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We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional lattice,
where all linear modes are exponentially localized by disorder. We establish emergence of dynamical thermal-
ization characterized as an ergodic chaotic dynamical state with a Gibbs distribution over the modes. Our
results show that the fraction of thermalizing modes is finite and grows with the nonlinearity strength.
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The studies of ergodicity and dynamical thermalization in
regular nonlinear lattices have a long history initiated by the
Fermi-Pasta-Ulam problem �1� but they are still far from
being complete �see, e.g., �2� for thermal transport in nonlin-
ear chains and �3� for thermalization in a Bose-Hubbard
model�. In this paper, we study how the dynamical thermal-
ization appears in nonlinear disordered chains where all lin-
ear modes are exponentially localized. Such modes appear
due to the Anderson localization introduced in the context of
electron transport in disordered solids �4–6� and describing
various physical situations such as wave propagation in a
random medium �7�, localization of a Bose-Einstein conden-
sate �8�, and quantum chaos �9�.

Effects of nonlinearity on localization properties have at-
tracted large interest recently. Indeed, nonlinearity naturally
appears for localization of a Bose-Einstein condensate, as its
evolution is described by the nonlinear Gross-Pitaevskii
equation �10�. An interplay of disorder, localization, and non-
linearity is also important in other physical systems such as
wave propagation in nonlinear disordered media �11,12� and
chains of nonlinear oscillators with randomly distributed fre-
quencies �13�.

The main question here is whether the localization is de-
stroyed by nonlinearity. It has been addressed recently using
two physical setups. In Refs. �14,15� it was demonstrated
that an initially concentrated wave packet spreads apparently
indefinitely, although subdiffusively, in a disordered nonlin-
ear lattice. For a transmission through a nonlinear disordered
layer �16,17�, chaotic destruction of localization leads to a
drastically enhanced transparency.

Here we study the thermalization properties of the dynam-
ics of a nonlinear disordered lattice—discrete Anderson non-
linear Schrödinger equation �DANSE�. We describe in de-
tails the features of the time evolution of an initially
localized excitation toward a statistical equilibrium in a finite
lattice. �We stress that this evolution is purely deterministic
and that the relaxation to equilibrium is due to deterministic
chaos.� Below we argue that a statistically stationary state is
characterized by the Gibbs energy equipartition across the
linear eigenmodes �Eq. �5�� and call a relaxation to such an
equilibrium state thermalization. Because thermalization is
due to deterministic chaos, its rate heavily depends on the
statistical properties of the chaos. As is typical for nonlinear
Hamiltonian systems, depending on initial conditions one
can obtain solutions belonging to a “chaotic sea” or to “regu-

lar islands.” Moreover, one can expect the former to thermal-
ize while the latter do not lead to thermalization. We numeri-
cally find nonthermalizing modes and characterize their
dependence on the nonlinearity and the lattice length. We
stress here that our analysis heavily relies on numerical
simulations as analytic methods appear to be hardly appli-
cable for disordered nonlinear systems. In numerics, a differ-
ence between thermalizing and nonthermalizing states �as
well as between chaotic and nonchaotic states� is limited by
the maximal integration time: it might happen that the states
which do not thermalize up to some time will thermalize in
the future. There is no way to overcome this limitation in a
simple way because of a possibility for slow processes such
as Arnold diffusion, characteristic time of which lies far be-
yond any computationally accessibility. Nevertheless, per-
forming an analysis based on large but finite time scales, we
can, on one hand, make predictions for experiments, and on
the other hand, obtain a “coarse-grained” description of the
dynamics. Accordingly, the results below should be under-
stood as valid for available integration times, without a
straightforward extrapolation for asymptotically large times.

