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Abstract. The PageRank algorithm enables to rank the nodes of a network
through a specific eigenvector of the Google matrix, using a damping parameter
a €]0,1]. Using extensive numerical simulations of large web networks, with
a special accent on British University networks, we determine numerically and
analytically the universal features of PageRank vector at its emergence when
a — 1. The whole network can be divided into a core part and a group of
invariant subspaces. For a — 1 the PageRank converges to a universal power
law distribution on the invariant subspaces whose size distribution also follows
a universal power law. The convergence of PageRank at o — 1 is controlled by
eigenvalues of the core part of the Google matrix which are extremely close to
unity leading to large relaxation times as for example in spin glasses.
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1. Introduction

The PageRank Algorithm (PRA) [I] is a cornerstone element of the Google search
engine which allows to perform an efficient information retrieval from the World Wide
Web (WWW) and other enormous directed networks created by the modern society
during last two decades [2]. The ranking based on PRA finds applications in such
diverse fields as Physical Review citation network [3] [4], scientific journals rating [5],
ranking of tennis players [6] and many others [7]. The PRA allows to find efficiently
the PageRank vector of the Google matrix of the network whose values enable to rank
the nodes. For a given network with /N nodes the Google matrix is defined as

G=aS+(1—-a)ee’/N , (1)

where the matrix S is obtained from an adjacency matrix A by normalizing all nonzero
colummns to one (3, S;; = 1) and replacing columns with only zero elements by 1/N
(dangling nodes). For the WWW an element A;; of the adjacency matrix is equal to
unity if a node j points to node i and zero otherwise. Here e = (1,...,1)T is the unit
column vector and e is its transposition. The damping parameter o in the WWW
context describes the probability (1 — «) to jump to any node for a random surfer.
For WWW the Google search uses a =~ 0.85 [2].

The matrix G belongs to the class of Perron-Frobenius operators naturally
appearing for Markov chains and dynamical systems [2| [§]. For 0 < a < 1 there
is only one maximal eigenvalue A = 1 of G. The corresponding eigenvector is the
PageRank vector which has nonnegative components P(i) with ). P(i) = 1, which
can be ranked in decreasing order to give the PageRank index K(i). For WWW
it is known that the probability distribution w(P) of P(i) values is described by a
power law w(P) o 1/P* with u ~ 2.1 [9], corresponding to the related cumulative
dependence P(i) o< 1/KP(i) with 8 =1/(u—1) = 0.9 at a ~ 0.85.

The PageRank performs ranking which in average is proportional to the number of
ingoing links 2] [10], putting at the top the most known and popular nodes. However, in
certain networks outgoing links also play an important role. Recently, on the examples
of the procedure call network of Linux Kernel software [I1] and the Wikipedia articles
network [12], it was shown that a relevant additional ranking is obtained by considering
the network with inverse link directions in the adjacency matrix corresponding to
(Ai;) — AT = (Aj;) and constructing from it a reverse Google matrix G* according
to relation (D)) at the same a.. The eigenvector of G* with eigenvalue A\ = 1 gives then
a new PageRank P*(i) with ranking index K*(i), which was named CheiRank [12].
It rates nodes in average proportionally to the number of outgoing links highlighting
their communicative properties [11] 12]. For WWW one finds p ~ 2.7 [9] so that the
decay of CheiRank P* «x 1/K *# is characterized by a slower decay exponent 8 ~ 0.6
compared to PageRank. In Fig.[Il we show PageRank and CheiRank distributions for
the WWW networks of the Universities of Cambridge and Oxford (2006), obtained
from the database [13].

Due to importance of PageRank for information retrieval and ranking of various
directed networks [7] it is important to understand how it is affected by the variation
of the damping parameter a. In the limit o — 1 the PageRank is determined by the
eigenvectors of the highly degenerate eigenvalue 1 [14]. These eigenvectors correspond
by definition to invariant subspaces through the matrix S. It is known [I5] that in
general these subspaces correspond to sets of nodes with ingoing links from the rest
of the network but no outgoing link to it. These parts of the network have been given
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Figure 1. PageRank P and CheiRank P* versus the corresponding rank
indexes K and K* for the WWW networks of Cambridge 2006 (left panel) and
Oxford 2006 (right panel); here N = 212710 (200823) and the number of links is
L = 2015265 (1831542) for Cambridge (Oxford).

different names in the literature (rank sink, out component, bucket, and so on). In
this paper, we show that for large matrices of size up to several millions the structure
of these invariant subspaces is universal and study in detail the universal behavior of
the PageRank at a — 1 related to the spectrum of G, using an optimized Arnoldi
algorithm.

We note that this behavior is linked to the internal structure of the network.
Indeed, it is possible to randomize real networks by randomly exchanging the links
while keeping exactly the same number of ingoing and outgoing links. It was shown
in [I6] that this process generally destroys the structure of the network and creates a
huge gap between the first unit eigenvalue and the second eigenvalue (with modulus
below 0.5). In this case the PageRank simply goes for & — 1 to the unique eigenvector
of the matrix S associated with the unit eigenvalue.

The paper is organized as follows: in Section 2 we discuss the spectrum and
subspace structure of the Google matrix; in Section 3 we present the construction
of invariant subspaces, the numerical method of PageRank computation at small
damping factors is given in Section 4, the projected power method is described in
Section 5, universal properties of PageRank are analyzed in Section 6 and discussion
of the results is given in Section 7.

