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Abstract. We show, in a framework of a classical nonequilibrium model, that rotational angles of electrons
moving in two dimensions (2D) in a perpendicular magnetic field can be synchronized by an external
microwave field whose frequency is close to the Larmor frequency. The synchronization eliminates collisions
between electrons and thus creates a regime with zero diffusion corresponding to the zero-resistance states
observed in experiments with high mobility 2D electron gas (2DEG). For long range Coulomb interactions
electrons form a rotating hexagonal Wigner crystal. Possible relevance of this effect of synchronization-
induced self-assembly for planetary rings is discussed.

PACS. 73.40.-c Electronic transport in interface structures – 05.45.Xt Synchronization; coupled oscillators
– 05.20.-y Classical statistical mechanics

The discovery of microwave-induced resistance oscillations
(MIRO) [1] and of striking zero-resistance states (ZRS) of
a 2DEG in a magnetic field [2,3] attracted a great inter-
est of the community. A variety of theoretical explanations
has been pushed forward to explain the appearance of ZRS
(see Refs. in [4]). Many of these approaches provide cer-
tain MIRO which at large microwave power even produce
a current inversion. Although there are arguments in the
literature that ZRS are created as a result of some addi-
tional instabilities which may compensate currents to zero,
the understanding of underlying mechanisms is missing.
Hence, a physical origin of ZRS still remains a puzzling,
challenging problem.

In this work we suggest a generic classical physi-
cal mechanism which leads to a suppression of electron-
electron collisions and creates ZRS. Its main element
is the synchronization phenomenon which has abundant
manifestations in science, nature, engineering and social
life [5,6]. A simple picture of the effect is the following: a
microwave field excites electrons and switches on dissipa-
tion processes in energy, which compensate microwave-
induced energy growth, thus creating a nonequilibrium
steady-state distribution. Due to this dissipation, when
the microwave frequency ω is close to a resonance with the
Larmor frequency ωB, the synchronization of the phases of
Larmor rotations of electrons with the phase of microwave
field is established. In this way all electrons start to os-
cillate coherently: each of them is locked by the external
force and therefore they are in phase with each other. This
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coherent dynamics is typical for synchronization in ensem-
bles of nonequilibrium oscillators; quite understood phys-
ical examples are laser arrays and networks of Josephson
junctions, but one observes such a synchronization also
in non-physical systems like populations of blinking fire-
flies [5,6], pedestrians on a bridge [7], and applauding au-
dience [8]. But compared to other oscillators, the syn-
chronization of moving electrons brings a new element
not presented in the common synchronization studies: due
to synchrony the collisions between electrons disappear.
This leads to a drastic drop of the collision-induced diffu-
sion constant D and to creation of ZRS. We note that
the diffusion D is proportional to experimentally mea-
sured resistance Rxx since Rxy � Rxx [2,3] and hence,
D ∝ σxx ∝ Rxx/R2

xy. Here Rxx, Rxy are resistance tensor
components along and perpendicular to an external weak
static electric field applied along x-axis. Also σxx is a con-
ductivity tensor component along x-axis (the conductiv-
ity tensor is given by the inversion of resistivity tensor). A
simple image of such synchronized electrons is given by an
ensemble of particles randomly distributed on a 2D plane,
which rotates as a whole – because all particles rotate in
phase – on a Larmor circle of radius rB = vF /ωB with
frequency ωB. Indeed, in such a rotating ensemble parti-
cles never collide, and we demonstrate below that this can
happen with 2D electrons synchronized with a microwave
field phase in a magnetic field B. The synchronization
origin of ZRS allows one also to understand qualitatively
why ZRS exist only in high mobility samples. Indeed, it
is well known that synchronization remains robust to a
weak noise but disappears at strong one [5], hence a weak
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impurity scattering will not destroy ZRS. It is also impor-
tant to note that the above picture is based on a classical
nonequilibrium dynamics. Such a classical approach is jus-
tified since in the experiments [2,3] the Landau quantum
level is rather large nL ∼ 100. Thus, we start our analysis
with a classical mechanics treatment and will turn to a
discussion of quantum effects later.

