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Abstract. We use the Ulam method to study spectral properties of the Perron-Frobenius operators of
dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum
is characterized by the fractal Weyl law recently established for nonunitary operators describing poles
of quantum chaotic scattering with the Weyl exponent ν = d − 1, where d is the fractal dimension of
corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we
numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl
exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant
sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the
fractal Weyl law.

1 Introduction

The Weyl law gives a fundamental relation between a
number of quantum states in a given classical phase space
volume and an effective Planck constant � for Hermitian
operators [1]. Recently, this relation has been extended
to nonunitary quantum operators which describe complex
spectrum of open systems or poles of scattering problem.
In this case the fractal Weyl law determines a number of
Gamow eigenstates in a complex plane of eigenvalues with
finite decay rates γ via a fractal dimension d of a classi-
cal fractal set of nonescaping orbits. The Gamow eigen-
states find applications in various types of physical prob-
lems including decay of radioactive nuclei [2], quantum
chemistry reactions [3], chaotic scattering [4] and chaotic
microlasers [5]. It is interesting that the fractal Weyl law
was first introduced by mathematicians via rigorous math-
ematical bounds [6–9]. Later, numerical simulations for
systems with quantum chaotic scattering and open quan-
tum maps confirmed the mathematical bounds and deter-
mined a number of interesting properties of such nonuni-
tary quantum operators [10–16]. Open quantum maps
with absorption, e.g. the Chirikov standard map [17,18],
are very convenient for numerical studies that allowed to
establish a number of intriguing properties of decay rates
and quantum fractal eigenstates in the limit of large ma-
trix size and small scale quantum resolution [14,19,20].

The fractal Weyl law gives the following scaling for the
number of Gamow states Nγ with the decay rate in a finite
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band width 0 ≤ γ ≤ γb:

Nγ ∝ Nν , N = V/�, ν = d− 1, (1)

where N is a matrix size given by a number of quantum
states in a volume V and the exponent ν is determined by
a fractal dimension d of classical set formed by classical
trajectories nonescaping in future times (see Fig. 1).

In view of the result (1) it is natural to assume that
the fractal Weyl law should also work for other type of
nonunitary matrix operators. An important type of such
matrices is generated by the Ulam method [21] applied to
the Perron-Frobenius operators of dynamical systems [22].
The method is based on discretization of the phase space
and construction of a Markov chain based on probability
transitions between such discrete cells given by the dy-
namics. It is proven that for hyperbolic maps in one and
higher dimensions the Ulam method converges to the spec-
trum of continuous system [23–25]. While the spectrum
of such Ulam matrix approximant of continuous operator
has been studied numerically for various dynamical maps
(see e.g [26,27] and references therein) the validity of the
fractal Weyl law has not been investigated. Mathematical
results for the Selberg zeta function [28] indicate that the
law (1) should remain valid but, as we show here, for cer-
tain dynamical systems the exponent ν starts to depend
on fractal dimension d in a different way.

It is known that in certain cases the Ulam method gives
significant modifications of the spectrum compared to the
case of the continuous Perron-Frobenius operators [23–25].
In fact discretization by phase-space cells effectively intro-
duces small noise added to dynamical equations of motion.
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Fig. 1. (Color online) Phase space representation of eiges-
tates ψi of the Ulam matrix approximant S of the Perron-
Frobenius operator for models 1 and 2 at N = 110 × 110
(color is proportional to |ψi| with red/gray for maximum and
blue/black for zero). Left column shows eigenstates for the
model 1 at K = 7, a = 2 for maximum λ1 = 0.756 (top panel)
and λ3 = −0.01 + ı0.513 (bottom panel), the space region is
(−aK/2 ≤ y ≤ aK/2, 0 ≤ x ≤ 2π) and the fractal dimen-
sion of the strange repeller is d = 1.769. Right column shows
eigenstates for the model 2 at K = 7, η = 0.3 for maximum
λ = 1 (top panel) and λ3 = −0.258 + ı0.445 (bottom panel),
the space region is (−4π ≤ y ≤ 4π, 0 ≤ x ≤ 2π) and the fractal
dimension of the strange attractor is d = 1.532.

