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We propose an experimental scheme which allows us to realized approximate time reversal of matter
waves for ultracold atoms in the regime of quantum chaos. We show that a significant fraction of the atoms
return back to their original state, being at the same time cooled down by several orders of magnitude. We
give a theoretical description of this effect supported by extensive numerical simulations. The proposed
scheme can be implemented with existing experimental setups.
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The statistical theory of gases developed by Boltzmann
leads to macroscopic irreversibility and entropy growth
even if dynamical equations of motion are time reversible.
This contradiction was pointed out by Loschmidt and is
now known as the Loschmidt paradox [1]. The reply of
Boltzmann relied on the technical difficulty of velocity
reversal for material particles [2]: a story tells that he
simply said ‘‘then go and do it’’. The modern resolution
of this famous dispute came with the development of the
theory of dynamical chaos [3–5]. Indeed, for chaotic dy-
namics small perturbations grow exponentially with time,
making the motion practically irreversible. This explana-
tion is valid for classical dynamics, while the case of quan-
tum dynamics requires special consideration. Indeed, in the
quantum case the exponential growth takes place only
during the rather short Ehrenfest time [6], and the quantum
evolution remains stable and reversible in presence of
small perturbations [7]. Quantum reversibility in presence
of various perturbations has been actively studied in recent
years and is now described through the Loschmidt echo
(see [8] and references therein). This quantity measures the
effect of perturbations and is characterized by the fidelity
f�tr� � jh p�2tr�j �0�ij2, where j pi is the time reversed
wave function in presence of perturbations, j i is the
unperturbed one, and tr is the moment of time reversal.
Experimental implementations of time reversibility for
quantum dynamics or propagating waves have been real-
ized with spin systems (spin echo technique) [9], acoustic
[10] and electromagnetic [11] waves, resulting in various
technological applications. Surprisingly enough, the re-
versibility signal becomes stronger and more robust in
the case of chaotic ray dynamics [10]. However, despite
the significant experimental progress made recently in the
control of quantum systems, the time reversal of matter
waves has not been performed so far.

Here we present a concrete experimental proposal of an
effective time reversal of atomic matter waves. The pro-
posal relies on the kicked rotator model, which is a corner-
stone model of quantum chaos [6,7,12]. This model has
been built up experimentally with cold atoms in kicked
optical lattices [13–16]. Recent progress allowed to imple-

ment this model with ultracold atoms and Bose-Einstein
condensates (BEC) [17–20], with high-precision subrecoil
definition of the momentum of the atoms, allowing, for
example, to observe [17,19] high order quantum reso-
nances [21]. We show that these experimental techniques
allow to perform time reversal for a significant part of the
atoms. Surprisingly, this fraction of the atoms becomes
cooled down by several orders of magnitude during the
process. We call this new cooling mechanism Loschmidt
cooling since it is directly related to the time reversibility.

The quantum kicked rotator corresponds to the quanti-
zation of the Chirikov standard map [4,5]:

 �p � p� k sinx; �x � x� T �p; (1)

where x is the position and p the momentum of an atom,
and bars denote the variables after one map iteration. Here
x is a continuous variable in the interval � � 1;�1�. The
physical process behind corresponds to rapid change of
momentum created by a kick of optical lattice followed by
a free propagation of the atoms between periodic kicks of
period T. The classical dynamics depends only on the
single parameter K � kT and undergoes a transition
from integrability to chaos when K is increased. Global
chaos sets in for K >Kc � 0:9716 . . . . The dynamics of
(1) is time reversible, e.g., by inverting all velocities at the
middle of the free motion between two kicks.

