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Spectral properties of the Google matrix of the World Wide Web and other directed networks
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We study numerically the spectrum and eigenstate properties of the Google matrix of various examples of
directed networks such as vocabulary networks of dictionaries and university World Wide Web networks. The
spectra have gapless structure in the vicinity of the maximal eigenvalue for Google damping parameter « equal
to unity. The vocabulary networks have relatively homogeneous spectral density, while university networks
have pronounced spectral structures which change from one university to another, reflecting specific properties
of the networks. We also determine specific properties of eigenstates of the Google matrix, including the
PageRank. The fidelity of the PageRank is proposed as a characterization of its stability.
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I. INTRODUCTION

The rapid growth of the World Wide Web (WWW) brings
the challenge of information retrieval from this enormous
database which at present contains about 10'! webpages. An
efficient algorithm for ranking webpages was proposed in [1]
and is now known as the PageRank algorithm (PRA). This
PRA formed the basis of the Google search engine, which is
used by many internet users in everyday life. The PRA al-
lows us to determine efficiently a vector ranking the nodes of
a network by order of importance. This PageRank vector is
obtained as an eigenvector of the Google matrix G built on
the basis of the directed links between WWW nodes (see,

e.g., [2]):
G=aS+(1-a)E/N. (1)

Here S is the matrix constructed from the adjacency matrix
Ay of the directed links of the network of size N, with A
=1 if there is a link from node j to node i and A;;=0 other-
wise. Namely, S;;=A;;/ 2A; if 2,A;;>0, and S;;=1/N if all
elements in the column j of A are zero. The last term in Eq.
(1) with uniform matrix E;;=1 describes the probability 1
—a of a random surfer propagating along the network to
jump randomly to any other node. The matrix G belongs to
the class of Perron-Frobenius operators which describe the
evolution of classical dynamical systems and Markov chains
(the description of general properties of such operators can
be find, e.g., in [3]). For 0<a<1 it has a unique maximal
eigenvalue at A=1, separated from the others by a gap of size
at least 1—a (see, e.g., [2]). The eigenvector associated to
this maximal eigenvalue is the PageRank vector, which can
be viewed as the steady-state distribution for the random
surfer. Usual WWW networks correspond to very sparse
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matrix A and repeated applications of G on a random vector
converges quickly to the PageRank vector, after 50-100 it-
erations for a=0.85 which is the most commonly used value
[2]. The PageRank vector is real non-negative and can be
ordered by decreasing values p;, giving the relative impor-
tance of the node j. It is known that when « varies, all
eigenvalues evolve as a\; where \; are the eigenvalues for
a=1 and i=2,...,N, while the largest eigenvalue \;=1, as-
sociated with the PageRank, remains unchanged [2].

The properties of the PageRank vector for WWW have
been extensively studied by the computer science community
and many important properties have been established [4-8].
For example, it was shown that p; decreases approximately
in an algebraic way p;~ 1/j# with the exponent 8~0.9 [4].
It is also known that typically for the Google matrix of
WWW at a=1 there are many eigenvalues very close or
equal to A=1 and that even at finite «<<1 there are degen-
eracies of eigenvalues with A=« (see, e.g., [9]).

In spite of the important progress obtained during these
investigations of PageRank vectors, the spectrum of the
Google matrix G was rarely studied as a whole. Neverthe-
less, it is clear that the structure of the network is directly
linked to this spectrum. Eigenvectors other than the PageR-
ank describe the relaxation processes toward the steady state
and also characterize various communities or subsets of the
network. Even if models of directed networks of small-world
type [10] have been analyzed, constructed, and investigated,
the spectral properties of matrices corresponding to such net-
works were not so much studied. Generally for a directed
network the matrix G is nonsymmetric and thus the spectrum
of eigenvalues is complex. Recently the spectral study of the
Google matrix for the Albert-Barabasi (AB) model [11] and
randomized university WWW networks was performed in
[12]. For the AB model the distribution of links is typical of
scale-free networks [10]. The distribution of links for the
university network is approximately the same and is not af-
fected by the randomization procedure. Indeed, the random-
ization procedure corresponds to the one proposed in [13]
and is performed by taking pairs of links and inverting the
initial vertices, keeping unchanged the number of ingoing
and outgoing links for each vertex. It was established that the
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spectra of the AB model and the randomized university net-
works were quite similar. Both have a large gap between the
largest eigenvalue \;=1 and the next one with |[\,|=~0.5 at
a=1. This is in contrast with the known property of WWW
where \, is usually very close or equal to unity [2,9]. Thus it
appears that the AB model and the randomized scale-free
networks have a very different spectral structure compared to
real WWW networks. Therefore it is important to study the
spectral properties of examples of real networks (without
randomization).