For Hamiltonian systems with divided phase space this
noise destroys the invariant curves and drastically changes
the eigenstate of the Perron-Frobenius operator (see e.g.
discussion in [29,30]). However, for homogeneously chaotic
systems the effect of this noise is rather weak compared to
dynamical chaos and thus, in the limit of small cell size,
the physical properties of the dynamics are expected to
have no significant modifications in agreement with the
results presented in [23–25,29,30]. Our numerical results
obtained for dynamical maps with homogeneous chaotic
dynamics confirm the convergence of the Ulam method to
the continuous limit of the Perron-Frobenius operator.

The paper is organized in the following way: Section 2
gives the model description; Section 3 presents the numer-
ical results and the discussion is given in Section 4.

2 Model description

To study the validity of the fractal Weyl law we use the
Chirikov standard map [17,18]. We consider two models:
the map with absorption that corresponds to the classical
limit of the quantum model studied in [14,19,20] (model 1)

and the map with dissipation (model 2) also known as the
Zaslavsky map [31,32]. In the first model the dynamics is
described by the map{

ȳ = y +K sin(x+ y/2)
x̄ = x+ (y + ȳ) /2 (mod2π) (2)

where bar notes the new values of dynamical variables
and K is the chaos parameter. The map is written in its
symmetric form and all orbits going out of the interval
−aK/2 ≤ y ≤ aK/2 are absorbed after one iteration. We
consider a strong chaos regime at fixed K = 7 and vary
the classical escape time by changing a in the interval
0.8 ≤ a ≤ 6.

The second model is described by the map with dissi-
pation parameter η < 1:{

ȳ = ηy +K sinx
x̄ = x+ ȳ (mod2π) (3)

with periodic boundary conditions in y ∈ [−4π, 4π). Due
to dissipation and chaos the dynamics converges to a
strange attractor (see e.g. [33]).

To construct the Ulam matrix approximant for a con-
tinuous Perron-Frobenius operator in the two-dimensional
phase space we divide the space of dynamical variables
(x, y) on N = NxNy cells with Nx = Ny. Then Nc trajec-
tories are propagated on one map iteration from a cell j.
We checked that regular square grid and random distri-
butions of trajectories inside the cell give the same result
up to statistical fluctuations. Then the elements Sij are
taken to be equal to a relative number Ni of trajectories
arrived at a cell i (Sij = Ni/Nc and

∑
i Sij = 1). Thus

the matrix S gives a coarse-grained approximation of the
Perron-Frobenius operator for the dynamical map. The
map gives about K links for each cell. We use Nc values
from 104 to 106 where the results are independent of Nc.
The fractal dimension d of the strange repeller and attrac-
tor depends on system parameters and is computed as a
box counting dimension using standard methods [33].

We also used another method to construct the Ulam
matrix based on a one trajectory for the dynamics with
a strange attractor in the model 2. In the one trajectory
Ulam method we iterate one trajectory up to time t1 =
100; after that we continue iterations of the trajectory up
to time t = 109 and determine the matrix elements Sij as
the ration between the number of transitions from cell j
to cell i divided by the total number of transitions Nc

from cell j to all other cells (in this way
∑

i Sij = 1). This
approach has certain advantages since it gives the Ulam
matrix restricted to a dynamics only on the attractor. For
a given cell size this method gives a significantly smaller
matrix size Na � N since the number of cells Na located
on the attractor is much smaller than the total number of
cells N . When speaking about the results based on the one
trajectory Ulam method we always directly specify this.

