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Abstract. We study the properties of a Wigner crystal in snaked nanochannels and show that they are
characterized by a conducting sliding phase at low charge densities and an insulating pinned phase above a
critical charge density. The transition between these phases has a devil’s staircase structure typical for the
Aubry transition in dynamical maps and the Frenkel-Kontorova model. We discuss the implications of this
phenomenon for charge density waves in quasi-one-dimensional organic conductors and for supercapacitors

in nanopore materials.

1 Introduction

The Wigner crystal [1] appears in a great variety of phys-
ical systems including electrons in two-dimensional semi-
conductor samples and one-dimensional (1D) nanowires
(see review [2] and Refs. therein), electrons on a surface
of liquid helium [3], cold ions in radio-frequency traps [4]
and dusty plasma in laboratory or in space [5]. Effects of
Coulomb interactions are clearly seen experimentally in
nanowires and carbon nanotubes [6-10]. Also interaction
effects for electrons in microchannels on a surface of liquid
helium have been recently observed experimentally [11].
In view of this remarkable progress it is interesting to in-
vestigate sliding and conducting properties of the Wigner
crystal in wiggled or snaked nanochannels. The interest
to such studies goes back to the Little suggestion [12,13]
on electron conduction in long spine conjugated polymers
where he proposed an approach for synthesizing organic
superconductors. A modern overview discussion of this im-
portant suggestion is given in [14]. A schematic image of
electron transport in such organic molecules is shown in
Figure la. According to this picture long molecules form
wiggling channels which in principle can support electron
transport along them. However, the Coulomb interactions
between electrons are rather strong at such small scales
and thus it is not obvious under what conditions a slid-
ing of Wigner crystal along such channels is possible. This
problem is related to the conduction properties of charge
density waves (CDW) (see e.g. reviews [14,15]). To study
this phenomenon we choose a simple model of 1D snaked
channel shown in Figure 1b. There is no potential gradi-
ent along the channel but the channel walls are assumed
to be very high so that electrons can move only along the
channel.
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Fig. 1. (Color online) (a) A schematic image of the Little
suggestion for electron transport in organic molecules (af-
ter [12-14]). (b) A schematic image of electron Wigner
crystal with charges e; (points) sliding in a snaked sinu-
soidal nanochannel, dashed lines show force directions between
nearby electrons.

In addition, the properties of Wigner crystal in snaked
nanochannels are also useful for the understanding mech-
anisms of charge storage in electrochemical capacitors, or
supercapacitors, which start to have important industrial
applications [16,17]. In these systems, charged ions are
stored in nanopores at the surface of the carbon-activated
material which has enormously large capacitance C' going
beyond the meanfield values given by the Helmholtz the-
ory [18,19]. At nanoscale the wiggling of pores is definitely
present and makes our studies rather timely.

Due to sinusoidal channel wiggling the Wigner crystal
moves in a certain effective periodic potential. The case
of a sliding 1D Wigner crystal in a periodic energy po-
tential was analyzed in [20] having in mind an example of
ion chains in optical lattices. It was shown there that this
problem can be locally reduced to the Frenkel-Kontorova
model for a particle spring chain in a periodic poten-
tial [21] with particle positions described by the Chirikov
standard map [22]. For a small amplitude of periodic po-
tential the Wigner crystal with an incommensurate ion
density can slide in an optical lattice but above a cer-
tain critical amplitude of potential the crystal is pinned
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by the lattice due to the Aubry analyticity breaking tran-
sition [23]. In the pinned phase the phonon spectrum has
a gap for long wave excitations so that this regime corre-
sponds to an insulating phase. This situation corresponds
to a dynamical spin glass phase with exponentially many
stable classical configurations being exponentially close to
a ground state at a fixed electron density [20]. The Frenkel-
Kontorova model is characterized by similar classical and
quantum properties [24,25]. The presence of many energy
configurations being exponentially close in energy to the
ground state is a characteristic feature of spin glass sys-
tems (see e.g. [26]) where disorder is intrinsically present
e.g. in spin couplings. In contrast, models of the Frenkel-
Kontorova type have no intrinsic disorder being character-
ized by a well defined rather simple Hamiltonian. However,
due to nonlinearity of interactions they have exponentially
many quasi-stable configurations that leads to very long
relaxation times. As a result they have been called dy-
namical spin glass [20,24,25]. Akin to dynamical chaos,
the word dynamical means that randomness appears due
to dynamical deterministic equations and not due to ex-
ternal imposed disorder.