2. Spectrum and subspaces of Google matrix

In order to obtain the invariant subspaces, for each node we determine iteratively the
set of nodes that can be reached by a chain of non-zero matrix elements. If this set
contains all nodes of the network, we say that the initial node belongs to the core
space V.. Otherwise, the limit set defines a subspace which is invariant with respect to
applications of the matrix S. In a second step we merge all subspaces with common
members, and obtain a sequence of disjoint subspaces V; of dimension d; invariant by
applications of S. This scheme, which can be efficiently implemented in a computer
program, provides a subdivision of network nodes in N, core space nodes (typically 70-
80% of N) and N, subspace nodes belonging to at least one of the invariant subspaces
V; inducing the block triangular structure,

SSS SSC
S = ( e S ) @)
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where the subspace-subspace block Sgg is actually composed of many diagonal blocks
for each of the invariant subspaces. Each of these blocks correspond to a column
sum normalized matrix of the same type as G and has therefore at least one unit
eigenvalue thus explaining the high degeneracy. Its eigenvalues and eigenvectors are
easily accessible by numerical diagonalization (for full matrices) thus allowing to count
the number of unit eigenvalues, e.g. 1832 (2360) for the WWW networks of Cambridge
2006 (Oxford 2006) and also to verify that all eigenvectors of the unit eigenvalue
are in one of the subspaces. The remaining eigenvalues of S can be obtained from
the projected core block Sc. which is not column sum normalized (due to non-zero
matrix elements in the block Sg.) and has therefore eigenvalues strictly inside the
unit circle |)\§-Com)| < 1. We have applied the Arnoldi method (AM) [I7, 18, 19] with
Arnoldi dimension n4 = 20000 to determine the largest eigenvalues of S¢c. For both
example networks this provides at least about 4000 numerical accurate eigenvalues in
the range |A| > 0.7. For the two networks the largest core space eigenvalues are given
by A% = 0.999874353718 (0.999982435081) with a quite clear gap 1— A" ~ 1074
(~ 1075). We also mention that the largest subspace eigenvalues with modulus below
1 also have a comparable gap ~ 107°. In order to obtain this accuracy it is highly
important to apply the AM to S and not to the full matrix S (see more details below).
In the latter case the AM fails to determine the degeneracy of the unit eigenvalue and
for the same value of n4 it produces less accurate results.

In Fig. 2] we present the spectra of subspace and core space eigenvalues in the
complex plane X as well as the fraction of eigenvalues with modulus larger than ||,
showing that subspace eigenvalues are spread around the unit circle being closer to
|A| =1 than core eigenvalues. The fraction of states with |A| > |);| has a sharp jump
at A = 1, corresponding to the contribution of Ny, followed by an approximate linear
growth.

We now turn to the implications of this structure to the PageRank vector P; it
can be formally expressed as

P=(1-a)(1—-aS) 'e/N. (3)
Let us first assume that S is diagonalizable (with no non-trivial Jordan blocks). We

denote by 1; its (right) eigenvectors and expand the vector N~!e = Zj ¢ ; in this
eigenvector basis with coefficients ¢;. Inserting this expansion in Eq. (3B]), we obtain

11—«
P= chwj—i—z (T=a)+ad =2 _)c]wj. (4)

A=1 ,\7&1

In the case of non-trivial Jordan blocks we may have in the second sum contributions
~ (1 —-a)/(1 —a);)? with some integer ¢ smaller or equal to the size of the Jordan
block [14] Suppose we have for example a Jordan block of dimension 2 with a principal
vector v; such that Swj = )\Jz/J] —+ 1; with 1; the corresponding eigenvector. From
this we obtain for arbitrary integer n the following condition on the 1-norm of these
vectors ¢ [|ihll1 > [IS"slln = 1T + nAT " el > ‘|)\j|"|\¢j||1 — 0" sl
showing that one should have ¢; = 0 if |A\;| = 1. Even if |\;| < 1 this condition is
hard to fulfill for all n if |A;| is close to 1. In general the largest eigenvalues with
modulus below 1 are not likely to belong to a non-trivial Jordan block; this is indeed
well verified for our university networks since the largest core space eigenvalues are
not degenerate.
Here Eq. (@) indicates that in the limit &« — 1 the PageRank converges to a
particular linear combination of the eigenvectors with A = 1, which are all localized in
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Figure 2. Left panels (right panels) correspond to Cambridge 2006 (Oxford
2006). Top row: Subspace eigenvalues of the matrix S (blue dots or crosses) and
core space eigenvalues (red dots) in A—plane (green curve shows unit circle); here
Ns = 48239 (30579), There are 1543 (1889) invariant subspaces, with maximal
dimension 4656 (1545) and the sum of all subspace dimensions is N, = 48239
(30579). The core space eigenvalues are obtained from the Arnoldi method applied
to the block Scc with Arnoldi dimension 20000 and are numerically accurate for
[A| > 0.7. Middle row: Eigenvalue spectrum for the matrix S*, corresponding
to the CheiRank, for Cambridge 2006 (left panel) and Oxford 2006 (right panel)
with red dots for core space eigenvalues (obtained by the Arnoldi method applied
to Scc® with na = 15000), blue crosses for subspace eigenvalues and the green
curve showing the unit circle. Bottom row: Fraction j/N of eigenvalues with
[A| > |A;] for the core space eigenvalues (red bottom curve) and all eigenvalues
(blue top curve) from top row data. The number of eigenvalues with |\;] = 1
is 3508 (3275) of which 1832 (2360) are at A; = 1; it larger than the number of
invariant subspaces which have each at least one unit eigenvalue.

one of the subspaces. For a finite value of 1—a the scale of this convergence is set by the
condition 1 — a < 1 — A" ~ 10% (105) and the corrections for the contributions
of the core space nodes are ~ (1 — «)/(1 — )\gcom)). In order to test this behavior we
have numerically computed the PageRank vector for values 1078 <1 — o < 0.15. For

1 —a ~ 1078, the usual power method (iterating the matrix G on an initial vector) is
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very slow and in many cases fails to converge with a reasonable precision. In order to
get the PageRank vector in this regime, we use a combination of power and Arnoldi
methods that allowed us to reach the precision | P — G(a)P||; < 107!3: after each n;
iterations with the power method we use the resulting vector as initial vector for an
Arnoldi diagonalization choosing an Arnoldi matrix size n 4; the resulting eigenvector
for the largest eigenvalue is used as a new vector to which we apply the power method
and so on until convergence by the condition ||P — G(a)P||; < 10713 is reached. For
the university network data of [I3] in most cases the values n; = 10* and n4 = 100
(na = 500 for Cambridge 2006) provide convergence with about ~ 10 iterations of the
process (for 1 —a = 1078). Additional details are given below.