To justify the synchronization picture of ZRS de-
scribed above we perform extensive numerical simulations
using two main models of classical electrons (particles)
with short range and Coulomb interactions. In the sim-
plest setup, we model particle dynamics with short range
interactions in magnetic and microwave fields with the
Nosè-Hoover (NH) thermostat (see e.g. [9,10]) combined
with interactions treated in the frame of the mesoscopic
multi-particle collision model (MMPCM) [11]. The NH
thermostat produces an effective friction γ which keeps
the average kinetic energy 〈p2/2m〉 equal to a given ther-
mostat temperature T and equilibrates heating induced
by a microwave field fac = f cosωt. At the same time col-
lisions in the MMPCM drive a system to an ergodic state
with the equilibrium Maxwell distribution at a given tem-
perature. In this way the particle dynamics is described
by the equations:

q̇i = pi/m , ṗi = Fi + fLi + fac − γp , (1)

γ̇ = [〈p2〉/(2mT ) − 1]/τ2 (2)

where qi,pi are the coordinate and the momentum of par-
ticle i, fLi = e[pi×B]/mc is the Lorentz force, Fi is an
effective force produced by particles collisions, τ is the
relaxation time in the NH thermostat and 〈p2〉 means av-
erage over all N particles. We usually consider the case
of a linearly polarized microwave field fac since numeri-
cal data give no significant dependence on polarization.
In numerical simulations N particles are placed randomly
on a square cell L × L which is periodically continued
all over the plane. The collisions are treated in the MM-
PCM formalism, namely the main cell is divided into Nc

small collision cells in which after a time step ∆t the ve-
locities of particles are reshuffled randomly but keeping
conserved the momentum and energy of particles in the
collision cell [11]. In absence of microwave radiation the
system evolves to a usual thermal equilibrium with the
Maxwell distribution. The average rate D of particles dif-
fusion in space is computed via their displacements after
a large time interval t. In presence of the microwave field
the diffusion rate D is drastically changed in the vicinity
of the resonance ωB ≈ ω as it is shown in Figure 1 for
typical values of parameters.

Figure 1 clearly shows the existence of a synchroniza-
tion Arnold tongue inside which the diffusion drops to
zero (here as well as in numerical simulations below, its
residual numerical value D/D0 � 10−8 is essentially de-
termined by roundoff errors and fit accuracy and is non
distinguishable from zero). According to Figure 1 the syn-
chronization regime and the ZRS exist inside the detuning
range

|ωB − ω| ≤ sf/(mvT ) , (3)
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Fig. 1. (Color online) Color density plot of the normal-
ized diffusion rate D/D0 as a function of frequency detun-
ing (ωB − ω)/ω and rescaled microwave field strength ν/ω

with ν = f/mvT where vT =
√

2T/m is the thermal veloc-
ity and D0 is the diffusion rate in absence of microwave at
ωB = ω. The system parameters are: N = 1000 Nc = 4 × 104,
ω∆t = 0.2, ωτ = 10, ωt = 500, L/rB = 10, D0/Dc = 0.12
(with Dc = v2

T /ω, ρ = N/L2 and rB taken at ωB = ω, thus
a number of particles inside a Larmor circle is NB = πr2

Bρ =
πρv2

T /ω2 = 10π, ω = const). Color intensity is proportional to
D/D0 (black for maximum D/D0 ≈ 1.2 and white for mini-
mum D/D0 = 0).

where vT =
√

2T/m and a numerical constant s ≈ 0.7.
We note that s is not sensitive to the relaxation time τ
which has been varied by an order of magnitude. In fact
the domain of ZRS given by (3) is very similar to a usual
synchronization domain for one particle [5] which is also
not sensitive to the dissipation rate. The origin of this
similarity is rather clear: the synchronization with the
microwave field phase eliminates collisions between par-
ticles, so that they move independently and hence the
Arnold tongue becomes the same as for the synchroniza-
tion of one particle by the periodic forcing. The fact that
in the ZRS the collisions are eliminated, is confirmed by
direct counting of the number of collisions in the numerical
code and by computation of the synchronization parame-
ter S =