We describe a nonlinear disordered medium by the
DANSE model:

i
��n

�t
= En�n + ���n�2�n + �n+1 + �n−1, �1�

where � characterizes nonlinearity and the on-site energies
En �or frequencies� are independent random variables distrib-
uted uniformly in the range −W /2�En�W /2 �they are
shifted in such a way that E=0 corresponds to the central
energy of the band�. We consider a finite lattice 1�n�N
with periodic boundary conditions. Then DANSE is a clas-
sical dynamical system with the Hamilton function

H = �
n

En��n�2 + �n−1�n
� + �n−1

� �n +
�

2
��n�4. �2�

It describes recent experiments with nonlinear photonic lat-
tices �cf. Eq. �1� in �12��, where one follows, along a trans-
versally disordered finite nonlinear crystal, the evolution of a
single-site or a single-mode initial state. This corresponds to
the setup of our thermalization problem. Thus, the properties
below can be observed experimentally as “thermalization of
photons” provided the crystal is long enough. In the context
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of many-particle quantum systems, Eq. �2� is used as an ef-
fective mean-field Hamiltonian of interacting bosons.

For �=0 all eigenstates are exponentially localized with
the localization length l�96W−2 �for weak disorder� at the
center of the energy band �6�. Below we mainly focus on the
case of moderate disorder W=4, for which l�6 at the center
of the band and l�2.5 at E= �2. For each particular real-
ization of disorder a set of eigenenergies �m and of corre-
sponding eigenmodes 	nm can be found. In this eigenmode
representation �n=�Cm	nm the Hamiltonian reads

H = �
m

�m�Cm�2 + ��
knji

VknjiCkCnCj
�Ci

�, �3�

with �m�Cm�2=1 and Vmm�m1m1�
� l−3/2 are the transition ma-

trix elements �18�. This representation is mostly suitable to
characterize the spreading of the field over the lattice, since
in this basis the transitions take place only due to nonlinear-
ity. Also, the nonlinear correction to the energy is small
��� / l� for one excited mode.

To study the dynamical thermalization in a lattice, we
performed direct numerical simulation of DANSE �1� using
mainly two methods: the unitary Crank-Nicholson operator
splitting scheme with step 
t=0.1 as described in �15� and
an eighth-order Runge-Kutta integration with step 
t=0.02;
in both cases the total energy and the normalization have
been preserved with high accuracy and both integration
schemes gave similar results for all lattice lengths N used.
Such a restriction of the accuracy check to the conserved
quantities is suitable for chaotic systems. A comparison with
other numerical methods for DANSE �19� goes beyond the
scope of this paper and will be performed in a longer publi-
cation. We started with two types of localized initial states:
�A� one site seeded, i.e., ��n�0��2=�n,j and �B� one mode
initially excited, i.e., �Cm�0��2=�m,k. For different realizations
of disorder, we seeded different possible sites/modes and fol-
lowed the evolution of the field solving Eq. �1� up to times
�in selected runs� �108. The level of spreading is character-
ized by the entropy of the mode distribution,

S = − � �m ln �m, �m = �Cm�2, �4�

where overline means time averaging. For one excited mode
S=0 while S=ln N for a uniform distribution over all modes
in a lattice of length N. To give an impression of a time
evolution of the thermalization process we show in Fig. 1
several representative time dependencies of entropy �4�. One
can see that for the setup �B� some modes remain localized
during the complete integration time �cf. �20��, while others
after some transient time evolve to a state with large entropy.
For setup �A�, the entropy grows in all cases with a tendency
to saturation—some states seem to saturate at about S
� ln N, while others remain at values definitely smaller than
ln N up to the maximal integration time. Especially the re-
sults from �B� indicate a strong energy dependence of the
spreading behavior, which is studied in this work. In our
discussion below we focus therefore on the setup �B� as the
mostly nontrivial one.