3. Construction of invariant subspaces

In order to construct the invariant subspaces we use the following scheme which we
implemented in an efficient computer program.

For each node j =1, ..., N we determine iteratively a sequence of sets E,,, with
Ey = {j} and F,,4+1 containing the nodes k which can be reached by a non-zero matrix
element S; from one of the nodes | € E,. Depending on the initial node j there are
two possibilities: a) F,, increases with the iterations until it contains all nodes of the
network, especially if one set E,, contains a dangling node connected (by construction
of S) to all other nodes, or b) E,, saturates at a limit set Fo, of small or modest size
d; < N. In the first case, we say that the node j belongs to the core space V;. In
the second case the limit set defines a subspace V; of dimension d; which is invariant
with respect to applications of the matrix S. We call the initial node j the root node
of this subspace; the members of E,, do not need to be tested themselves as initial
nodes subsequently since they are already identified as subspace nodes. If during the
iterations a former root node appears as a member in a new subspace one can absorb
its subspace in the new one and this node loses its status as root node. Furthermore,
the scheme is greatly simplified if during the iterations a dangling node or another
node already being identified as core space node is reached. In this case one can
immediately attribute the initial node j to the core space as well.

For practical reasons it may be useful to stop the iteration if the set F,, contains
a macroscopic number of nodes larger than B N where B is some constant of order
one and to attribute in this case the node j to the core space. This does not change
the results provided that B N is above the maximal subspace dimensions. For the
university networks we studied, the choice B > 0.1 turned out to be sufficient since
there is always a considerable number of dangling nodes.

In this way, we obtain a subdivision of the nodes of the network in N, core space
nodes (typically 70-80% of N) and Ny subspace nodes belonging to at least one of the
invariant subspaces V;. However, at this point it is still possible, even likely, that two
subspaces have common members. Therefore in a second step we merge all subspace
with common members and choose arbitrarily one of the root nodes as the “root node”
of the new bigger subspace which is of course also invariant with respect to S.

We can also mention that most of the subspaces contain one or more “zero nodes”
(of first order) with outgoing links to the subspace but no incoming links from the same
or other subspaces (but they may have incoming links from core space nodes as every
subspace node). These nodes correspond to complete zero lines in the corresponding
diagonal block for this subspace in the matrix S and therefore they produce a trivial
eigenvalue zero. Furthermore, there are also zero nodes of higher order j (> 2) which
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have incoming subspace links only from other zero nodes of order j — 1 resulting in
a non-trivial Jordan block structure with eigenvalue zero. In other words, when one
applies the matrix S to a vector with non-zero elements on all nodes of one subspace
one eliminates successively the zero nodes of order 1, 2, 3, ... and finally the resulting
vector will have non-zero values only for the other “non-zero nodes”. Due to this any
subspace eigenvector of S with an eigenvalue different from zero (and in particular the
PageRank vector) cannot have any contribution from a zero node.

In a third step of our scheme we therefore determined the zero nodes (of all orders)
and the reduced subspaces without these zero nodes. The results for the distribution
of subspace dimensions is discussed in Section 6 (see the left panel of Fig. [[). The
distribution is essentially unchanged if we use the reduced subspaces since the number
of zero nodes is below 10% of N, for most of universities. Only for the matrix S* of
Wikipedia we have about 45% of zero nodes that reduces the value of Ny from 21198
to 11625.

Once the invariant subspaces of S are known it is quite obvious to obtain
numerically the exact eigenvalues of the subspaces, including the exact degeneracies.
Thus, using the Arnoldi method we determine the largest remaining eigenvalues of the
core projected block Sce. In Fig. [2 the complex spectra of subspace and core space
eigenvalues of S and S* are shown for the two networks of Cambridge 2006 and Oxford
2006 as well as the fraction of eigenvalues with modulus larger than |\| indicating a
macroscopic fraction of about 2% of eigenvalues with |\;| = 1.

In Table 1, we summarize the main quantities of networks studied: network size
N, number of network links L, number of subspace nodes Ng and average subspace
dimension (d) for the university networks considered in Fig. [l and the matrix S* of
Wikipedia.