∑
i<j(vi−vj)2/(N2v2

T /2) which in the ZRS drops
down to S ∼ 10−10 being determined by roundoff errors.
This means that all particles have the Larmor phase syn-
chronized with the microwave field phase while their po-
sitions in the coordinate space are disordered. Outside of
the ZRS particles continue to diffuse with a rate D which
is comparable with the unperturbed rate D0. At small val-
ues of Nc and ∆t when the collision rate becomes rather
large and D0 ∼ Dc = v2

T /ω ≈ vT rB, the ZRS regime is
destroyed. Another model of collisions, in which the ve-
locities of colliding particles are changed randomly in a
bounded relatively small scattering angle, gives essentially
the same result (3) for the ZRS.

To check the existence of the ZRS in the case of long
range Coulomb interactions we use the molecular dy-
namics (MD) simulations of a classical two-dimensional
electron liquid as described in [12]. The results obtained
in [12] show that such an approach correctly describes
plasmon modes in presence of a magnetic field even when
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Fig. 2. (Color online) Dependence of electron square dis-
placement R2, rescaled by electron density ρ, on the rescaled
time ωt. Here the Larmor frequency is ωB = ω at microwave
field strength f = 0 (red top curve); f/(mvF ω) = 0.059
(fa/EF = 0.02) for ωB = ω (blue bottom curve), ωB = 0.875ω
(second from top black dashed curve), and ωB = ω with im-
purity scattering mean free path li = 96rB (second from bot-
tom green curve). Total number of electrons is N = 100 and
NB = πρv2

F /ω2 = 34.7. The linear fit gives the diffusion rates
D/Dc = 0.089, 0.068, 0.0040, 9 × 10−6 with Dc = v2

F /ω (re-
spectively for curves from top to bottom ordered at ωt = 400).

the Coulomb energy EC = e2/a is large compared to
classical temperature T . Here, a = 1/

√
πρ is an aver-

age distance between electrons determined by the electron
density ρ. We ensured that our numerical code with the
Ewald resummation technique reproduces correctly the re-
sults presented in [12]. To equilibrate the heating induced
by the microwave field we introduce in equation (1) an
energy-dependent dissipation with γ = γ0(E − EF )/EF

for E = p2/2m > EF and γ = 0 for E < EF . In such
a way the dynamics remains Hamiltonian for E < EF

while above EF the dissipative processes are switched on
as it is usually the case for 2DEG; thus EF plays a role
of Fermi energy [13]. Usually we use EF /T ≈ 2 but the
obtained results are not sensitive to this ratio. The main
part of simulations is done at an intermediate interaction
strength rs = EC/EF = 0.3 but we ensured that an in-
crease(decrease) of rs by a factor 7(3) does not change
qualitatively the results (samples studied in [2,3] have
rs ≈ 2). Also a variation of the dissipation rate γ0 by
an order of magnitude does not affect significantly the re-
sults and we present data at γ0 ≈ 0.7vF /a. The same is
true for the total number of electrons varied from 20 to
200 at ρ = const, thus we present data at N = 100.

A typical example of the dependence of average elec-
tron square displacement R2 on time is shown in Figure 2.
The introduction of microwave field leads to the synchro-
nization of electron Larmor phases and to a drastic drop
of diffusion rate at ωB = ω, formally by 4 orders of mag-
nitude; the synchronization parameter S drops down to
S ≈ 10−11 in this case that means that collisions are
completely switched off. A shift in the Larmor frequency
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Fig. 3. (Color online) Dependence of rescaled diffusion rate
D/D0 on the rescaled frequency difference (ωB − ω)/ν. Here
ν = f/mvF , D0 is diffusion rate in absence of microwave at
ωB = ω, fa/EF = 0.02 and number of electrons in a Larmor
circle is NB = 2 (stars), 8 (triangles), 34.7 (squares), 138.8
(points) with D0/Dc = 0.054, 0.089, 0.12, 0.14 and D0/vF a =
0.20, 0.35, 0.53, 0.64 respectively. Total number of electrons is
N = 100, L =

√
N/ρ ≈ 17.72 a.