3 Numerical results

The eigenvalues λi and right eigenvectors ψi of the matrix
S (Sψi = λiψi) are obtained by a direct diagonalization.
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Fig. 2. (Color online) Distribution of eigenvalues λ in the com-
plex plane for the Ulam matrix approximant S for the param-
eters of Figure 1 for the models 1 (top panel) and 2 (center
panel). Bottom panel shows the spectrum for the model 2, with
the same parameters as for the central panel, obtained via the
one trajectory Ulam approximant (see text). Color/grayness of
small squares is determined by the value of overlap measure μ
defined in the text and shown in the palette.

Examples of the eigenstates with maximal absolute values
of λi are shown in Figure 1. The fractal structure of eigen-
states is evident. For the model 1 the measure is decreasing
due to absorption and λ1 < 1, the state with λ1 represents
a set of strange repeller formed by orbits nonescaping in
future. For the model 2 all measure drops on the strange
attractor and in agreement with the Perron-Frobenius the-
orem we have λ = 1 [22]. Other eigenstates with smaller
values of |λ| are located on the same fractal set as the
states with maximal λ1 but have another density distri-
bution on it.

The spectrum of matrix S in the complex plane is
shown in Figure 2. It has a maximal real value λ1 iso-
lated by a gap from a cloud of eigenvalues. This cloud
is more or less homogeneously distributed in a complex
phase at a given radius rλ (distribution in a polar angle in
λ plane). For the model 2 the dense part of the spectrum
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Fig. 3. (Color online) Dependence of the integrated number
of states Nγ with decay rates γ ≤ γb = 16 on the size N of
the Ulam matrix S for the model 1 (at K = 7 for a = 1 and
a = 2) and the model 2 (at K = 7 for η = 0.3 and η = 0.6).
The fits of numerical data, shown by dashed straight lines, give
the exponent ν = 0.590 while the numerically determined box
counting fractal dimension is d = 1.643 (at a = 1); ν = 0.772
while d = 1.769 (at a = 2); ν = 0.716 while d = 1.532 (at
η = 0.3); ν = 0.827 while d = 1.723 (at η = 0.6).

has rλ ≈ η (at least at small values of η) that physically
corresponds to the fact that η gives the relaxation rate
to the limiting set of the strange attractor. The gap be-
tween λ1 and other eigenvalues in the model 1 is probably
related to a dynamics on the strange repeller. According
to [14] the decay rate of total probability in (2) is expo-
nential in time with the rate γc = 0.270 (for parameters
of Figs. 1, 2). This agrees well with the numerical value
λ1 = 0.756 ≈ exp(−γc). The data of Figure 1 indicate
that the states with i > 1 have a strong overlap with the
steady state of λ1 (i = 1). In a quantitative way this over-
lap can be characterized by an overlap measure defined as
μi =

∑
l ψ1(l)|ψi(l)| where the sum runs over all N cells

(we use the normalization
∑

l |ψi(l)|2 = 1). For μ close
to unity an eigenstate ψi has a strong overlap with the
steady state ψ1 and such states can be viewed as higher
mode excitations on this domain. For μ� 1 we have other
type of states being rather different from ψ1. The data of
Figure 2 show that states with small values of |λ| have
small μ.

In fact, as it is typical of the fractal Weyl law, almost
all eigenvalues drop to very small |λ| → 0. The number
of states within a finite band with 0 ≤ γ ≤ γb, where
|λ| = exp(−γ/2), grows algebraically with N with the
exponent ν < 1 remaining small compared to N . Typical
examples of such a dependence are shown in Figure 3 for
both models.

The spectrum for the one trajectory Ulam approxi-
mant is shown in the bottom panel of Figure 2 (here
Na = 2308 while N = 12 100). The spectrum with one tra-
jectory has a structure similar to the spectrum of the usual
Ulam method. This shows that the spectrum is mainly de-
termined by the diffusive type excitations on the attractor.

