two top panels of Fig. 1. They show the
Husimi function [19] corresponding to a single quan-
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tum trajectory evolution, computed after t � 300 kicks.
In both cases the initial wave packet is a Gaussian state
with equal uncertainties �x � �p �

��������
@=2

p
. We can see

that for strong dissipation (� � 0:5) the wave function of a
single quantum trajectory at t � 300 is localized in the
phase space (top left panel in Fig. 1). In contrast, the case
of weak dissipation (� � 0:01, top right) is characterized
by wave packet delocalization. Since for strong dissipation
the wave packet is localized in phase space, it makes sense
to draw a quantum Poincaré section by printing the expec-
tation values hxi and hpi at each map step. The quantum
Poincaré section is shown in Fig. 1 (bottom left) and is
characterized by the appearance of a strange attractor. A
very similar strange attractor is obtained also from the
classical Poincaré section corresponding to the Zaslavsky
map (4) (see Fig. 1, bottom right). We also note that the
Husimi function obtained in the case of weak dissipation
exhibits a spreading of the quantum wave packet over the
strange attractor. Also in the strongly dissipative regime
the localized wave packet is stretched along the direction
of the attractor.

A further confirmation of the good agreement between
the classical and quantum dissipative evolutions is ob-
tained by computing the function f � hpit�1 � �1� �	�
hpit [20]. The classical map (4) gives f�x	 � K sinx. The
comparison between f�hxi	 and the function f�x	, shown in
Fig. 2, indicates that the Zaslavsky map provides a good
description of the quantum wave packet motion. Indeed,
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FIG. 2 (color online). Comparison between f�hxi	 computed
from the quantum dynamics (circles) and the kick function
f�x	 � K sinx (solid curve). Parameter values and initial con-
ditions are as in Fig. 1 (left top and bottom panels). Error bars
represent the quantum uncertainty in f�hxi	.
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FIG. 3 (color online). Left: Dispersion 	 (fluctuating curves)
and cumulative average �	 (smooth curves) as a function of the
number of kicks t, for the cases considered in Fig. 1, with � �
0:01 (dashed curves) and � � 0:5 (full curves). Right: �	 versus
time t at � � 0:5, starting from an initial Gaussian wave packet
(full curve, also shown in the left panel) and a coordinate
eigenstate jxi � jx0i, with x0 � � (dashed curve).
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FIG. 4. Average dispersion �	 as a function of �, for K � 7,
@ � 0:33 (circles), 0.11 (squares), 0.036 (diamonds), and 0.012
(triangles). Stars show the same quantity for the integrable case
K � 0:7, at @ � 0:012. Inset: scaled dispersion �	s � �	=

���
@
p

versus � (same symbols).

PRL 95, 164101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 OCTOBER 2005
the points f�hxi	 are concentrated around the curve f�x	,
with dispersion proportional to

���
@
p

(see Fig. 4 below). Thus
a quantum trajectory exhibits the same important features
of a classical trajectory, including the exponential insta-
bility, with rate given by the classical Lyapunov exponent.
A significant difference between quantum and classical
trajectories is the presence of quantum noise [21].
Therefore, a more precise identification can be done be-
tween quantum evolution and noisy classical evolution, the
noise amplitude being �x� �p /

���
@
p

. It is interesting to
note that the chaotic behavior of classical systems can be
reproduced also by nondissipative continuously measured
quantum systems [22–24].

The wave packet dispersion is measured by 	t ��������������������������������
��x	2t � ��p	2t

p
. This quantity is evaluated, for weak

and strong dissipation, in Fig. 3 (left panel), using the
same parameter values and initial conditions as in Fig. 1.
In both cases there are strong fluctuations, which we
smooth down by computing the cumulative average �	t �
1
t

Pt
j�1 	j. The convergence of the time averaged quantity

�	t to a limiting value is clear. It is also evident that the
wave packet spreading is much stronger at weak than at
strong dissipation. We stress that the same limiting value of
the average dispersion �	 is obtained for any quantum
trajectory, independently of the initial condition. This is
demonstrated in the right panel of Fig. 3, where we com-
pare �	t for two completely different initial conditions: a
Gaussian wave packet and an eigenstate of the operator x̂,
that is, jxi � jx0i. In the latter case there is a complete
delocalization along p (limited only by the size of the basis
considered in our numerical simulations) and dissipation
leads to the collapse of the wave packet, which eventually
becomes localized in phase space.
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The average dispersion �	 of the wave packet as a
function on the dissipation strength � is shown in Fig. 4,
for a few values of the effective Planck constant @, with
0:012 
 @ 
 0:33. The localization-delocalization transi-
tion can be seen for all @ values. In the Fig. 4 inset we
consider the scaled dispersion �	s � �	=