ωB = 0.875 ω destroys synchronization and diffusion D is
restored being close to its unperturbed value D0 at f = 0.
An introduction of a weak noise linked to impurity scatter-
ing with a scattering time ti and mean free path li = vF τi

leads to a finite diffusion rate D which is however much
smaller than D0 until li � rB (see Fig. 2). A decrease
of the mean free path down to li ≈ 10 rB destroys syn-
chronization and restores a diffusion with rate D ≈ D0.
We note that li ≈ 100 rB approximately corresponds to
experimental conditions in [2,3].

The dependence of D on the frequency detuning is
shown in Figure 3. The numerical data for Coulomb inter-
actions between electrons show that the ZRS exist inside
the synchronization window near the resonance ωB ≈ ω
with the width given by equation (3) where vT should be
replaced by vF and s ≈ 0.8. Inside the ZRS the diffusion
drops practically to zero as discussed above. The valid-
ity of the relation (3) shows that the effect is not very
sensitive to the type of interactions between particles.

However, the long range nature of Coulomb interac-
tions significantly modifies the structure of the ZRS con-
figuration: for short range interactions particles are dis-
tributed over the plane in a disordered way, while for the
Coulomb interactions electrons form a hexagonal Wigner
crystal as it is shown in Figure 4. The whole crystal (as
well as each electron) is rotating in the plane with the
frequency ω ≈ ωB and rotation radius rB = vF /ωB. A re-
markable property of the rotating Wigner crystal is that
formally it is formed at a rather small parameter rs ≈ 0.3
while the usual Wigner crystal requires rs values by more
than two orders of magnitude larger [14]. We attribute
this to synchronization of electron Larmor phases with the
microwave field phase, what eliminates collisions between
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Fig. 4. (Color online) Instant image of the rotating Wigner
crystal formed by N = 100 electrons (points) in a periodic cell

with L =
√

N/ρ ≈ 17.72a, ωt = 480, ωB = ω, fa/EF = 0.02
and NB = 34.7 (as in Fig. 2, bottom curve); the circle shows
an orbit of one electron for 240 ≤ ωt ≤ 480; lines are drawn to
adapt an eye showing a hexagonal crystal with a defect.

electrons and suppresses fluctuations, thus yielding an ef-
fectively large rs in the rotating frame and allowing for
a synchronization-induced self-assembly of 2DEG. In the
crystal all Coulomb forces acting on an electron are com-
pensated, thus the size of synchronization domain in fre-
quency range given by equation (3) is essentially the same
as for one-particle synchronization and is practically in-
dependent of dissipation rate γ0 [5]. It is interesting to
note that this result is rather different from the case of
Kuramoto oscillators (see e.g. [5]) where a width of syn-
chronization domain is proportional to a number of cou-
pled oscillators. This difference should be attributed to im-
portance of space dynamics of electrons in our case while
this element is absent in the Kuramoto model. Thus in our
case the interaction between particles in the synchronized
regime is effectively compensated that is not the case for
the Kuramoto model. Also in the ZRS system the dissipa-
tion appears only for electrons exited by a microwave field
above the Fermi energy while in the Kuramoto model a
dissipation is always present.

In conclusion, we have suggested a generic mechanism
which for nonequilibrium classical rotational dynamics of
an ensemble of particles in two dimensions produces syn-
chronization of rotational angles of all particles with the
phase of external driving periodic field. As a result, a ro-
tating Wigner crystal is created and a collisional diffusion
is suppressed by several orders of magnitude. We propose
this effect as a possible mechanism of ZRS in 2DEG ob-
served in [2,3]. In particular, it provides a realistic estima-
tion of the microwave field at which these states appear.
According to eqution (3) the relative size of ZRS plateau
is ∆ω/ω ≈ 2ν/ω ≈ fvF /ωEF that for experiments [2,3]
with EF ∼ 100 K◦, vF ∼ 3×107 cm/s and ω/2π = 35 GHz
gives ∆ω/ω ≈ 0.1 if the field strength acting on an elec-
tron is f/e ≈ 5 V/cm. This relative width is in a rea-
sonable agreement with the experimental results [2,3,15]
where unfortunately an exact value of f is not known. The
synchronization energy scale ES ∼ frB ∼ 10 K and the