To derive an approximate expression for the statistically
stationary distribution �m, we mention that it should satisfy

��m=1 and E=��m�m, where, in view of the discussion
above, we have neglected the nonlinear contribution to the
energy. Then the condition of maximal entropy �4� leads,
after a standard calculation, to a Gibbs distribution:

�m = Z−1 exp�− �m/T�, Z = �
m

exp�− �m/T� . �5�

Here T is an effective “temperature” of the system: it has no
meaning as a physical temperature but serves as a parameter
characterizing the distribution; it is a function of the total
energy E of the state and of the realization of disorder. The
entropy and the energy are related to each other via usual
expressions, e.g., �21�:

E = T2 � ln Z/�T, S = E/T + ln Z . �6�

This value of entropy yields the maximal possible equiparti-
tion for the given initial energy, and the values of Fig. 1
obtained via a numerical simulation of the disordered non-
linear lattice should be compared with these values from the
Gibbs distribution. Because we have anyhow neglected the
effects of nonlinearity in the theoretical value of the entropy,
we adopt other simplifications: approximate the density of
states of the disordered system as a constant in an interval
−
���
 and consider the energy eigenvalues �m in a par-
ticular realization of disorder as independent random vari-
ables distributed according to this density. Furthermore, we
assume the variations of the partition sum to be small and
use 	ln Z
� ln	Z
, where brackets denote averaging over dis-
order realizations. In this simplest approximation we obtain

	ln Z
 � ln N + ln sinh�
/T� − ln�
/T� . �7�

At W=4 we have 
�3 �see Figs. 3 and 4 below� and this
theory gives the dependence S�E� within a few percent accu-
racy compared to S averaged over disorder within Gibbs
computations with exact numerical values �m. This justifies,
for the parameters used, the approximation above. We note
that T=+0, � ,−0 correspond to E=−
 ,0 ,+
, respectively
�as in the standard two-level problem, see related discussion
in �21��.
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FIG. 1. �Color online� Time evolution of entropy S �Eq. �4�� in
DANSE �1� with N=32 and �=1 for a particular realization of
disorder and different initial states: bold black curves with
markers—single-mode initial states �B� with energies E
=−0.34,0.76,−0.29,3.36,−0.5 �curves from top to bottom at t
=108, two bottom cases are very close�, solid red/gray curves—
single-site initial states �A; ten randomly chosen states�. The dashed
line shows the level S=ln 32. The time averaging has been per-
formed over doubling time intervals �between successive markers�.
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We compare in Fig. 2 Gibbs distribution �5� with the re-
sults of direct numerical simulations of DANSE using Nd
disorder realizations. Here we present the values 	�m
 aver-
aged over time and over different realization of disorder in
dependence of the number of the initially seeded mode m�.
The modes have been ordered according to their energy, so
that m=1 corresponds to the maximal energy. One can see a
good correspondence between the numerics and the simple
theory �5� in the sense that states at the band edges remain
localized, while states in the center generally spread. How-
ever, there is one crucial discrepancy: the peaks on the diag-
onal m=m� indicate that there are cases when there is no
thermalization within our simulation time and the energy re-
mains in the initially seeded mode.

To characterize thermalized and nonthermalized cases
quantitatively, we compare in Fig. 3 numerical values for
S�E� according to Eq. �4� with the theoretical Gibbs compu-
tation given by Eqs. �5�–�7�. Clearly, the Gibbs theory gives
a satisfactory global description of numerical data. The non-
thermalized modes in this presentation are those at the bot-
tom of the graph; these states are absent for the setup �A�
where initial sites are seeded. �Again, as discussed above,
“nonthermalized” should be understood as “nonthermalized
within the integration time.”�

It appears appropriate to discuss the dynamics of the
modes in the middle of the energy band ���m��2� and at the
edges ���m��2� separately. For the modes in the middle of
the band, the maximal entropy according to Eq. �6� is close
to ln N, and one clearly distinguishes the thermalized modes
and those that remain localized, as those reaching the maxi-
mal entropy and those remaining at the level S�1, corre-
spondingly. Thermalization is associated with the chaotic dy-
namics of the DANSE lattice. To demonstrate this, we
calculated the largest Lyapunov exponents � shown in Fig. 3
�right panel�. All modes with S�1, i.e., those that do not
thermalize, have nearly vanishing �, while for the thermali-
zed states �S�2� the positive values of � clearly indicate
chaos.

