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Poincaré recurrences in Hamiltonian systems with a few degrees of freedom
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The statistics of Poincaré recurrences in Hamiltonian systems with a few degrees of freedom is
studied by numerical simulations. The obtained results show that in a regime, where the measure
of stability islands is significant, the decay of recurrences is characterized by a power law at asymp-
totically large times. The exponent of this decay is found to be β ≈ 1.3. This value is smaller
compared to the average exponent β ≈ 1.5 found previously for two-dimensional symplectic maps
with divided phase space.

PACS numbers: 05.45.-a, 05.45.Ac, 05.45.Jn

According to the Poincaré recurrence theorem proven
in 1890 [1] a dynamical trajectory with a fixed energy and
bounded phase space will always return, after a certain
time, to a close vicinity of an initial state. This famous
result was obtained in relation to the studies of the three
body gravitational problem which fascinating history can
be find in [2]. While recurrences will definitely take place
a question about their properties, or what is a statistics
of Poincaré recurrences, still remains an unsolved prob-
lem. The two limiting cases of periodic or fully chaotic
motion are well understood: in the first case recurrences
are periodic while in the latter case the probability of
recurrences P (t) with time being larger than t drops ex-
ponentially at t → ∞ (see e.g. [3, 4]). The latter case is
analogous to a coin flipping where a probability to drop
on one side after t flips decays as 1/2t.
However, the statistics of Poincaré recurrences for

generic two-dimensional (2D) symplectic maps is much
more rich. Such systems generally have a divided phase
space where islands of stable motion are surrounded by a
chaotic component [5, 6]. In such a case trajectories are
sticking around stability islands and recurrences decay
algebraically with time

P (t) ∝ 1/tβ , β ≈ 1.5 . (1)

The studies and discussions of this behavior can be find
in [7–13] and Refs. therein.
While the statistics of Poincaré recurrences in 2D maps

has been studied in great detail [7–13], the original three
body problem with a few degrees of freedom N = 9 ad-
dressed by Poincaré [1] (effective number of degrees of
freedom is Neff = 6 if to exclude the center of mass mo-
tion), has not been studied yet according to my knowl-
edge. Thus in this work I study the statistics of Poincaré
recurrences in a model system for 4 ≤ N ≤ 8.
To reach a high efficiency of numerical simulations I

use a dynamical map

p̄n = pn + (K/2π)(sin(2π(xn − xn−1))

+ sin(2π(xn − xn+1))) ,

x̄n = xn + p̄n , (2)
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FIG. 1: (Color online) Dependence of statistics of Poincaré
recurrences P (t) on time t for N = 8 and parameter K =
1, 0.6, 0.4 (full curves from left to right at log

10
P = −4) and

for N = 6 and K = 0.6, 0.4 (dashed curves from left to right
at log

10
P = −4). Here P(t) is an integrated probability of

recurrences with time larger than t; recurrences are considered
on line pn = 0, sum is taken over all N degrees of freedom.

which was studied numerically in [14–16]. Here bars
mark new values of dynamical variables after one map
iteration. Periodic boundary conditions are used in
xn(mod1) and pn(mod1) with −0.5 ≤ pn ≤ 0.5. The
map is symplectic. I use N particles, 1 ≤ n ≤ N , with
a periodic boundary conditions in n(modN). For N = 1
the map (2) is equivalent to the Chirikov standard map
[5] (assuming that all variables for n > 1 are equal to
zero). The properties of P (t) for this case can be find
at [9, 11–13] and Refs. therein. For a number of parti-
cles N > 2 the total momentum of the whole system is
preserved so that one can say that this situation corre-
sponds effectively to Neff = N−1/2 degrees of freedom.
In the following I consider 4 ≤ N ≤ 8. The recurrences
are considered on line pn = 0 for each particle, the in-
tegral probability of recurrences, averaged over all par-
ticles, is defined as a total integral probability P (t) of
recurrences with time larger than time t, which is mea-
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FIG. 2: (Color online) Same as in Fig.1 for K = 0.6 and
N = 4, 6, 8 (left group of blue/black full, dashed and dotted
curves from right to left at log

10
P = −8 respectively) and

for K = 0.4 and N = 4, 6, 8 (right group of violet/gray full,
dashed and dotted curves from right to left at log

10
P = −8

respectively). The data are obtained from one trajectory with
the total number of iterations ttot = 1012 (for N = 8 I used
ttot = 1011).

sured in number of map iterations. As in [9, 11], to com-
pute P (t) I usually used one trajectory iterated up to
time ttot ≤ 1012. Special checks with other trajectories
or other ttot unsure that P (t) remains unchanged in the
limit of statistical fluctuations which appear only when
the number of recurrences becomes of the order of a few
events.
An example of dependence of P (t) on t is shown in

Fig.1 for relatively short times and large N when the dy-
namics is mainly fully chaotic. The initial decay drops ex-
ponentially P (t) ∝ exp(−t/tD) with a certain time scale
tD which depends on K. The dependence of tD on N
is relatively weak since up to a certain time P (t) curves
are practically independent of N (see Figs. 1,2). At large
times the exponential decay is replaced by a power law
decay which is well visible for N = 4, 6 in Fig. 2.
The time scale tD is related to a diffusive spreading

in pn characterized by a diffusion rate D =< p2n > /t.
Indeed, for a diffusive process on an interval of size π,
described by the Fokker-Plank equation

∂ρ/∂t = D/2 ∂2ρ/∂2t , (3)

with the relaxation rate 1/tD = D/π2. Thus with this
relation one can extract from the initial exponential drop
of P (t) the relaxation time tD and from it the diffusion
rate D. In such a way I obtain the dependence of D on
K and N . As discussed above the dependence on N is
very weak and can be neglected. On the contrary the
dependence of tD and D on K is very strong as it is
shown in Fig. 3.
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FIG. 3: (Color online) Dependence of the diffusion rate D on
chaos parameter K (points). The dashed curve is drown to
adapt an eye, the full straight line shows the fit of last points
with D = aKb and log

10
a = 0.725, b = 5.93 ± 0.22.