The quantum evolution over one period is described by a
unitary operator Û acting on a wave function:

 

� � Û � e�iTp̂
2=2e�ik cosx̂ ; (2)

where the momentum p is measured in recoil units, and T
plays the role of an effective Planck constant. The momen-
tum operator p̂ � �i@=@x has eigenvalues p � n� �,
where n is an integer and � is the quasimomentum for a
wave propagating in the x direction. The particle energy is
E � Erp2=2, where Er is the recoil energy. We consider
noninteracting atoms. It is convenient to express the time t
in number of map iterations. In experiments, values of time
up to t � 150 have been achieved [16]. Also, a very narrow
initial momentum distribution down to rms �� � 0:002
can be reached with BEC [17]. Values as high as k � 4
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have been realized experimentally with T varying between
1 and 4� [16].

To perform the time reversal, we first write T as T �
4�� �. After tr iterations of (2), we interchange the order
of kick and free propagation, change T to T0 � 4�� � and
k to �k, and let the system evolve during another tr
iterations. Such a modification of T can be easily realized
experimentally (see, e.g., [17] ). The sign of k can be
inverted by changing the sign of the detuning between
the laser and the atomic transition frequencies or through
a shift of the optical lattice by half a wavelength. Then for
t > tr the map (2) becomes Ûr � eik cosx̂e�iT

0p̂2=2 where the
second operator acts on momentum eigenstates jn� �i as
e�iT

0�n���2=2 � eiT�n���
2=2e�8i���n��=2�. Thus Ûr �

Ûye�8i���n̂��=2� and the components with � � 0 (integer
values of p) are exactly reversed, while for other small �
values the time reversal works only approximately. This
determines the meaning of approximate time reversal.
Another way of inverting k is to use in the first and last
propagation steps for t > tr the value T00 � 2�� � instead
of T0. Indeed, for � � 0 we have ei�n̂

2
e�ik cosx̂ei�n̂

2
�

eik cosx̂, and thus inversion of kworks again exactly for� �
0 and approximately for small � values. In the following,
we use the first method of k inversion, but we checked that
the second method gives similar results.

To characterize the wave packet dynamics, we use the
inverse participation ratio (IPR) defined by �t �P
pWp�t�=

P
pW

2
p�t�, where Wp�t� � jhpj �t�ij2 is the

probability in momentum space at time t. Another useful
quantity is the probability at zero momentum Wt � W0�t�.
For numerical simulations we used up to N � 223 discre-
tized momentum states with �p � 1=40 000. Both quan-
tities �t and Wt are rescaled by their values at t � 0 that
makes them independent of �p. Their dependence on time
is shown in Fig. 1 which clearly demonstrates time reversal
of both quantities. The return for �t is not perfect due to the
contribution of nonzero quasimomentum components,

whereas the curve for Wt is perfectly symmetric. We note
that �t shows a diffusive growth for t < 4 followed by a
saturation due to dynamical localization [6,7,12,13] for
t 	 tr.

The momentum probability distributions at initial t � 0
and final t � tf � 2tr times are shown in Fig. 2. The
striking feature is that the final distribution in�0:5< p<
0:5 is much more narrow than the initial one and has the
same maximal value since the probability at � � 0 returns
exactly. The shape of the reversed peak is independent of
T0. This can be interpreted as a cooling of the atoms which
remained in this momentum range that defines the
Loschmidt cooling mechanism. The narrowing of the cen-
tral peak means that in compensation a significant fraction
of atoms has obtained higher momentum values p as is
clearly seen in the right inset of Fig. 2. But even if the full
distribution is rather broad the reversed peak is clearly
dominant. On the contrary, the left inset showing the
distribution at t � tr displays homogeneous chaotic distri-
bution of momentum components. Thus it is the time
reversal which produces the peak at the origin and per-
forms effective cooling. It is natural to define the size of the
return Loschmidt peak by its half width �L with
W�L�2tr� � W��0�2tr�=2. The fraction of returned atoms
is P� �

P2�L
�2�L

W��2tr� and their temperature is Tf �P2�L
�2�L

�2W��2tr�=�2P��. Similarly to the case of chaotic
acoustic cavities [10], quantum chaos makes the time
reversed peak more visible. From an experimental view-
point, the atoms outside the reversed peak can be elimi-
nated by an escape process while those inside can be kept
by switching on a suitable trap potential or attraction
between atoms (e.g., Feschbach resonance). Such a proce-
dure is similar to the process of evaporative cooling.