Table 1. Network parameters

N L N, {d)
Cambridge 2002 | 140256 | 752459 | 23903 | 20.36
Cambridge 2003 | 201250 | 1182527 | 45495 | 24.97
Cambridge 2004 | 206998 | 1475945 | 44181 | 26.14
Cambridge 2005 | 204760 | 1505621 | 44978 | 29.30
Cambridge 2006 | 212710 | 2015265 | 48239 | 31.26
Oxford 2002 127450 | 789090 | 14820 | 14.01
Oxford 2003 144783 | 883672 | 19972 | 19.85
Oxford 2004 162394 | 1158829 | 29729 | 19.18
Oxford 2005 169561 | 1351932 | 36014 | 23.34
Oxford 2006 200823 | 1831542 | 30579 | 16.19
Glasgow 2006 90218 544774 | 20690 | 28.54
Edinburgh 2006 | 142707 | 1165331 | 24276 | 26.24
UCL 2006 128450 | 1397261 | 25634 | 28.64
Manchester 2006 | 99930 | 1254939 | 23648 | 26.07
Leeds 2006 94027 | 862109 | 12605 | 31.20
Bristol 2006 92262 | 1004175 | 9143 | 19.49
Birkbeck 2006 54938 | 1186854 | 3974 | 19.11
Wikipedia (S*) | 3282257 | 71012307 | 21198 | 3.96
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4. Numerical method of PageRank computation

Let us now discuss the numerical techniques that we developed in order to compute
the PageRank. The standard method to determine the PageRank is the power method
[1, 2]. However, this method fails to converge at a sufficient rate in the limit @ — 1
and therefore we need a more refined method. First we briefly discuss how the power
method works and then how it can be modified to improve the convergence.

Let Py be an initial vector which is more or less a good approximation of the
PageRank. Typically one may choose Py = e¢/N where e = (1, ..., 1)7. For simplicity
let us also suppose that the matrix G(«) can be diagonalized. The eventual existence
of principal vectors and non-trivial Jordan blocks does not change the essential
argument and creates only minor technical complications. The initial vector can be
developed in the eigenvector basis of G(«) as:

P0:P+ZCJ‘</7J' (5)
Jj=2
where P = ¢, is the exact PageRank, which is for a < 1 the only (right) eigenvector
of G(a) with eigenvalue 1. Here ¢; denote for j > 2 other (right) eigenvectors with
eigenvalues \; such that |\;| < o and C; are the expansion coefficients. We note that
elp; = 0 for j > 2 since e is the first left eigenvector bi-orthogonal to other right
eigenvectors and for sufficiently small C; the expansion coefficient of P in Py is exactly
1if Py and P are both normalized by the 1-norm. Iterating the initial vector by G(«)
one obtains after 7 iterations :

P=Gl(a)Py=P+> CjNg;. (6)
Jj=2
Therefore the convergence of the power method goes with ~ A4 where Ay is the second
largest eigenvalue. In the case of realistic networks Ao is typically highly degenerate
and equal to a. Typically there are also complex eigenvalues with non-trivial phases
where only the modulus is equal to o and whose contributions imply the same speed
of convergence. In the limit & — 1 the power method becomes highly ineffective due
to these eigenvalues. For example to verify the condition o’ < ¢ one needs i > 3 - 10°
iterations for 1 —a = 1078 and € = 10713,

In order to obtain a faster convergence we propose a different method based on
the Arnoldi method [I7, [I8 [19]. The idea of the Arnold method is to diagonalize the
matrix representation of G(«) on the Krylov space generated by Py, Py, ..., Py, —1
where we call ny the Arnoldi dimension. For reasons of numerical stability one
constructs by Gram-Schmidt orthogonalization an orthogonal basis of the Krylov
space which also provides the matrix elements of the matrix representation of G(«)
in this basis. In the particular case where the number of non-vanishing coefficients
C; in Eq. (@) is not too large the Arnoldi method should even provide the exact
PageRank, obtained as the eigenvector of the largest eigenvalue on the Krylov space,
and exactly suppress the other eigenvector contributions provided that the dimension
n 4 of the Krylov space is sufficiently large to contain all other eigenvectors contributing
in Eq. @). Of course in reality the number of non-vanishing coefficients C; is not
small but one can use a strategy which consists first to apply the power method
with n; iterations to reduce the contributions of the big majority of eigenvectors
whose eigenvalues have a reasonable gap from the unit circle and in a second step the
Arnoldi method to eliminate the remaining “hard” eigenvectors whose eigenvalues are
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Figure 3. Convergence of the combined power-Arnoldi method to calculate the
PageRank for 1 —a = 1078. Shown is the quantity || P; —G(a)P;||1 to characterize
the quality of the approximate PageRank P; versus the number of iterations
done by the power method. The green line at 1013 shows the line below which
convergence is reached. The upper left panel shows the data for Oxford 2006 with
na = 100 and n; = 10000. The upper right panel corresponds to Cambridge 2006
with ng = 500 and n; = 50000 (red dots) or n; = 10000 (blue crosses). The
lower left panel shows the case Cambridge 2003 with n4 = 500 and n; = 50000
for which it is particularly hard to obtain convergence. The lower right panel
compares for the case Cambridge 2002 the choice n4 = 500 and n; = 50000 (red
dots) with n4 = 500 and n; = variable (blue crosses) with n; determined by the
criterion that the relative change of ||P; — G(a)P;||1 between ¢ and ¢+ 100 is less
than 10~4.

too close to the unit circle for the power method. Even though this strategy does
not provide the numerical “exact” PageRank, it considerably improves the quality of
the initial vector as approximation of the PageRank and repeating this scheme on the
new approximation as initial vector (with suitable values for n; and n4) one obtains
an algorithm which efficiently computes the PageRank up to a high precision as can
be seen in Fig. Bl To measure the quality of the PageRank vector we compute the
quantity ||P; — G(a)Pi||; and iterate our algorithm until this quantity is below 10713.
Using this convergence criterion for most university networks from the database [13]
the choice of n; = 10000 and n4 = 100 provides convergence with typically about 10
steps of this procedure.