In this paper, we thus study the spectra of Google matri-
ces for the WWW networks of several universities and show
that indeed they display very different properties compared
to random scale-free networks considered in [12]. We also
explore the spectra of a completely different type of real
network, built from the vocabulary links in various dictionar-
ies. In addition, we analyze the properties of eigenvectors of
the Google matrix for these networks. A special attention is
paid to the PageRank vector and in particular we characterize
its sensitivity to « through a new quantity, the PageRank
fidelity.

The paper is organized as follows. In Sec. II we give the
description of the university and vocabulary networks whose
Google matrices we consider. The properties of spectra and
eigenstates are investigated in Sec. III. The fidelity of Pag-
eRank and its other properties are analyzed in Sec. IV. Sec-
tion V explores various models of random networks for
which the spectrum can be closer to the one of real networks.
The conclusion is given in Sec. VI.

II. DESCRIPTION OF NETWORKS OF UNIVERSITY
WWW AND DICTIONARIES

In order to study the spectra and eigenvectors of Google
matrices of real networks, we numerically explored several
systems.

Our first example consists in the WWW networks of UK
universities, taken from the database [14]. The vertices are
the HTML pages of the university websites in 2002. The
links correspond to hyperlinks in the pages directing to an-
other webpage. To reduce the size of the matrices in order to
perform exact diagonalization, only webpages with at least
one outlink were considered. There are still dangling nodes,
despite of this selection, since some sites have outlinks only
to sites with no outlink. We checked on several examples that
the general properties of the spectra were not affected by this
reduction in size. We present data on the spectra from five
universities:

(i) University of Wales at Cardiff (www.uwic.ac.uk), with
2778 sites and 29 281 links.

(ii) Birmingham City University (www.uce.ac.uk); 10 631
sites and 82 574 links.

(iii) Keele University (Staffordshire) (www.keele.ac.uk);
11 437 sites and 67 761 links.

(iv) Nottingham Trent
12 660 sites and 85 826 links.

(v) Liverpool John Moores University (www.livjm.ac.uk);
13 578 sites and 11 1648 links.

University (www.ntu.ac.uk);

PHYSICAL REVIEW E 81, 056109 (2010)

A much larger sample of university networks from the
same database was actually used, including universities from
the US, Australia, and New Zealand, in order to ensure that
the results presented were representative.

As opposed to the full spectrum of the Google matrix, the
PageRank can be computed and studied for much larger ma-
trix sizes. In the studies of Sec. IV, we therefore included
additional data from the university networks of Oxford in
2006 (www.oxford.ac.uk) with 173 733 sites and 2 917 014
links taken from [14], and the network of Notre Dame Uni-
versity from the US taken from the database [15] with
325729 sites and 1497 135 links (without removing any
node).

In addition, we also investigated several vocabulary net-
works constructed from dictionaries; the network data were
taken from [16].

(i) Roget dictionary (1022 vertices and 5075 links) [17].
The 1022 vertices correspond to the categories in the 1879
edition of Roget’s Thesaurus of English Words and Phrases.
There is a link from category X to category Y if Roget gave
a reference to Y among the words and phrases of X or if the
two categories are related by their positions in the book.

(ii) Online Dictionary of Library and Information Science
(ODLIS), version December 2000 [18] (2909 vertices and
18419 links). A link (X,Y) from term X to term Y is created
if the term Y is used in the definition of term X.

(iii) Free On-Line Dictionary of Computing (FOLDOC)
[19] (13 356 vertices and 120 238 links). A link (X,Y) from
term X to term Y is created if the term Y is used in the
definition of term X.

Distribution of ingoing and outgoing links for the univer-
sity WWW networks is similar to those of much larger
WWW networks discussed in [4,8,10]. An example is shown
in the Appendix for the network of Liverpool John Moores
University, together with data from AB models discussed in
[12] (see Fig. 12).

II1. PROPERTIES OF SPECTRUM AND EIGENSTATES

To study the spectrum of the networks described in the
previous section, we construct the Google matrix G associ-
ated to them at a=1. After that the spectrum \; and right
eigenstates ¢; of G (satisfying the relation Gi;=\;if;) are
computed by direct diagonalization using standard linear al-
gebra (LAPACK) routines. Since G is generally a nonsym-
metric matrix for our networks, the eigenvalues \; are dis-
tributed in the complex plane, inside the unit disk [\;|=1.