FIG. 1 (color online). Dependence on time t of the rescaled
IPR �t=�0 (solid curve with blue/black squares) and of the
rescaled inverse probability at zero momentum W0=Wt (dashed
curve with red/gray dots). Initial state is a Gaussian wave packet
with rms �� � 0:002 and kBT0=Er � �2

�=2 � 2
 10�6 (see
Fig. 2). Here k � 4:5, T � 4�� � for 0 	 t 	 tr, and T0 �
4�� � for tr < t 	 2tr with � � 2 and tr � 10.

FIG. 2 (color online). Initial states probability (dashed curves)
and final return probability (solid curves) shown as a function of
quasimomentum �. Here kBT0=Er � 2
 10�4 (red/gray
curves) and kBT0=Er � 2
 10�6 (blue/black curves), the latter
corresponding to data of Fig. 1 and being similar to experimental
conditions [17]. For return probabilities, the central peaks coin-
cide for the two values of T0. Insets: probability Wp at t � tr �
10 (left) and final probability Wp at t � tf � 2tr (right) on a
larger scale with p � n� � for kBT0=Er � 2
 10�6. All dis-
tributions are scaled by the value of the initial probability at zero
momentum (� � 0). Parameters are as in Fig. 1.
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However, in our case the effective evaporation takes place
very rapidly due to dynamical chaos.

The variation of the final return probability distribution
in energy E � Erp2=2 with k is shown in Fig. 3. When k
increases the distribution in energy becomes more and
more narrow, so that Loschmidt cooling becomes more
efficient. This is related to the fact that the dynamics
becomes more chaotic as k increases. The temperature Tf
drops by almost 2 orders of magnitude, showing significant
oscillations with k.

The decrease of Tf=T0 with k is shown in more detail in
Fig. 4. It is related to the increase of the localization length
l of quasienergy eigenstates with k. Indeed, it is known that
l � Dq=2 whereDq � k2g�Kq�=2 is the quantum diffusion
rate, Kq � 2k sin�T=2� being the quantum chaos parameter
[6,22]. The function g�Kq� takes into account the effects
of quantum correlations and is given [22] by g�Kq� � 0
for Kq < Kc, g�Kq� � 0:42�Kq � Kc�3=K2

q for Kc 	 Kq <
4:5, and g�Kq� � 1� 2J2�Kq� � 2J2

1�Kq� � 2J2
2�Kq� �

2J2
3�Kq� for Kq � 4:5 where Jm are Bessel functions.

Because of this localization there is always a residual
probability W� � 1=l�� in the interval �0:5< p< 0:5,
even in absence of time reversal. However, this residual
probability is much smaller than the maximum of the
reversed peak W0 � 1=��. The width of this peak can be
estimated as follows: �> 0 in Ûr acts as a small pertur-
bation of the exactly reversible operator, whose eigenstates
have M� l components. This perturbation gives after time
tr an accumulated quantum phase shift in the wave func-
tion �� � 8��ntr � 8��Mtr. Thus only the atoms with
� 	 �L � 1=�8�Mtr� return to their initial state, and their
fraction is P� � �L=��. The Loschmidt temperature of
these atoms is kBTL � Er�2

L=2 � Er=�128�2CD2
qt2r � 1�

where C is a numerical constant which according to our

data is C � 0:4. Thus the ratio Tf=T0 is

 Tf=T0 � TL=�T0 � TL�; kBTL � Er=�500D2
qt

2
r � 1�:

(3)