In Fig. [8 we show the convergence of this method for several university network
cases with the initial vector Py = ¢/N and 1 — o = 1078, The typical situation is
shown in the upper left panel for Oxford 2006. During the first power method cycle
there is nearly no improvement of the quality of the PageRank. This is completely
normal in view of the small value of 1 — a. However, the first Arnoldi step improves
the quality by 4 orders of magnitude. Then the subsequent power method iterations of
the second cycle continue to improve the convergence quality but their effect saturates
after a certain number of iterations. The second Arnoldi step seems at first to reduce
the PageRank quality but after a few number of power method iterations (in the
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third cycle) this loss is compensated and its quality improves until the next saturation
and the next Arnoldi step. In total this provides a nice exponential convergence and
after 7 Arnoldi steps and 75000 power method iterations in total the convergence is
reached with very high accuracy. Apparently the Arnoldi method is rather efficient to
reduce the coefficients C; associated to the eigenvectors with eigenvalues close to the
circle of radius « but the approximation due to truncation of the Arnoldi matrix to the
Krylov space at n4 creates some artificial contributions from other eigenvectors whose
eigenvalues have a quite big gap from 1 and whose contributions may be eliminated
by a relatively modest number of power method iterations.

The number ng = 100 appears very modest if compared to the degeneracy of
the second eigenvalue Ay = a which may easily be about 1000-2000. Fortunately, the
exact degeneracy of the eigenvalues close to or on the circle of radius o does not really
count, since for each degenerate eigenspace only one particular eigenvector appears
in the expansions (H), (@) which can be relatively easily “eliminated” by an Arnoldi
step with modest value of n4. However, the total number of different eigenvalues
(with different phases) on the circle of radius a is important and if this number is
too big the convergence of the method is more difficult. This is actually the case for
the university networks of Cambridge as can be seen in the upper left panel of Fig.
where the subspace eigenvalues of S for Cambridge 2006 nearly fill out the unit circle
and indeed we have to increase for these cases the Arnoldi dimension to ng = 500
in order to achieve a reasonable convergence. In the upper right panel of Fig. [ we
show the PageRank convergence for Cambridge 2006 with n4 = 500 and two choices of
n; = 10000 and n; = 50000. For this particular example the first choice is more efficient
but this is not systematic and is different for other cases. We also see that increasing
the value of n; the convergence is not immediately improved (the PageRank error
does not really decrease during the power method cycle) but the positive effect of the
next Arnoldi step will be much better, apparently because the bigger number of power
method iterations allows to reduce the effect of more eigenvectors in the eigenvector
expansion of P;. In the lower left panel of Fig. Bl we show the case of Cambridge
2003 which is particularly hard for the convergence and requires 28 Arnoldi steps with
n; = 50000 and ny = 500. Actually here the choice n; = 10000 (not shown in the
figure) is less efficient with nearly the doubled number of power method iterations and
about 235 Arnoldi steps. In the lower right panel we consider the case of Cambridge
2002 where we need 3 Arnoldi steps for the parameters n4 = 500 and n; = 50000.
For this case, we also tried a different strategy which consists of using a variable value
of n; determined by the criterion that when the relative change of ||P; — G(a)F; |1
from i to ¢ + 100 is below 10~ we perform one Arnoldi step but at latest after 50000
power method iterations for each cycle. For this example this strategy does not really
pay off since the overall number of power method iterations is even slightly increased
and additionally we have 11 instead of 3 quite expensive Arnoldi steps. However,
this approach has the advantage that one does not need to search in advance which
exact choice of n; parameters works best. In practical calculations when calculating
the PageRank for a continuous set of values of o one may also improve convergence
simply by using the PageRank at a certain value of a as initial vector for the next
value a + Aa. However, in Fig. Bl we simply used the same initial vector Py = e¢/N
for all cases in order to study the effectiveness of the method as such.

The computational costs of the method are increased quite strongly with n4 since
the Arnoldi steps correspond to n% N +n4 L elementary operations (with L being the
number of links in the network) due to the Gram-Schmidt orthogonalization scheme
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and n4 applications of G(«a) on a vector while one step with the power method costs
L operations. Therefore one Arnoldi step corresponds to ~ (n% (N/L) +na) steps of
the power method which is ~ 1000 (~ 25000) for n4 = 100 (n4 = 500) and L/N ~ 10
(typical value for most university networks of [13]).

We mention that the method does not converge if we use only Arnodi steps
without intermediate power method iterations (i. e. n; = 0). Golub et al. [I§]
have suggested a different variant of the Arnoldi method where they determine the
improved vector not as the eigenvector of the largest eigenvalue of the truncated
squared Arnoldi matrix but as the vector corresponding to the smallest singular value
of a matrix obtained from the full non-truncated rectangular Arnoldi matrix. We
have also implemented this variant and we have confirmed for some examples that
convergence by simply repeating these “refined” Arnoldi steps is possible but in general
the computational time for convergence is much longer if compared to our method.
We have also tested the combination of power method and refined Arnoldi steps and
we find that this approach is in general comparable to our first method with a slight
advantage for one or the other method depending on the network that is studied.