At sufficiently large values of effective Planck constant
a quantum instanton tunneling between these quasidegen-
erate configurations leads to a zero-temperature quantum
phase transition at which point the quantum Wigner crys-
tal becomes conducting [20]. In the following we show
that the main elements of this physical picture remain
valid for the Wigner crystal in snaked nanochannels which
are however characterized by enormously sharp changes
of conducting properties. We also show that the sliding
conditions for the Wigner snake in a wiggled nanochannel
have striking differences compared to the usual case of the
Frenkel-Kontorova model.

In Section 2 we provide the description of the model
and present the numerical results. The discussion is given
in Section 3.

2 Model description and numerical results

We start our analysis from the case of classical elec-
trons with Coulomb interactions moving in a snaked nano-
channel shown in Figure 1b. In this case the total system
energy F is given by a sum over all Coulomb interactions.
Due to strong nonlinearity of the system the minimal en-
ergy configurations should be found numerically using the
methods described in [20,23-25]. We take a finite num-
ber of electrons N for L periods of a channel of finite
length. In numerical simulations we put the channel on a
cylindrical surface in 3D with electron coordinates being
x; = Lsin(s; /L), y; = Lcos(s;/L), z = asin(s;) where s;
is coordinate along channel for electron i. Thus the chan-
nel, filled by NN electrons, wiggles in the z-direction mak-
ing L periodic oscillations along cylinder of radius L with
periodic boundary conditions. The Coulomb energy of the
system is

E=> 1/R(sis) (1)
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Fig. 2. Hull function s = h(xz) (a, b) and phonon spec-
trum w(k/N) (¢, d) for incommensurate electron densities
v = N/L = 239/233 (a, ¢) and v = N/L = 244/233 (b, d).
Here a = 1.2 and x gives the positions s; of electrons at a = 0.

where R(s;, s;) is the distance between two electrons. We
find from geometry R?(s;,s;) = 4L%sin®[(s; — s;)/2L] +
a’(sin s; —sin s;)%. Here we choose dimensionless units for
charge e and length, so that the channel period length is
¢ = 27 and dimensionless amplitude of channel oscilla-
tions is a. We assume an isotropic Coulomb interaction
which is justified on small scales where interactions be-
tween nearby electrons is dominant. In the limit of large L
we have a channel wiggling in (z,z) plane. At a = 0 we
have electrons on a circle. By definition the parameter a
characterizes the nanochennel deformation and we will call
it the deformation parameter henceforth.

The equilibrium static configurations are defined by
the condition dF/Js; = 0 with a minimal ground state
energy configuration determined numerically by the stan-
dard methods [20,23,24]. Using these methods we also
find the phonon spectrum w(k) of small oscillations at
the ground state. It is easy to see that the total en-
ergy F is invariant for a homogeneous shift of all elec-
trons by ds when the distance between nearby electrons
is si+1 — s; = 2mm that corresponds to electron den-
sity v = N/L with resonant rational values v, = 1/m.
Hence, at such a density the Wigner crystal can freely
slide along the channel. For irrational density values the
properties of sliding are much more tricky. An example is
shown in Figure 2 for two very close incommensurate den-
sities v. For v = 239/233 we have a smooth hull function
s; = h(z)(mod 27) with the gapless phonon spectrum w o
wok/N at small wave numbers k/N. Here x = s;(mod 27)
are ground state electron positions s; at a = 0. The di-
mensional unit of frequency wy = (e2/(m(£/27)3))1/? is
expressed via the particle charge e, mass m and channel
period £, which we omit in the further dimensionless com-
putations. This regime corresponds to the continuous in-
variant Kolmogorov-Arnold-Moser (KAM) curves as it is
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Fig. 3. (Color online) Dependence of the dimensionless phonon
gap A/e. on the electron density v = N/L for a = 0.7 (a), 1
(b), 1.2 (c), 1.5 (d). Here L = 89 (black), 233 (gray/red). The
straight line shows empirical dependence A/e, o (N/L)'/? for
(c, d), where ¢, = 2me?v/{ = v is the Coulomb energy.

10 10

discussed for the Frenkel-Kontorova model [20-24]. In the
KAM regime the invariant curve is analytical and there
is no gap in phonon excitations so that the whole chain
can slide freely along the nanochannel. This KAM slid-
ing regime is well described in [20-24] where an interested
reader can find more details. In contrast, for very close
density v = 244/233 the hull function starts to take the
devil’s staircase form, well known for the cantori regime in
the Frenkel-Kontorova model. Here, the gap A appears in
the phonon spectrum so that the crystal is pinned in the
channel. This regime corresponds to the insulating phase.