The formula (3) interpolates between the weakly perturba-
tive regime with l
 1 and the strong chaos regime with
l� 1. This theory assumes that kBT0 
 Er and that the
localization time scale t� � Dq is shorter than tr which is
approximately satisfied for most k values in Fig. 4. The
theory (3) satisfactorily describes the global behavior of
Tf=T0 as can be seen in Fig. 4. Small scale oscillations
should be attributed to mesoscopic fluctuations. These
fluctuations are stronger when � is varied (see inset of
Fig. 4), that should be attributed to high order quantum
resonances [21] at rational values of T=4� [23]. We
checked that the cooling remains robust even in presence
of 1% fluctuations of � during map iterations. For the case
tr 
 t� one should use M �

����������
Dqtr

p
instead of M � Dq

since the diffusion takes place during the whole time
interval tr. In this case, kBTL � Er=�128�2CDqt

3
r � 1�.

It is important to evaluate the fraction P� of returning
atoms. The estimates given above lead to P� � �L=�� /
1=���Dqtr� and thus:

 Tf=T0 � P2
�; (4)

that is well confirmed by the data in Fig. 4. The formula (4)
is written for dimension d � 1. For higher dimensions it
generalizes to Tf=T0 � P2=d

� . The data displayed in Fig. 5
show that P� drops approximately as 1=tr, in agreement
with the estimate above. For example, the cooling by a

FIG. 3 (color online). Density plot of the return probability
distribution Wp�2tr� as a function of the rescaled atom energy
E=kBT0 and of the kick strength k, where E � Erp2=2 and
kBT0=Er � 2
 10�6; here � � 2 and tr � 10. Colors denote
density from white (minimal) at the right to red/gray (maximal)
at the left. Black curve shows the final temperature Tf of the
return Loschmidt peak (E! kBTf � hEi) as a function of k.
Logarithm is decimal.

FIG. 4 (color online). Ratio of final to initial temperatures
(solid curves) as a function of k, from top to bottom for
kBT0=Er � 2
 10�6 (blue/black), kBT0=Er � 1:8
 10�5

(green/light gray), and kBT0=Er � 2
 10�4 (red/gray), with
� � 2 and tr � 10. Dashed curves show the theory (3). �
show P2

� for kBT0=Er � 2
 10�4, confirming theory (4).
Inset: same ratio as a function of � for k � 4:5; solid curve
shows numerical data and dashed curve is the theory (3).
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factor of 100 is reached for 10% of atoms. We also checked
that a significant fraction of the atoms returns not only in
momentum space but also in coordinate space. To this
end we define the fraction of atoms Px which are in the
return Loschmidt peak and in the coordinate space interval
[�2=��, 2=��]. The data show that Px is close to the value
of P� for moderate values of tr 	 10, so that the
Loschmidt cooled atoms remain close both in momentum
and coordinate space and thus can be efficiently captured
by a trap potential or a Feschbach resonance. We note that
at large tr values P� can become smaller than the fidelity
f � jh �0�j �2tr�ij

2, which characterizes proximity of the
whole wave functions and not only the reversed peak.

In conclusion, we have presented a concrete experimen-
tal proposal of time reversal of matter waves of ultracold
atoms in the regime of quantum chaos. If the atoms were
classical particles, they would never return back due to
exponential instability of dynamical chaos. But the quan-
tum dynamics is stable and thus a large fraction of the
atoms returns back even if the time reversal is not perfect.
This fraction of the atoms exhibits Loschmidt cooling
which can decrease their temperature by several orders of
magnitude. The reversed peak is very sensitive to varia-
tions of � and other parameters breaking time reversal
symmetry, and therefore this setup can be used as a sensi-
tive Loschmidt interferometer to explore such a symmetry
breaking (e.g., a gravitational field component along the
optical lattice gives a shift in � which affects the
Loschmidt peak). The parameters considered here are
well accessible to nowadays experimental setups (see,
e.g., [13–20] ). The realization of our proposal will shed
a new light on the long-standing Boltzmann-Loschmidt
dispute on time reversibility.
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