5. Projected power method for the case of small core space eigenvalue gap

The behavior of the PageRank in the limit o — 1 is determined by the core space

eigenvalue gap 1 — /\gcore) where ,\gco’fe)

< 1 is the maximal eigenvalue of the core space
projected matrix S¢c [see Eq. ([2])]. This eigenvalue and its eigenvector wﬁcom) can in
principle be determined by the Arnoldi method applied to S¢c. However, for certain
university networks of [I3], Cambridge 2002, 2003, 2005 and Leeds 2006, we find that
)\gwre) is extremely close to 1. Since the results of the Arnoldi method are obtained by
standard double precision arithmetic operations it gives a largest core space eigenvalue

which is numerically equal to 1 for these cases (up to an error of order ~ 10~14), This

is not sufficient to provide an accurate value for the gap 1 — Agcorc) apart from the
information that this gap is below 10714,

To overcome this computational problem we note that /\gwre) and 1/)§C°re) can also
be numerically determined by a different algorithm. The main idea is to apply the
power method, eventually with intermediate Arnoldi steps to accelerate convergence,
as described in the previous section, to the matrix S which first provides the

eigenvector 1/)§C°re) and once the eigenvector is known its eigenvalue is simply obtained

as )\gcom) = ||Sce w;corc)ﬂl if the normalization is given by ||1/)§Corc)||1 = 1. In this
Section it is understood that Scc is the matrix S multiplied left and right by the
projection operator on the core space (and similarly for Sg. and Sss). We have
implemented this method and verified for some examples that it indeed provides the
same results as the Arnoldi method. Actually it may even be more efficient than
the direct Arnoldi method which may require a quite large Arnoldi dimension for a
reliable first eigenvector. However, at this stage this approach also suffers from the
same problem concerning the numerical inaccuracy for the cases of a very small core
space gap.

Fortunately the approach can be modified to be more accurate. To see this we
use Eq. @) and the fact that the columns of S are sum normalized which implies
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Figure 4. Core space eigenvalue gap 1 — )\gcore) versus network size N for
the universities Glasgow, Cambridge, Oxford, Edinburgh, UCL, Manchester,
Leeds, Bristol and Birkbeck (years 2002 to 2006) and Bath, Hull, Keele, Kent,
Nottingham, Aberdeen, Sussex, Birmingham, East Anglia, Cardiff, York (year
2006). Red dots correspond to data with 1 — )\gcore) > 1079 and blue crosses
(shifted up by a factor of 109) to the cases Cambridge 2002, 2003 and 2005 and

Leeds 2006 with 1 — )\gcore) < 10716 where the maximal core space eigenvalue

is determined by the projected power method. The data point at 1 — )\gcore) =
2.91 - 1072 is for Cambridge 2004.

ISse 1/11C0re)|\1 + ||See ¢§C°re>||1 = 1 and therefore
1— )\gcorE) _ ||Ssc 1/}1c0re)H1 — Z Z Sjl 1/)§Core)(l) (7)

j€Vsp lEV,
where Vsp denotes the set of subspace nodes and V,. is the set of core space nodes (note

that 1/}§core) (I) > 0). This expression, which relates the core space gap to the sum of
all transitions from a core space node to a subspace node (the “escape probability”
from the core space), is the key to determine the gap accurately.

First, we note that a numerically small core space gap (below 107!%) implies
that the eigenvectors components wgcore)(l) are also numerically small for the core
space nodes [ which are directly connected to a subspace node j by a non-vanishing
matrix element S;; > 0. To be more precise it turns out that for this situation the

eigenvector wgcore) is strongly localized on a modest number of about 100 nodes out
of 10° nodes in total and numerically small on the other nodes. Obviously, the nodes
inside the small localization domain are not directly connected to a subspace node
(by the matrix S). The important point is that we can determine the eigenvector
accurately also for the very small tails (below 107!5) by the pure power method
(without intermediate Arnoldi steps) if we choose as initial vector a vector localized
at the maximum node. The reason is that the non-vanishing matrix elements Sj;
connect only sites for which the eigenvector components are comparable in the order
of magnitude. Therefore numerical round-off errors are minimized despite the fact that
the resulting vector will contain components with a size ratio significantly above 10'°
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between maximal and minimal components. This is similar to certain localization
problems in disordered quantum systems where it is in certain cases possible to
determine numerically exponentially small tails of localized eigenvectors even if these
tails are far below 10715,

Therefore, in practice, we implement the following projected power method:

(i) Determine a first approximation of z/1§cor°) by the direct Arnoldi method which
is accurate inside the localization domain but numerically incorrect for the very
small tails on the nodes outside the localization domain. From these data we
determine the node ly,,x at which z/;lcore)(lmax) is maximal.

(ii) Choose as initial vector (on the full space including core space and subspace
nodes) the vector localized on the node lyax, i.-e. ¥(I) = oy,

max *

(iii) Make a copy of the vector: 9o1q = 9.
(iv) Apply the matrix S to the actual vector: ¢ = S which produces artificially
non-zero values ¢ (j) on certain subspace nodes j.

(v) According to Eq. () compute the quantity > ¥ (j) as approximation of the

(core)
1 .

JEVsp

gap 1 — A
(vi) Project the vector on the core space: 1(j) = 0 for all subspace nodes j € Vgp.
(vii) Normalize the vector by the 1-norm: 1 = ¢/||¢)]]1.

(viii) Stop the iteration if ||¢) — 1o1all1 < €1 and max ey, |¥(1) — Yora(D)]/]0(1)] < 2.
Otherwise go back to step [l

This algorithm produces an accurate vector very rapidly on the localization domain
(less than 100 iterations) but in order to obtain an accurate value of the gap by Eq. ()
the eigenvector needs to be accurate with a small relative error also in the very small
tails and therefore the convergence criterion has to take into account the relative error
for each component. We have chosen ¢; = 107!3 and e = 1076 which provides
convergence with 108 iterations for the cases of Cambridge 2002, 2003 and 2005. In
the case of Leeds 2006 we even obtain convergence with e; = g5 = 107! after 2 - 10°
iterations. For the particular case of Cambridge 2004 (where the gap ~ 107 is still
“accessible” by the Arnoldi method) the convergence is more difficult and we have
stopped the iteration at e; = 10712 and &5 = 3.2 - 1076,

The choice of the initial vector localized at the maximum node is very important
for the speed of the convergence. If we choose the delocalized vector e/N as initial
vector, it is virtually impossible to obtain convergence in the tails which stay at
“large” values ~ 10~% unless we use intermediate Arnoldi steps but this destroys the
fine structure of the tails below 107'° which is crucial to determine the very small
gap.