crystal Coulomb energy EC ∼ 200 K might be the origin of
large energy scale EA ∼ 10 K in the ZRS activated trans-
port with a temperature dependence Rxx ∝ exp(−EA/T )
inside the ZRS [2,3]. The coherent rotation of electrons in
the crystal creates a rotating current in 2D plane which in
its turn generates a magnetic field BW ∼ µ0evF ρ ∼ 1 G
parallel to 2DEG and rotating in the plane with a fre-
quency close to ω. Another characteristic feature of this
magnetic field BW is that it exists only inside the ZRS
where the synchronization condition (3) is fulfilled. Out-
side of synchronization domain the rotational phases of
electrons are random and thus BW becomes zero. Such a
rotating magnetic field BW is sufficiently strong and it can
be detected experimentally inside the ZRS domain. We
note also, that the collective crystal structure appearing
due to synchronization can suppress the diffusion induced
by impurities.

Although providing a ZRS, the simplified theory above
fails to reproduce several important features observed
in experiments. An important discrepancy from the ex-
periments is that our theory gives synchronization only
near the main resonance ωB/ω ≈ 1 while in the ex-
periments ZRS exist also near integer low resonances j
with ωB/ω ≈ 1/j. In the classical synchronization pic-
ture such resonances (higher-order Arnold tongues) are
possible, however for nearly sinusoidal oscillations (rota-
tions) and a sinusoidal force they are extremely narrow
and we did not observed them in our numerical simula-
tions. These higher-order resonances may appear if the
forcing has higher harmonics or the rotations are highly
nonuniform. Mechanisms for such nonlinearities certainly
deserve a further investigation. One possibility might by
the effect of additional spatial modulation of the underly-
ing potential that may appear during molecular epitaxial
growth of the samples [16]; this modulation may also pro-
duce a frequency shift in the rotational frequency that
may be responsible for a resonance shift of the ZRS do-
main compared to the Larmor resonance (see [2,3,15]).
Another feature that does not appear in our theory is the
fine structure of the resistance vs. magnetic field depen-
dence: outside of ZRS regions one observes an increase
of the resistance Rxx by a factor 3 compared to the case
without microwave field while our numerical data give an
increase only by a factor 1.2 (see Fig. 3).

Our theory is based on the classical, nonequilibrium
dynamics and it is crucial to analyze the relevance of quan-
tum effects. In principle it is known that at small effective
values of Planck’s constant �eff the synchronization is pre-
served while at large values �eff it is destroyed by quantum
fluctuations [17]. For 2DEG �eff ∼ 1/nL and at nL ∼ 100
it is natural to expect that the synchronization is robust
against quantum fluctuations. However, a reduction of nL

by an order of magnitude due to an increase of ω to a
THz range may significantly enhance quantum noise and
destroy ZRS. Further theory development is required to
study quantum effects properly. The most important ques-
tion is about the amount of electrons which are involved
in the rotating Wigner crystal. Indeed, our classical stud-
ies show that all electrons are involved in this state but
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in the quantum case it is rather possible that only a finite
fraction of electrons near the Fermi level contributes to
the rotating crystal, while all other electrons will stay as
a non-interacting background.

Finally we mention a striking analogy between the 2D
electron gas in a magnetic field and a system of com-
pletely different spatial and temporal scales – planetary
rings. Planetary rings are also essentially two-dimensional
ensembles of particles, temperature there is very low and
in the rotational frame the 2D dynamics of particles is
similar to motion of electrons in a magnetic field [18]. A
periodic force on the particles may be due to the effect
of large moons. The resulting synchronous coherent state
similar to described above may be responsible for enor-
mously long life time ( ∼1012 rotations) and sharp edges
of planetary rings (e.g. ∼10 m for Saturn) [18,19].

It is also possible that the effects analyzed in this pa-
per can be relevant to collective oscillations of ion and
electron clouds in a Paul trap where a certain number of
resonances with a driving microwave frequency has been
observed [20,21] and a formation of small Coulomb crys-
tals has been demonstrated [22]. We think that the mecha-
nism discussed here can be viewed as a generic mechanism
of synchronization-induced self-assembly of systems oscil-
lating in space and its further investigation seems to be
very promising.
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