���
@
p

. At strong dis-
sipation all curves collapse, while at weak dissipation the
scaling �	 /

���
@
p

is not fulfilled. Our numerical results can
be explained as follows. Because of the exponential insta-
bility of chaotic dynamics the wave packet spreads expo-
nentially, and for times shorter than the Ehrenfest time we
have 	t �

���
@
p

exp��t	. The dissipation localizes the wave
packet on a time scale t� of the order of 1=�. Hence, for
1=�
 tE, we obtain �	�

���
@
p

exp��=�	 
 1. In contrast,
for 1=� > tE the chaotic wave packet explosion dominates
over dissipation, and we have complete delocalization over
1-3
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the angle variable. In addition, in this case, the wave packet
spreads algebraically due to diffusion for t > tE. At t� tE
we have 	t �

�������������
D�K	t

p
, D�K	 � K2=2 being the diffusion

rate. This regime continues up to the dissipation time 1=�,
so that �	�

�����������������
D�K	=�

p
. As a result, the transition from

collapse to explosion, which we call the Ehrenfest explo-
sion, takes place at

tE � j ln@j=�� 1=�: (5)

Our numerical data at moderate values of @> 0:01 indicate
a smooth transition (crossover). However, we cannot ex-
clude from our data that in the limit @! 0 the transition
becomes sharp. Since the dependence on @ is only loga-
rithmic, it is difficult to check numerically the above
relation. However, it is compatible with our data obtained
for @> 0:01. First of all, in the localized regime �tE > 1
the scaling law �	 /

���
@
p

is satisfied. Moreover, it is satisfied
down to smaller and smaller � values when @ is reduced.
Therefore, even for infinitesimal dissipation strengths the
quantum wave packet is eventually localized when @! 0:
we have lim@!0 �	 � 0. In contrast, in the Hamiltonian case
(� � 0) lim@!0 �	 � 1. This result underlines the impor-
tance of a (dissipative) environment in driving the quantum
to classical transition: only for open quantum systems is
the classical concept of trajectory meaningful for arbi-
trarily long times. On the contrary, for Hamiltonian sys-
tems a description based on wave packet trajectories is
possible only up t < tE.

We emphasize the role played by chaotic motion. For
this purpose, in Fig. 4 we also show �	 as a function of � in
the integrable regime at K � 0:7, for @ � 0:012. In this
case the wave packet dispersion is much smaller than in the
chaotic regime: the Ehrenfest time scale is algebraic and
not logarithmic in @. Thus, a much weaker dissipation is
sufficient to localize the wave function in the case of
integrable dynamics. This can be clearly seen from our
numerical data shown in Fig. 4.

It is interesting to discuss the interplay between
Ehrenfest explosion and dynamical localization. The latter
is due to quantum interference that leads to localization in
momentum p after a localization time scale t� � �K=@	2

[17] (note that tE < t�). When the dissipation time t� is
shorter than t�, then dynamical localization is eliminated
[3], independently of the relation between t� and tE. On the
other hand, for tE < t� < t�, dynamical localization can be
observed in the regime of Ehrenfest explosion.

Finally, we point out that the transition described here
could be observed by means of Bose-Einstein condensates
in optical lattices. A first experimental implementation of
the kicked rotator model using a Bose-Einstein condensate
has been recently reported [25]. Dissipative cooling tech-
niques are possible in these systems. In particular, we point
out that the Doppler cooling can be modeled by Eq. (1)
[26]. Moreover, images of atomic clouds can be taken, thus
measuring their dispersion. Also the measured condensate
positions should give a clean kick function (as in Fig. 2) in
16410
the case of collapse and random scattered points in the case
of explosion. Such experiments would give important in-
formation not only on the interplay between chaos and
dissipation but also on the stability of the condensate
[27] under the joint effects of chaotic dynamics and
dissipation.
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