The spectrum for our eight networks is shown in Fig. 1.
An important property of these spectra is the presence of
eigenvalues very close to A=1 and moreover we find that
A=1 eigenvalue has significant degeneracy. It is known that
such an exact degeneracy is typical for WWW networks (see,
e.g., [8,9]), and the absence of spectral gap has been seen in
other real networks [20]. In addition to this exact degeneracy,
there are quasidegenerate eigenvalues very close to A=1. It
is important to note that these features are absent in the spec-
tra of random networks studied in [12] based on the AB
model and on the randomization of WWW university
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FIG. 1. Distribution of eigenvalues \; of Google matrices in the
complex plane at a=1 for dictionary networks: Roget
(A,N=1022), ODLIS (B,N=2909), and FOLDOC (C,N=13 356);
university WWW networks: University of Wales (Cardiff)
(D,N=2778), Birmingham City University (E,N=10 631), Keele
University (Staffordshire) (F,N=11 437), Nottingham Trent Uni-
versity (G,N=12 660), Liverpool John Moores University (H,N
=13 578)(data for universities are for 2002).

networks, where the spectrum is characterized by a large
gap between the first eigenvalue \;=1 and the second one
with |\,|=0.5. For example, the spectrum shown in
Fig. 1 panel H corresponds to the same university whose
randomized spectrum was displayed in Fig. 1 (bottom panel)
in [12]. Clearly the structure of the spectrum becomes very
different after randomization of links. Another property of
the spectra displayed in Fig. 1 that we want to stress is the
presence of clearly pronounced structures which are different
from one network to another. The structure is less pro-
nounced in the case of the three spectra obtained from dic-
tionary networks. In this case, the spectrum is flattened, be-
ing closer to the real axis. In contrast, for the WWW
university networks, the spectrum is spread out over the unit
disk. However, there is still a significant fraction of
eigenvalues close to the real axis. We understand this feature
by the existence of a significant number of symmetric ingo-
ing and outgoing links (48% in the case of the Liverpool
John Moores University network), which is larger compared
to the case of randomized university networks considered in
[12].

To characterize the spectrum, we introduce the relaxation
rate y defined by the relation |\|=exp(-7/2). For character-
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FIG. 2. (Color online) Top: Roget dictionary, a=1. Top panel:
normalized density of states W (red/gray) obtained as a derivative of
a smoothed version of the integrated density (smoothed over a small
interval Ay varying with matrix size), integrated density is shown in
black. Bottom panel: PAR of eigenvectors as a function of vy; de-
generacy of A=1 is 18 (note that the value W(0) corresponds to
eigenvalues with |\|=1). Bottom: ODLIS dictionary, same as top;
degeneracy of A=1 is 4.

ization of eigenvectors #;(j), we use the participation ratio
(PAR) defined by &=(Z;|¢()|)?*/Z|¢;(j)|*. This quantity
gives the effective number of vertices of the network con-
tributing to a given eigenstate ¢;; it is often used in solid-
state systems with disorder to characterize localization prop-
erties (see, e.g., [21]). The dependence of the density of
states W(y) in vy, which gives the number of eigenstates in
the interval [y, y+dy], is shown in Figs. 2-5 (top panels).
The normalization is chosen such that [JW(y)dy=1,
corresponding to the total number of eigenvalues N
(equal to the matrix size). We also show the integrated ver-
sion of this quantity in the same panels. In the same figures
we show the PAR ¢ of the eigenstates as a function of 7y
(bottom panels).

It is clear that for the dictionary networks the density of
states W depends on 7y in a relatively smooth way, with a
broad maximum at y=1-2. The distribution of PAR has
also a maximum at approximately the same values. The case
of the dictionary FOLDOC is a bit special, showing a bimo-
dal distribution which is also clearly seen in the dependence
of & on 7. This comes from the fact that the distribution of
eigenvalues in Fig. 1 (panel C) is highly asymmetric with
respect to the imaginary axis. The latter case has also no
degeneracy at A=1. In these three networks the density of
states decreases for <y approaching 0. We note that the
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FIG. 3. (Color online) Top: FOLDOC dictionary, same as Fig. 2;
degeneracy of A=1 is 1; Bottom: University of Wales (Cardiff),
same as top; degeneracy of A=1 is 69.