The above distinction between thermalized and nonther-
malized states is less evident for modes at the band edges
�shown by red�gray� pluses in Fig. 3�. Here already the the-
oretical value of entropy given by Eqs. �5�–�7� is rather
small. Hence, the spreading can go over a few “available”
modes only. Nevertheless, also here one can see from Fig. 3
a clear correlation between the entropy and the Lyapunov
exponent. Moreover, in several cases the Lyapunov exponent
at the edge of the spectrum is definitely larger than in the
middle. This happens because the energy spreads over a
small number of modes; hence, the effective nonlinearity is
larger due to larger amplitudes of each mode, and therefore
chaos is stronger.

Above, we did not account for a spatial organization of
the mode structure. The latter is less important for the modes
in the middle of the band, where one can always expect to
find neighbors with a close energy. Contrary to this, for the
energies at the edges the issue of spatial distance becomes
essential. Indeed, since here the thermalization is possible
only over a few modes, it is important whether these modes
are spatially separated or not. For linear eigenmodes m and
m� the natural measure of this separation is the coupling
matrix element Vm�m�m�m according to Eq. �3�. It is exponen-
tially small for spatially separated modes due to their local-
ization. One can expect that a mode at the edge of the spec-
trum will be thermalized only if the coupling V to other few
modes in the lattice with a close energy is large, which is a
rather rare event.

Finally, we discuss how the thermalization properties de-
pend on the nonlinearity constant �. In Fig. 4 we show the
dependence S�E� for different nonlinearities �. For �=0.5 a
large portion of the initial states remains nonthermalized,
while for �=2 all states are thermalized �at least in the sense
that their entropy is close to the maximal possible one; as
discussed above this is a good criterion in the middle of the
band�. To determine how the fraction of thermalized states
depends on nonlinearity � we use the following procedure.
For the initial modes in the middle of the band �i.e., for �E�
�2� we classified those that reach more than the half of the
maximal entropy �i.e., the level ln�N� /2� as thermalized and
those that remain below this level as nonthermalized. The
fraction f th of the thermalized modes, shown in Fig. 5, mo-
notonously increases with �. At fixed � the numerical data
indicate saturation of f th at large N, but more detailed checks
at larger sizes and longer times are required. For example,
recent results on self-induced transparency of a disordered
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FIG. 2. �Color online� Left: time and disorder averaged prob-
ability 	�m�m��
 in mode m for initial state in mode m�. Right:
theoretical values according to Gibbs distribution �5�. Here N
=32, �=1, Nd=15.
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FIG. 3. �Color online� Left panel: final entropies �4� after an
evolution during time interval 107 averaged over a time interval of
106. The states evolving from initial modes in the middle of the
band �see text� are marked with black circles, while those at the
edges of the band are marked by the red �gray� pluses. The curve
shows approximate theory �7�. Right panel: Lyapunov exponents
�averaged over a time interval 106� vs entropy for the same sets
with the same markers. Here N=32, �=1, Nd=7. Note that the
states with S�1 and −2�E�2 have nearly zero Lyapunov expo-
nent �although hardly visible in the right panel because overlapped
by the red/gray pluses�.
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nonlinear layer �17� show decrease in critical � with lattice
size for N�32.