Our matrix sizes N are sufficiently large and allow to
reach asymptotic behavior in the limit of large N . This is
confirmed by the fact that the density of states dW/dγ in
γ becomes independent ofN as it is show in Figure 4 (here
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Fig. 4. (Color online) Dependence of density of states dW/dγ
on the decay rate γ for the Ulam matrix S for the model 1 (top
panel), and model 2 (center panel) at different sizes N = NxNy

given in the inset. Bottom panel shows the spectral density for
the one trajectory Ulam method for parameters of the central
panel. Data are shown for parameters of Figure 1, the density
is normalized by the condition

∫ 16

0
dW/dγdγ = 1.

W (γ) gives the normalized integrated number of states in
the interval from 0 to γ). This directly demonstrates that
the Ulam method is stable for our models and that it con-
verges to the continuous limit of the Perron-Frobenius op-
erator. The density of states for the Ulam matrix obtained
with one trajectory has the density of states very close to
the one obtained by the usual Ulam method. This shows
that the spectrum with finite values of γ is determined by
the dynamics on the attractor.

The density is mainly determined by the cloud of states
in the radius rλ, the contribution of the isolated eigenvalue
λ1 is only weakly visible at minimal γ. The density has
a broad maximum around γ ≈ 3, for the model 2 this
value is compatible with the value −2 ln η which deter-
mines the global relaxation rate to the strange attractor.
It is interesting to note that for the model 1 the spec-
tral density of the Perron-Frobenius operator (Fig. 4, top
panel) is rather different from the spectral density in the
corresponding quantum problem (Fig. 4 in [14]). Indeed,
the densities dW/dγ for the classical and quantum systems
are very different: the classical model 1 has one isolated
eigenvalue λ1 and a broad maximum around γ ≈ 3. The
quantum model of [14] has a peaked distribution around
γc = −2 lnλ1 corresponding to the classical state at λ1

and a monotonically decreasing density at larger values
of γ. At the same time the eigenstates with minimal γ are
located on the strange set of trajectories nonescaping in
future times, both in the classical and quantum cases (see
Fig. 1 here and in [14]). Thus the semiclassical correspon-
dence between classical and quantum cases of model 1 still
requires a better understanding.

We determine the exponent ν as it is shown in Fig-
ure 3 for both models at different values of parameters.
At the same time we compute the fractal dimension d of
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Fig. 5. (Color online) Fractal Weyl law for three different mod-
els: model 1 (black points at K = 7), model 2 (green/gray
crosses at K = 15, red/gray squares at K = 12, orange/gray
stars at K = 10, blue/black triangles at K = 7) and Hénon
map (green/gray diamonds at a = 1.2; 1.4 for b = 0.3). The
fractal Weyl law exponent ν is shown as a function of frac-
tal dimension d of the strange forward trapped set in model 1
and strange attractor in model 2 and Henon map. The straight
dashed lines show the laws (4) (upper line) and (1) (bottom
line). We used a ∈ [0.8, 6] for model 1 and η ∈ [0.3, 1] for
model 2.

the strange set of trajectories nonescaping in future using
box counting dimension with a box size ε. By definition the
size of the Ulam matrix is N = 1/ε2 while the number of
cells on the fractal set scales as Nf ∝ 1/εd = Nd/2 accord-
ing to the definition of fractal dimension (see e.g. [33]). In
this way we obtain the dependence of ν = d/2. The data
are shown in Figure 5. For the model 1 we find that the
usual fractal Weyl law with ν = d− 1 holds in a large in-
terval of variation of d. Relatively small deviations can be
attributed to a finite accuracy in computation of ν at finite
matrix sizes. In contrast to that for the model 2 we find
absolutely another relation which can be approximately
described as

Nγ ∝ Nν , ν = d/2. (4)

This relation works rather well for K = 15, 12, 10 while for
K = 7 the deviations are a bit larger. We attribute this to
the fact that at K = 7 there is a small island of stability
at η = 1 [34] which does not influence the dynamics in the
case of absorption (2) but can produce certain influence
for the dissipative case (3). To check that the law (4) works
for other systems with strange attractors we computed ν
and d for the Hénon map (x̄ = y + 1 − ax2, ȳ = bx, see
e.g. [33]) at standard parameter values of a, b. The results
confirm the validity of the fractal Weyl law also for the
Hénon map (see Fig. 5).