integrated version of the density of states reaches a plateau
for y=6-7. This saturation value is less than 1, meaning
that a certain nonzero fraction of eigenvalues are extremely
close to A=0.
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FIG. 4. (Color online) Top: Birmingham City University, same
as Fig. 2; degeneracy of A=1 is 71; Bottom: Keele University
(Staffordshire), same as top; degeneracy of A=1 is 205.
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FIG. 5. (Color online) Top: Nottingham Trent University, same
as Fig. 2; degeneracy of A=1 is 229. Bottom: Liverpool John
Moores University, same as top; degeneracy of A=1 is 109; other
degeneracy peaks correspond to N=1/2 (16), A=1/3 (8); A\=1/4
(947), N=1/5 (97), being located at y=-2 In \; other degeneracies
are also present, e.g., A=1/12 (41).

For the WWW university networks, the density of states is
much more inhomogeneous in y. Even if a broad maximum
is visible, there are sharp peaks at certain values of y. The
sharpest peaks correspond to exact degeneracies at certain
complex values of N. The degeneracies are especially visible
at the real values A=1/2, A=1/3, and other 1/n with integer
values of n. We attribute this phenomenon to the fact that the
small number of links gives only a small number of different
values for the matrix elements of the matrix G. For the uni-
versity networks, the degeneracy at A=1 is much larger than
in the case of dictionaries. The integrated densities of states
show visible vertical jumps which correspond to the degen-
eracies; their growth saturates at y=7 showing that about
30-50 % of the eigenvalues are located in the vicinity
of A=0.

The PAR distribution for the university networks fluctu-
ates strongly even if a broad maximum is visible. Typical
values have &= 100, which is small compared to the matrix
size N~ 10* This indicates that the majority of eigenstates
are localized on certain zones of the network. This does not
exclude that certain eigenstates with a larger & will be delo-
calized on a large fraction of the network in the limit of very
large N.

The exact G matrix diagonalization requires significant
computer memory and is practically restricted to matrix size
N of about N<30000. However, real networks such as
WWW networks can be much larger. It is therefore important
to find numerical approaches in order to obtain the spectrum
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FIG. 6. (Color online) Cloud of eigenvalues for Liverpool John
Moores University, a=1. Circles: full matrix N=13 578. Stars:
truncated matrix of size 8192 (left) and 4096 (right).

of large networks using approximate methods. A natural pos-
sibility is to order the sites through the PageRank method
and to consider the spectrum of the (properly renormalized)
truncated matrix restricted to the sites with PageRank larger
than a certain value. In this way, the truncation takes into
account the most important sites of the network. The effect
of such a truncation is shown in Fig. 6 for the largest net-
work of our sample. The numerical data show that the global
features of the spectrum are preserved by moderate trunca-
tion, but individual eigenvalues deviate from their exact val-
ues when more than 50% of sites are truncated. Probably
future developments of this approach are needed in order to
be able to truncate a larger fraction of sites.

IV. FIDELITY OF PAGERANK AND ITS OTHER
PROPERTIES

In the previous section we studied the properties of the
full spectrum and all eigenstates of the G matrix for several
real networks. The PageRank is especially important since it
allows to obtain an efficient classification of the sites of the
network [1,2]. Since the networks usually have small number
of links, it is possible to obtain the PageRank by vector it-
eration for enormously large size of networks as described in
[1,2].

Due to this significance of the PageRank, it is important
to characterize its properties. In addition, it is important to
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FIG. 7. (Color online) PAR ¢ of PageRank as a function of « for
University of Wales (Cardiff) (black/dashed), Notre-Dame (blue,
dotted), Liverpool John Moores University (red/long dashed), and
Oxford (green/solid) Universities (curves from top to bottom at a
=0.6). Network sizes vary from N=2778 to N=325 729. Inset is a
zoom for data from Oxford University close to a=1.
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FIG. 8. (Color online) Some PageRank vectors p; for Notre-
Dame University (top panel) and Oxford (bottom panel). From top
to bottom at log;o(i)=5: a=0.49 (black), 0.59 (red), 0.69 (green),
0.79 (blue), 0.89 (violet), and 0.99 (orange). Dashed line indicates
the slope —1.