The dependence of phonon gap A on electron density v
is shown in Figure 3 for various values of channel defor-
mation amplitude a. At small deformations the gap is zero
for a large fraction of densities v (Fig. 3a) and the crys-
tal can slide freely along the channel. However, at larger
deformations the gap disappears only in the vicinity of ra-
tional densities v, (Figs. 3b, 3¢) and at strong deforma-
tion regime only narrow zero gap intervals remain around
these density values (Fig. 3d). We note that our numerical
data are obtained at rather large number of electrons NV
and channel periods L so that the dependence A(v) found
numerically corresponds to the limit of infinite channel
length. Indeed, the function A(r) remains practically un-
changed with an increase of L (Fig. 3¢). The global depen-
dence of A on v corresponds to frequency of small charge
oscillations A oc 3/2 o 1/£3/2, being in agreement with
data of Figures 3c, 3d.

A remarkable feature of the dependence A(v) is its
very sharp variation with density v and deformation a.
The dependence is enormously sharp in a vicinity v = 1:
for v < 1 there is crystal sliding in the channel while only
slightly above v = 1, e.g. for N/L = 1411/233, we obtain
the insulating phase. This is somewhat similar to a sharp
change of conduction properties of organic materials with
pressure [14] which effectively modifies v and a values.

The dependence of phonon gap A on channel defor-
mation a is shown in Figure 4 for a few density values v.
The gap changes smoothly with a for a > a. where a. is
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Fig. 4. (Color online) Dependence of rescaled phonon
gap A/e. on channel deformation amplitude a at various val-
ues of electron density v with the number of electrons NV = 241
(black), 269 (blue), 337 (magenta), 377 (red), 307 (green)
(curves from right to left at A/e. = 0.01 respectively) at
L =233.

a certain critical value of deformation which depends on
density v. For a < a. we find very sharp drop of A which
becomes exponentially small, e.g. A drops by 5 orders of
magnitude when a decreases by a couple percent in the
vicinity of a.. Since simulations are run at a finite NV this
means that in the thermodynamic limit A = 0 for a < a..
We interpret these data in a way similar to the case of the
Frenkel-Kontorova model [21,23,24]: for a < a.(v) we have
an analytic invariant KAM curve with a rotation number
corresponding to a given density, while for a > a. this
curve is replaced by a cantori with a finite phonon gap
and pinning of the crystal.

To better understand the numerical results presented
above we derive an approximate dynamical map which
determines recursively the electron positions along the
channel. The recursion is given by equilibrium conditions
OFE/0s; = 0. Assuming that ¢ < 1 we can expand R
in a that, after keeping only nearest electron interactions,
gives recursive relations between s;_1,s;, S;+1. They can
be presented in a form of dynamical map

7 = v+ 2a*(1 — cos ) sin 29,
&= ¢+ 0+ a’sint cos 20, (2)

where v = s; — 5,1, ¢ = s; are conjugated action-phase
variables, bar marks their values after iteration. The map
is implicit but symplectic (see e.g. [27]). To check its va-
lidity we use the values s; obtained for the groundstate
configuration and extract from them the kick function
g = sin2¢ from the values ¥ — v = 2a?g,(v)ge(¢) with
gv(v) = 1 — cosv. Such a check shows that the map (2)
indeed gives a good description of actual electron posi-
tions s; up to moderate values of a (Fig. 5).

At small a the phase space of the map is covered by
invariant KAM curves as it is shown in Figure 6 (left).
At larger a a single chaotic component covers a signif-
icant part of the phase space (Fig. 6 right). Locally the
dynamics is approximately described by the Chirikov stan-
dard map with the chaos parameter K ~ 4a?(1 — cosv).
According to [22,27] the KAM curves are destroyed at
K > 1 which is in a good agreement with our numerical
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Fig. 5. (Color online) Map kick functions g¢(¢) (a) and g.(v)
(b) obtained from the groundstate electron positions s; in
nanochannel (points), full red/gray curve in (a) shows the
theoretical dependence from the map (2), see also text. Here
N =377, L =233, a =0.5.
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Fig. 6. Poincare section for the dynamical map (2) at a = 0.25
(left panel), 0.5 (right panel).
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data of Figure 3 where the KAM curve with the golden
rotation number v = 0.618... goes to the cantori regime
approximately at a ~ 0.4. We note that at small charge
density v the parameter K is small K ~ 2a?v? < 1 that
corresponds to the KAM regime and a conducting phase
of Wigner crystal in agreement with the data of Figure 3.

We would like to stress that the sliding conditions in
the snaked nanochannel are rather different from the cases
of the Frenkel-Kontorova model and the Wigner crystal in
a periodic potential. Indeed, in these models the particles
are pinned for the rational filling values v = N/L = 1/m
while for the snaked nanochannel we have sliding of the
crystal at these ratios.

Of course, the map description is valid only up to mod-
erate a values. At a > 1 the expansion in a is no longer
valid and explains the asymmetry in the dependence for
A(v) at v < 1 and v > 1 which is absent in the approx-
imate map (2) but is clearly seen in Figure 3. Further
studies are required to obtain a map description at large
values of deformation a.