The dependence D(K) has a few interesting features.
For K = 1 I find D ≈ 1/2 that corresponds to a random
phase approximation valid in a regime of strong chaos.
With a decrease ofK the diffusion drops rapidly, at small
values of K one has approximately algebraic decay D ∝
Kb with the exponent b = 5.93± 0.22. This value of the
exponent is in a good agreement with the values obtained
in [14, 16] which are b = 6.6 and b = 6.3 respectively. It
should be stressed that the methods of computation of D
in [14, 16] were rather different compared to those used
here.

In fact an enormously powerful numerical method has
been used by Chirikov and Vecheslavov [16] to compute
an extremely small rate of the fast Arnold diffusion (down
to D ∼ 10−44 at K ≈ 8 × 10−7 and N = 16). This
diffusion appears in very tiny chaotic layers around multi-
dimensional resonances. By its structure, the method
used in [16] determines the diffusion in a local domain of
phase space while the method used here gives the global
diffusion. The agreement between two methods shows
that these two diffusion coefficient are approximately the
same.

In these studies I want to analyze how this chaotic
web influence the statistics of Poincaré recurrences. Of
course one is not able to go to so small values of K but
also in a certain sense one does not need this. The alge-
braic decay of P (t) appears due to sticking of trajectories
around stability islands so that one simply needs to have
a significant measure of stability islands.

The data of Fig. 2 show that for N = 8 one has
practically only an exponential decay of P (t) indicating
that the measure of stable component is of the order of
µs ∼ tP (t) < 10−8 for K = 0.6 and µs < 10−5 for
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FIG. 4: (Color online) Statistics of Poincaré recurrences for
the map (1) shown by curves for parameters N = 4, K =
1, 0.6, 0.4, 0.3, 0.2 (curves from left to right at log

10
P = −8

respectively). The exponents β for the power law decay
P (t) ∝ 1/tβ are 1.243 ± 0.001, 1.292 ± 0.002, 1.385 ± 0.003,
1.427±0.007, 1.476±0.005 respectively. The full straight line
shows the dependence P (t) ∝ 1/tβ with β = 1.30± 0.003 cor-
responding to the average of above 5 values of β. The dashed
straight line shows the diffusive decay P (t) ∝ 1/

√
t. For each

K the data are obtained from one trajectory with the total
number of iterations ttot = 1012.

K = 0.4 (I use the relation between µ and P (t) discussed
in [9, 11]). For N = 6 the algebraic decay becomes to
be visible at large t showing that the measure of stability
islands starts to be reachable for ttot = 1012.
The power law decay of P (t) is most visible for N = 4

case shown in Fig. 4. Initially there is a slow decay of
P (t) which is compatible with a diffusive spreading on a
semi-infinite line with P (t) ∝ 1/

√
t (see e.g. discussion

at [7]). Since tD grows significantly with the decrease of
K the range of this diffusive decay of P (t) increases when
K → 0. However, already for K ≤ 0.07 the measure of
chaotic component becomes rather small and one needs
to use special methods described in [16] to be able to
place initial conditions inside tiny chaotic layers. Due to
these reasons I stop at values of K ≤ 0.1. In any case
for small K the time tD becomes very large and a lot of
computational time becomes lost for not very interesting
diffusive decay.
After the time scale tD a trajectory starts to feel a

finite width of the chaotic layer with −1/2 ≤ pn ≤ 1/2
and an algebraic decay due to sticking around islands
starts to be dominant. In this regime I find the exponent
β = 1.3. The statistical error of this value is rather small
but certain oscillations in logarithmic scale of time are
visible for K = 0.6, 0.4, 0.3 so that the real uncertainty
of β can be larger. At the same time I should note that

the amplitude of these oscillations is significantly smaller
compared to the case of 2D symplectic maps discussed in
[8, 9, 11, 12],

In conclusion, the studies of the statistics of Poincaré
recurrences in Hamiltonian systems with a few degrees of
freedom show that at large times it is characterized by
a power law decay (1) with the exponent β ≈ 1.3. This
value is not so far from the average exponent β ≈ 1.5
found for the 2D symplectic maps. It is possible that
the physical mechanisms of this slow decay have similar
grounds related to sticking of trajectories in a vicinity
of small islands of stability for enormously long times.
Further extensive studies are required to understand in a
deeper way the detailed mechanisms of this slow decay.
Even more than hundred twenty years after the work
of Poincaré [1] this fundamental problem of dynamical
chaos remains unsolved.

I thank A.S. Pikovsky for stimulating discussions that
initiated this work.
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