know how sensitive the PageRank is with respect to the
Google parameter (damping parameter) « in Eq. (1). The
localization property of the PageRank can be quantified
through the PAR ¢ defined above. The dependence of &€ on «
is shown in Fig. 7 for four university WWW networks, in-
cluding two from Fig. 1 (panels D and H) and two of much
larger sizes (Notre Dame and Oxford). For «—0 the PAR
goes to the matrix size since the G matrix is dominated by
the second part of Eq. (1). However, in the interval 0.4 <«
< 0.9 the dependence on « is rather weak, indicating stability
of the PageRank. For 0.9 <<« <1 the PAR value has a local
maximum where its value can be increased by a factor of
2-3. We attribute this effect to the existence of an exact
degeneracy of the eigenvalue A=1 at a=1, discussed in the
previous section. In spite of this interesting behavior of £ in
the vicinity of @=1, the value of & which gives the effective
number of populated sites, remains much smaller than the
network size. In other models considered in [12,22], a delo-
calization of the PageRank was observed for some « values
so that & was growing with system size N. For the WWW
university networks considered here, delocalization is clearly
absent (network sizes in Fig. 7 vary over two order of mag-
nitudes). This is in agreement with the value of the exponent
B=0.9 for the PageRank decay, which was found for large
samples of WWW data in [4,8]. Indeed, for that value of S,
PAR should be independent of system size.

Our data for PageRank distribution also show its stability
as a whole for variation in « in the interval 0.4 < a<<0.9, as
it is shown in Fig. 8.
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FIG. 9. (Color online) PageRank fidelity f(«,a’) for Notre-
Dame University (N=325729); top panel: f(a,a’=0.85)
=|(y(@)| 4(0.85))|? [see Eq. (2)]; bottom panel: color density plot of
fla,a’).

The sensitivity of the PageRank with respect to & can be
more precisely characterized through the PageRank fidelity
defined as

flaa)= | 2 (.., 2)
J

where ¢,(j, @) is the eigenstate at A\=1 of the Google matrix
G with parameter « in Eq. (1); here the sum over j runs over
the network sites (without PageRank reordering). We remind
that the eigenvector #,(j,@) is normalized by =i(j, )
=1. Fidelity is often used in the context of quantum chaos
and quantum computing to characterize the sensitivity of
wave functions with respect to a perturbation [23,24]. The
variation in this quantity with « and &' is shown in Fig. 9.
The fidelity reaches its maximum value f=1 for a=a’. Ac-
cording to Fig. 9 (bottom panel), the stability plateau where
fidelity remains close to 1, indicating stability of PageRank,
is broadest for @=0.5. This is in agreement with previous
results presented in [25], where the same optimal value of «
was found based on different arguments.

V. SPECTRUM OF MODEL SYSTEMS

The results obtained in [12] compared to those presented
in the previous section show that while the spectrum of the
network has a large gap between A=1 and the other eigen-
values, still certain properties of the PageRank can be similar
in both cases (e.g., the exponent B). In fact the studies per-
formed in the computer science community were often based
on simplified models, which can nevertheless give the value
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FIG. 10. Spectrum of eigenvalues \ in the complex plane for the
Avrachenkov-Lebedev model [6], with N=2'" (network size),
a=0.85, m=5 outgoing links per node. Multiplicity of links is taken
into account in the construction of G.

of B close to the one of real networks. For example, the
model studied by Avrachenkov and Lebedev [6] allows us to
obtain analytical expressions for 8 with a value close to the
one obtained for WWW. It is interesting to see what are the
spectral properties of this model. In Fig. 10 we show the
spectrum for this model for «=0.85. Our data show that this
model has an enormous gap, thus being very different from
spectra of real networks shown in Fig. 1.

The above results, together with those of [12], show that
many commonly used network models are characterized by a
large gap between A=1 and the second eigenvalue, in con-
trast with real networks. In order to build a network model
where this gap is absent, we introduce here what we call the
color model. It is an extension of the AB model that allows
to obtain results for the spectral distribution that are closer to
real networks. We divide the nodes into n sets (“colors”),
allowing n to grow with network size. Each node is labeled
by an integer between 0 and n—1. At each step, links and
nodes are added as in the AB model but also with probability
7 the new node is introduced with a new color. The only
links authorized between nodes are links within each set.
Such a structure implies that the second eigenvalue of matrix

0.2F

-0.4¢ 1
0402 0 02 04 06 08 1

FIG. 11. Spectrum of eigenvalues \ in the complex plane for the
color model, N=2"3, p=0.2, ¢=0.1, and «=0.85. Nodes are divided
into n color sets labeled from i=0 to n—1; nodes and links are
created according to AB model; only authorized links are links
within a color set i. This rule is broken with probability e=1073. We
start with three color sets; with probability 7 a new color is intro-
duced (we take =1072). In the example displayed, when the num-
ber of nodes reaches N, n=83 colors.
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G is real and exactly equal to a [26]. The colors correspond
to communities in the network, in the sense that each color
represents a set of nodes with links only within the set.