3 Discussion

Our studies determined conditions of sliding and pinning
of the Wigner crystal in snaked nanochannels. Here, we
performed only classical analysis. According to the results
of [20] the quantum effects are weak if the dimensionless
effective Planck constant h.g = (27h%/me?¢)/? is small.
In fact hep ~ (E;.C/Ec)l/2 ~ 1/7‘51/2 where E), Ec are

electron kinetic and Coulomb energies on a scale ¢, and
rs = Ec/Ek is given by their ratio. Our studies have
been focussed on the regime of small A.g. This is the case
for supercapacitors with ¢/27 ~ 1 nm, large ion mass
m ~ 4 x 10*m, compared to electron mass m., that gives
heﬁ ~ 1073,

At present, the experimental results on supercapaci-
tors obtained in [16,17] are not well understood from a the-
oretical view point. For example, rather opposite theoreti-
cal views are given in [18,19,28]. Nanopore materials have
wiggling nanochannels and thus we provide first estimates
based on the above results obtained for the Wigner snake
properties in such a type of channels. Of course, more
detailed investigations should be performed in the future.
The charge storage process in a supercapacitor starts with
small charge density values v where the ions slide easily in
nanochannels since the gap A is practically absent there
(see Fig. 3). However, with the increase of v ions form the
Wigner crystal which is pinned inside the nanopores at
large v values. We think that this is the physical mecha-
nism behind the charge process of electrochemical capaci-
tors studied in [16,17]. We note that the energy of pinned
Wigner crystal can be estimated as Wy ~ Sde? /e(£/27)4,
where S is the surface area, d is the deepness of nanopore
layer on the surface and € is the dielectric constant. For
typical parameters ¢ = 5, £/27 = 1 nm, d = 1 pum we
obtain Wy /S ~ 5 x 1073 J/em®. It is natural to as-
sume that a part of this energy can be used during the
recharging process that makes it comparable with the
surface energy density reached in supercapacitors with
W/S ~ 1073 J/em® at maximal capacitance per area

C ~ 400 pF/cm® and voltage U ~ 2 V [16,17]. We note
that our estimate gives an increase of Wy with a decrease
of nanopore size £ that qualitatively corresponds to the be-
havior observed experimentally (see e.g. Fig. 3a in [17]).
At the above parameters the typical pinning frequency is
woA /27 ~ 50 GHz so that the Wigner crystal should be
sensitive to microwave radiation in this frequency range.
Indeed, the experimental studies of CDW in the pres-
ence of a RF field show generation of high harmonics in
differential resistance [29,30]. We expect that similar ef-
fects should be visible for ions in nanopore materials. We
also note that recent experimental I-V-curves obtained
for large radius ions in sub-nanometer carbon pores have
negative I-V slopes at certain voltages that may be a first
indication of ion crystal pinning in nanopores (see Fig. 6
in [31]).

In contrast, for CDW in organic conductors [14] we
have m ~ me, £/21 ~ 3 A that gives liog ~ 0.5 so that
quantum effects can play an important role. Further stud-
ies are required to analyze quantum properties of crys-
tal sliding but we expect that they will have similarities
with the quantum Wigner crystal in a periodic poten-
tial [20] and the quantum Frenkel-Kontorova model [25].
The classical pinned phase should correspond to the in-
sulator phase, while we expect that the classical sliding
phase may correspond to the superconducting regime in
the quantum case. Indeed, the sliding phase has a linear
dispersion law w(k) that can be similar to the situation



0O.V. Zhirov and D.L. Shepelyansky: Wigner crystal in snaked nanochannels 67

in the superfluid phase. The sharp transitions from con-
ducting to insulating phase with charge density variation
are well pronounced in the classical regime and are ex-
pected to be present also in the quantum case. Such a
sharp density variation of conducting properties, found in
our model, can be linked to a high sensitivity of conductiv-
ity of organic conductors to pressure found in experiments.
Further studies should provide more insight into the quan-
tum properties of Wigner crystal in snaked nanochan-
nels and organic molecular chains. It would be very in-
teresting to study such effects by experimentally creating
artificial snaked channels with electrons on a surface of
liquid helium using the methods discussed in [11,32]. At
present, the experimental technology developed for elec-
trons on liquid helium surface allow move electrons one by
one along artificial straight channels created electrostati-
cally [11,32]. Another possibility can be two-dimensional
electron gas in antidot arrays similar to those studied
in [33] where at low electron density it is possible to have
about one electron per lattice cell with important influ-
ence of Coulomb interactions on electron transport.

We thank P. Simon and P.L. Taberna for useful discussions and
pointing to us results presented in [31]. This research is sup-
ported in part by the ANR PNANO project NANOTERRA.
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