The physical origin of the law (4) can be understood in
a simple way: the number of states Nγ with finite values
of γ is proportional to the number of cells Nf ∝ Nd/2 on
the fractal set of strange attractor. Indeed, the results for
the overlap measure μ (see Fig. 2) show that these states
have strong overlap with the steady state while the states
with λ → 0 have very small overlap. Thus almost all N
states have eigenvalues λ→ 0 and only a small fraction of
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Fig. 6. (Color online) Fractal Weyl law for three different mod-
els as a function of the dimension of the invariant set d0; the
models and their parameters and symbols are the same as in
Figure 5. The fractal Weyl exponent ν is shown as a function
of fractal dimension d0 of the strange repeller in model 1 and
strange attractor in model 2 and Henon map. The straight
dashed line shows the theoretical dependence ν = d0/2 of
equation (5). The inset shows the relation between the frac-
tal dimension d of trajectories nonescaping in future and the
fractal repeller dimension d0 for the case of model 1; the dashed
straight line shows the theoretical dependence d = d0/2 + 1.

states on the strange attractor Nγ ∝ Nf ∝ Nd/2 � N has
finite values of λ. We also checked that the participation
ratio ξ of the eigenstate of model 2 at λ = 1, defined as
ξ = (

∑
l |ψ1(l)|2)2/

∑
l |ψ1(l)|4, grows as ξ ∼ Nf ∝ Nd/2.

We note that ξ determines an effective number of sites
covered by an eigenstate. This quantity is broadly used
in the mesoscopic solid state systems with disorder (see
e.g. [35]).

The fractal Weyl laws (1) and (4) have two different
exponents ν but they correspond to two different situa-
tions: for (1) the law describes the systems with absorp-
tion when all measure escapes from the system and only a
small fractal set remains inside; for (4) all measure drops
on a fractal set inside the system. Due to that reasons the
exponents are different.

The different dependencies of ν on d in equations (1),
(4) can be reduced to one dependence if to express ν via
the fractal dimension d0 of the invariant sets. Indeed, for
the model (2) all trajectories drop on the strange attractor
which can be considered as an invariant set with the fractal
dimension d0 = d. For the model 1 we have the set of tra-
jectories nonescaping in future with dimension d, there is
also the fractal set of trajectories nonescaping in the past
which has also the dimension d due to symmetry between
the future and the past present in the model 1 (symme-
try to reflection x, y → −x,−y in (2)). Then the invariant
set of a strange repeller corresponds to the intersection of
these two sets of trajectories nonescaping neither in the
future neither in the past with the fractal dimension d0.
As it is known, see e.g. [33], we have 2 = d + d − d0 so
that d = d0/2 + 1. This relation is confirmed by the data
presented in the inset of Figure 6. On the basis of these
relations we can express the fractal Weyl exponent via the

fractal dimension d0 of the invariant set

Nγ ∝ Nν , ν = d0/2. (5)

This global dependence is confirmed by the data shown in
Figure 6.

The numerical data for the one trajectory Ulam
method gives always Nγ ∝ Na. This satisfies the rela-
tion (5) since by definition Na ∝ Nd0/2.

4 Discussion

In summary, our results show that the Ulam method gives
very efficient possibility to study the spectral properties of
the Perron-Frobenius operators for systems with dynam-
ical chaos. Their spectrum is characterized by the frac-
tal Weyl law with the Weyl exponent determined by the
fractal dimension of dynamical system according to rela-
tions (1), valid for systems with absorption or chaotic scat-
tering, or (4), valid for dissipative systems with strange
attractors. The Perron-Frobenius operators naturally ap-
pear in the description of Markov chains. These chains
may have various fractal properties and thus we think that
our results can be applied for analysis of such systems.