Using the above algorithm we obtain the gap values given in Table 2.

In Fig. @ we compare these gap values to the other university networks for which
we found by the Arnoldi method larger gaps 1 — Agc‘“e) > 1077,

core)

In Fig.[Blwe show the eigenvectors wg obtained by the projected power method
versus their rank index K(°°™®) defined by the ordering of the components of theses
vectors. We can clearly identify the exponential localization on 40 nodes for Leeds
2006 or 110 nodes for Cambridge 2002, 2003 and 2005 with values below 10718 (Leeds
2006) or 10~1* (Cambridge 2002, 2003 and 2005). The case Cambridge 2004 with a
quite larger gap ~ 1077 provides at first the same exponential localization as the other
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Table 2. Gap values

1_ )\(corc)
1
Cambridge 2002 | 3.996 - 1017
Cambridge 2003 4.01-107"7
Cambridge 2004 2.91-107°
Cambridge 2005 4.01-107%7
Leeds 2006 3.126-10" "
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Figure 5. First core space eigenvector wgcore) versus its rank index K(cor®) for

the university networks with a small core space gap 1 — )\gcore) <1078,

three cases of Cambridge but after 50 nodes it goes over to a tail in the range 10~8
to 10710, In all cases the range of values of the small tail is in qualitative agreement
with the gap values in the Table 2 and the expression (7).

When the iteration with the matrix S starts at the maximal node the vector
diffuses first quite slowly inside the localization domain for a considerable number
of iterations (46 for Leeds 2006 and 35 for Cambridge 2002, 2003 and 2005) until it
reaches a dangling node at which point the diffusion immediately extends to the full
network since the dangling node is artificially connected to all nodes. However, at
this point the probability of the amplitude is already extremely small. Therefore the
initial node belongs technically to the core space (since it is “connected” to all other
nodes) but practically it defines a quasi subspace (since the probability to leave the
localization domain is very small ~ 107! or ~ 107!7). At 1 — a = 1078, which is
much larger than the gap, this quasi subspace also contributes to the PageRank in the
same way as the exact invariant subspaces. This provides somehow a slight increase
of the effective value of Ny but it does not change the overall picture as described in
Section 2.

Fig. Bl also shows that apparently the particular network structure responsible for
this quasi subspace behavior is identical for the three cases Cambridge 2002, 2003 and
2005. For Cambridge 2004 this structure also exists but here there is one additional
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dangling node which is reached at an earlier point of the initial slow diffusion providing
delocalization on a scale ~ 1071 —1078. For the case of Cambridge 2006 with a “large”
gap ~ 107* this structure seems to be completely destroyed but this may be due to
one single modified matrix element Sj; if compared to the networks of the previous
years.

6. Universal properties of PageRank and subspace distribution

Using the powerful numerical methods described above we turn to the analysis of
universal properties of PageRank. Fig.[fl clearly confirms the theoretical picture given
in section 2 of the limit behavior for the PageRank at @ — 1. In particular one
can clearly identify the limit where it is localized in the invariant subspaces [20] with
only small corrections ~ (1 — «) at the core space nodes. We also determine the
eigenvector of the largest core space eigenvalue )\gcore) of the projected matrix Scc.
In the lower panels of Fig. [6, we compare the PageRank at 1 — o = 108 with this
vector (normalized by the 1-norm) multiplied by (1 — a)/(1 — A[®®). We observe
that except for a very small number of particular nodes this vector approximates
quite well the core space correction of the PageRank even though the corrections
due to the second term in () are more complicated with contributions from many
eigenvectors. In the inserts, we also show the fidelity of the PageRank, which decays
from 1 at 1 — a = 0.15 to about 0.188 (0.097) at 1 — a = 1078, and the residual
weight w(a) =3y, P()(4) of the core space V, in the PageRank which behaves as
w(a) ~221.12 (1 — a) [~ 607.12(1 — a)] for 1 —a < 107°.

As mentioned in the previous Section, we also determine the subspace structure
and the PageRank at 1 — a = 107® for other university networks available at [L3]
and for the matrix S* of Wikipedia [12] with N = 3282257 and N, = 21198 (it
turns out that the matrix S for Wikipedia provides only very few small size subspaces
with no reliable statistics). A striking feature is that the distribution of subspace
dimensions d; is universal for all networks considered (Fig. [0 left panel). The
fraction of subspaces with dimensions larger than d is well described by the power
law F(z) = (1 +x/(b—1))~° with the dimensionless variable z = d/(d), where (d) is
the average subspace dimension. The fit of all cases gives b = 1.608+0.009 ~ 1.5. It is
interesting to note that the value of b is close to the exponent of Poincaré recurrences
in dynamical systems [19]. Possible links with the percolation on directed networks
(see e.g. [21]) are still to be elucidated. The rescaled Pagerank PN, (or CheiRank
P*N; for the case of Wikipedia) takes a universal form with a power law P ~ K¢
for K < N, with an exponent ¢ = 0.698 £0.005 ~ 1/b = 2/3 and P ~ (1 — «) close to
zero for K > Ny (see right panel of Fig. [7).