The properties of thermalization described above can be
incorporated in a general framework of nonlinear dynamics
as follows. One can expect, based on general Kolmogorov-
Arnold-Moser arguments, that for small nonlinearity regular
nonergodic regimes predominate, while for large values of �
stable solutions are destroyed and a chaotic ergodic state
establishes in the lattice. While it is hard to characterize this
transition via a general analysis of the dynamics in a high-
dimensional phase space, it is possible to follow the evolu-
tion, as nonlinearity increases, of special resonant modes that
stem from linear ones. Looking for solutions of Eq. �1� in the
form �n�t�=�ne−i�t, we arrive at a nonlinear eigenvalue prob-
lem ��n=En�n+��n

3+�n−1+�n+1 which, of course, at �=0
yields linear frequencies and modes. Starting from these
modes, we followed these solutions to larger nonlinearities
using a numerical continuation and in this way obtained non-
linear resonant modes—“breathers” �cf. �20,22��. Worth not-
ing, these modes change in the regions where the field is
large, while in the tails they follow linear solutions in accor-
dance with �23�. Moreover, we performed numerical stability
analysis of these breathers and found that they bifurcate at
some critical value of nonlinearity �c. The values of �c for
an ensemble of realizations of random potentials are shown
in Fig. 5�b�. Additionally, we show in Fig. 5�a� a cumulative
distribution of �c for the same range of eigenenergies ��n�
�2 that is used for the other curves plotted. First of all, note
the similar global behavior of f th and fb which makes us
believe that the bifurcations of stable resonant modes are
indeed the mechanism of the � dependence of thermaliza-
tion. However, the curves do not coincide because �c is de-
fined as the value of the first bifurcation, which may not
immediately lead to chaos but may be the first one in a series
of transitions to more irregularity. Strictly speaking, fb
should be an upper bound for f th, which is seen in Fig. 5�a�.
The increase in f th from t=106 to 107 shows that it has not
saturated yet, but the saturation curve must lie below fb.

Remarkably, we have found that the breathers at the edges of
the band, i.e., for ��n��2, are extremely stable: most of them
remain stable up to large values of ��5. This corresponds to
the numerical observation of the strong suppression of the
thermalization for these modes. We emphasize here that be-
cause of the nonlinearity of the system the superposition
principle does not hold. This means that to observe a stable
breather mode one has to prepare initial conditions mostly
close to this solution—which is achieved here by choosing
the initial conditions as a pure linear eigenmode �case B
above�. When one initially seeds one site, as in case A �or
uses other initial conditions not close to a breather�, then this
initial condition does not produce a breather because the lat-
ter typically does not survive nonlinear interaction with other
components of the solution. If, for example, one starts with
an excitation of two modes which are both stable at some
value of �, one might still see fast thermalization because a
superposition of two breathers is not a breather.

Our main conclusion is that the maximally thermalized
state in a disordered nonlinear lattice �Eq. �1��, which
emerges as a result of chaotic dynamics, is described by the
Gibbs distribution over the linear modes, with some effective
temperature depending on the initial excitation. Not all
modes lead to thermalization; some fraction of them remains
localized, but this fraction decreases with nonlinearity. We
found that this can be explained by the disappearance �via
bifurcations� as the nonlinearity increases of stable resonant
modes—breathers—stemming from linear eigenstates. Fur-
ther studies are still required to establish the properties of
this thermalization in dependence on the nonlinearity
strength, disorder, and lattice size.
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FIG. 5. �Color online� �a� Fraction of thermalized �after time
106� modes f th from the middle of the band as a function of non-
linearity � for N=16 �circles�, 32 �bold line�, and 64 �pluses�. Dia-
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fraction of the bifurcated breathers fb according to panel �b�. Panel
�b�: the bifurcation values �c for different modes vs their linear
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�c=2; this set looks like two vertical “lines” at �=2 on panel �b�.
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FIG. 4. �Color online� Dependence of entropy S on energy E as
in Fig. 2 but for N=64, Nd=18, and two values of nonlinearity: �a�
�=0.5; �b� �=2. Averaging has been performed over the time in-
terval 106 after an initial evolution during time 106; for small � still
longer times are needed to reach thermalized state with maximal S
at given E. The curves are the same theoretical estimates as in Fig.
3.
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