For example, Markov chain approach can be applied
for dynamical systems. It is interesting to note that for
dynamical systems the Ulam method naturally generates
directed Ulam networks [29,30] which have certain simi-
larities with the properties of the Google matrix of the
World Wide Web (WWW). However, for the model 2 and
the Hénon map considered above, there is a finite gap be-
tween λ = 1 and other eigenvalues while for the WWW
there is no such gap [36,37]. In this sense the above models
are more close to randomized directed networks considered
in [38] which have a relatively large gap. We note that the
PageRank vector ψ1 with λ = 1, used by Google for rank-
ing of web pages, corresponds in our case to a strange
attractor. In this case the probability pl ∼ ψ1(l) is dis-
tributed over all cells Nf ∝ Nd/2 occupied by the strange
attractor. The number of such cells grows infinitely withN
that corresponds to a delocalized phase of the PageRank
similar to the cases discussed in [29,30]. In contrast to
that the WWW is characterized by a localized PageRank
with an effective finite number of populated sites inde-
pendent of N . In spite of that it is not excluded that the
future evolution of the WWW can enter in a delocalized
regime of the PageRank. Therefore, we think that the frac-
tal Weyl law discussed here can be useful not only for the
Perron-Frobenius operators of dynamical systems but also
for various types of realistic directed networks.
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6. J. Sjöstrand, Duke Math. J. 60, 1 (1990)
7. M. Zworski, Not. Am. Math. Soc. 46, 319 (1999)
8. J. Sjöstrand, M. Zworski, Duke Math. J. 137, 381 (2007)
9. S. Nonnenmacher, M. Zworski, Commun. Math. Phys.

269, 311 (2007)
10. W.T. Lu, S. Sridhar, M. Zworski, Phys. Rev. Lett. 91,

154101 (2003)
11. H. Schomerus, J. Tworzydlo, Phys. Rev. Lett. 93, 154102

(2004)
12. J.P. Keating, M. Novaes, S.D. Prado, M. Sieber, Phys.

Rev. Lett. 97, 150406 (2006)
13. S. Nonnenmacher, M. Rubin, Nonlinearity 20, 1387 (2007)
14. D.L. Shepelyansky, Phys. Rev. E 77, 015202(R) (2008)
15. L. Ermann, G.G. Carlo, M. Saraceno, Phys. Rev. Lett.

103, 054102 (2009)
16. J.M. Pedrosa, G.G. Carlo, D.A. Wisniacki, L. Ermann,

Phys. Rev. E 79, 016215 (2009)
17. B.V. Chirikov, Phys. Rep. 52, 263 (1979)
18. B. Chirikov, D. Shepelyansky, Scholarpedia 3, 3550 (2008)
19. F. Borgonovi, I. Guarneri, D.L. Shepelyansky, Phys. Rev.

A 43, 4517 (1991)
20. G. Casati, G. Maspero, D.L. Shepelyansky, Physica D 131,

311 (1999)
21. S.M. Ulam, A Collection of mathematical problems,

Interscience Tracs in Pure and Applied Mathematics
(Interscience, New York, 1960), Vol. 8, p. 73

22. M. Brin, G. Stuck, Introduction to dynamical systems
(Cambridge Univ. Press, Cambridge, UK, 2002)

23. T.-Y. Li, J. Approx. Theory 17, 177 (1976)
24. M. Blank, G. Keller, C. Liverani, Nonlinearity 15, 1905

(2002)
25. D. Terhesiu, G. Froyland, Nonlinearity 21, 1953 (2008)
26. Z. Kovács, T. Tél, Phys. Rev. A 40, 4641 (1989)
27. G. Froyland, R. Murray, D. Terhesiu, Phys. Rev. E 76,

036702 (2007)
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