For certain university networks, Cambridge 2002, 2003 and 2005 and Leeds 2006,
there is a specific complication. Indeed, the AM (with n4 = 10000) provides a maximal
core space eigenvalue )\gcore) numerically equal to 1, which should not be possible. A
more careful evaluation by a different algorithm, based on the power method (iterating
S with a subsequent core space projection) and measuring the loss of probability at
each iteration, shows that this eigenvalue is indeed very close but still smaller than 1.
For the three cases of Cambridge we find 1 — A" ~ 4.0 - 10~17 and for Leeds 2006:

1-— )\gcom) ~ 3.1-1072° (see details in Section 5). The corresponding eigenvectors are
exponentially localized on a small number of nodes (about 110 nodes for Cambridge
and 40 nodes for Leeds 2006) being very small (< 10~1* for Cambridge and < 10~1® for
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Figure 6. Left panels (right panels) correspond to Cambridge 2006 (Oxford
2006). Top row: PageRank P(K) for 1 — o = 0.1, 1073, 1075, 10~7. Numerical
precision is such that |[P — G(a)P|1 < 107'3. Bottom row: P(K) at
1 —a = 1078, Blue crosses correspond to the eigenvector of the largest

core space eigenvalue Agwre) = 0.999874353718 (0.999982435081) multiplied by

1-a)/1 - )\gcore)). The arrow indicates the first position where a site of the
core space V. contributes to the rank index; all sites at its left are in an invariant
subspace. Insert shows the residual weight w(a) with w(a) = 3¢y, P@)(j)

of the core space V. in the PageRank and the difference f(a) — f(1) versus
1 — a where f(a) is the PageRank fidelity with respect to a = 0.85, i.e.
fla) = <P(@) | pO-85) 5 /(|| P(@) ||y || P(0-85)||5). Note that ||P(®)||2 # 1 since the
PageRank is normalized through the 1-norm: ||[P(®)||; = 1. The limiting value
f(1) = 0.188400463202 (0.097481331613) is obtained from linear extrapolation
from the data with smallest values of 1 — a which we verified to be exact up to
machine precison.

Leeds 2006) on other nodes. These quasi-subspaces with small number of nodes belong
technically to the core space, since they are eventually linked to a dangling node, but
when starting from the maximal node of these eigenvectors it takes a considerable
number of iterations with a strong reduction of probability to reach the dangling
node. Since their eigenvalue is very close to 1, these quasi-subspaces also contribute
to the PageRank at 1 — o = 1078 in the same way as the exact invariant subspaces.
However, since the size of these quasi-subspaces is small they do not change the overall
picture and we can still identify a region of large PageRank with N, subspace or quasi-
subspace nodes and vanishing PageRank for the other core space nodes. For most of
the other universities and also the matrix 8* of Wikipedia we have 1 — A{®™® > 106

(and 1 — )\gcom) ~ 107 for Cambridge 2004).

7. Discussion

Our results show that for @ — 1 the PageRank vector converges to a universal
distribution P ~ 1/K° determined by the invariant subspaces (with ¢ ~ 2/3). The
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Figure 7. Left panel: Fraction of invariant subspaces F' with dimensions larger
than d as a function of the rescaled variable z = d/(d). Upper curves correspond
to Cambridge (green) and Oxford (blue) for years 2002 to 2006 and middle curves
(shifted down by a factor of 10) to the university networks of Glasgow, Cambridge,
Oxford, Edinburgh, UCL, Manchester, Leeds, Bristol and Birkbeck for year 2006
with (d) between 14 and 31. Lower curve (shifted down by a factor of 100)
corresponds to the matrix S* of Wikipedia with (d) = 4. The thick black line is
F(z) = (1+2x)~15. Right panel: Rescaled PageRank P N, versus rescaled rank
index K/Ns for 1 — a = 10~8 and 3974 < N, < 48239 for the same university
networks as in the left panel (upper and middle curves, the latter shifted down
and left by a factor of 10). The lower curve (shifted down and left by a factor
of 100) shows the rescaled CheiRank of Wikipedia P* Ns versus K*/N, with
Ns = 21198. The thick black line corresponds to a power law with exponent
—2/3.

fraction of nodes which belong to these subspaces varies greatly depending on the
network, but the distribution of the subspace sizes is described by a universal function
F(z) = 1/(1+2x)%/? that reminds the properties of critical percolation clusters. When
a decreases from 1, the PageRank undergoes a transition which allows to properly rank
all nodes. This process is controlled by the largest eigenvalues of the core matrix Scc,
which are strictly below 1 but can be extremely close to it. Their distance from 1
sets the scale of the transition, and the associated eigenvectors of S¢c control the new
ranking of nodes. Although at o = 1 the eigenspace for eigenvalue 1 can be very large,
for a sufficiently larger in norm than the eigenvalues of Scc, the PageRank remains
fixed when o — 1, in a way reminiscent of degenerate perturbation theory in quantum
mechanics. Our highly accurate numerical method based on alternations of Arnoldi
iterations and direct iterations of G matrix enables to determine the correct PageRank
even where the scale of this transition is extremely small (1 — )\gcore) ~ 1072Y) and
the matrix size is very large (up to several millions). The very slow convergence of
the power method in this regime is reminiscent of very long equilibration times in
certain physical systems (e.g. spin glasses), and thus Arnoldi iterations can be viewed
as a certain kind of simulated annealing process which enables to select the correct
eigenvector among many others with very close eigenvalues. The PageRank in this
regime of a@ — 1 shows universal properties being different from the usual PageRank
at a =~ 0.85, with a different statistical distribution. This can be used to refine search
and ranking in complex networks and hidden communities extraction.

Finally we note that usually in quantum physics one deals with unitary matrices
with a real spectrum. In the case of directed Markov chains we naturally obtain
a complex spectrum. In physical quantum systems a complex spectrum appears in
positive quantum maps [22], problems of decoherence and quantum measurements [23]
and random matrix theory of quantum chaotic scattering [24]. Thus we hope that a
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cross-fertilization between complex matrices and directed network will highlight in a
new way the properties of complex networks.
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