In order to have a more realistic model, we allow for the
rule for links to be broken with some probability €. That is,
at each time step an link between two nodes is chosen at
random according to the rules of the AB model. Then if it
agrees with the color rule above it is used; if it does not then
with probability 1—g¢ it is just omitted, and with probability &
it is nevertheless added.

The spectrum of this color model is shown in Fig. 11 for
a=0.85. The second eigenvalue is now exactly at A=0.85,
demonstrating the absence of a gap. There is also a set of
eigenvalues which is located on the real line, but the majority
of states remains inside a circle [\| <0.3 as in the AB model.

Thus the color model allows to eliminate the gap but still
the distribution of eigenvalues N\ in the complex plane re-
mains different from the spectra of real networks shown in
Fig. 1: the structures prominent in real networks are not vis-
ible, and eigenvalues in the gap are concentrated only on the
real axis or close to it.

VI. CONCLUSION

In this work we performed numerical analysis of the spec-
tra and eigenstates of the Google matrix G for several real
networks. The spectra of the analyzed networks have no gap
between first and second eigenvalues, in contrast with com-
monly used scale-free network models (e.g., AB model). The
spectra of university WWW networks are characterized by
complex structures which are different from one university to
another. At the same time, PageRank of these university net-
works look rather similar. In contrast, the Google matrices of
vocabulary networks of dictionaries have spectra with much
less structure.

These studies show that usual models of random scale-
free networks miss many important features of real networks.
In particular, they are characterized by a large spectral gap,
which is generally absent in real networks. The absence of
this gap has been linked to the presence of community struc-
tures in the network [8,9,20,26]. In the language of dynami-
cal systems, the physical origin of this gap can be related to
the known property of small-world and scale-free networks
that only logarithmic time (in system size) is needed to go
from any node to any other node (see, e.g., [10]). Due to that,
the relaxation process in such networks is fast and the gap,
being inversely proportional to this time, is accordingly very
large. In contrast, the presence of weakly coupled communi-
ties in real networks makes the relaxation time very large, at
least for certain configurations. An interesting future investi-
gation would be to use algorithms for community detection
(such as the ones reviewed in [27]), in order to assess the
precise link between the distributions of eigenvalues of the
Google matrix and the community structures for the net-
works considered. It is also desirable to construct new ran-
dom scale-free models which could capture in a better way
the actual properties of real networks. The color model
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presented here is a first step in this direction. We note that
Ulam networks built from dynamical maps can capture cer-
tain properties of real networks in a relatively good manner
[22,28]. In these latter networks, it is possible to have a
delocalization of the PageRank when « or map parameters
vary; we did not observe such feature here.

Indeed, our data show that the PageRank remains local-
ized for all values of a>0.3. We also showed that the use of
the fidelity as a quantity to characterize the stability of Pag-
eRank enables to identify a stability plateau located around
a=0.5.

We think that future investigation of the spectral proper-
ties of the Google matrix will open new access to identifica-
tion of important communities and their properties which can
be hidden in the tail of the PageRank and hardly accessible
to classification by the PageRank algorithm. Furthermore,
the degeneracies at various values of N and the characteristic
patterns directly visible in the spectra of the Google matrix
should allow to identify other hidden properties of real net-
works.
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APPENDIX

Here we show in Fig. 12 the distributions of links for the
AB model discussed in [12] and for the university WWW
network (panel H of Fig. 1).

log k

FIG. 12. (Color online) Cumulative distribution of ingoing links
Pé”(k) (top panel) and of outgoing links P2"(k) (bottom panel) for
the AB model with vector size N=2'4, for ¢=0.1 (black/solid) and
g=0.7 (red/dashed), data are averaged over 80 realizations of AB
model, and for the network of Liverpool John Moores University
with N=13578, (panel H in Fig. 1) (blue/dotted). Average number
of ingoing or outgoing links is (k)=6.43 for g=0.1, (k)=14.98 for
q=0.7, (k)=8.2227 for LJMU. Dashed straight line indicates the
slope —1. Logarithms are decimal.
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