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We study properties of Wigner crystal in snaked nanochannels and show that they are characterized by

a conducting sliding phase at low charge densities and an insulating pinned phase emerging above a

certain critical charge density. We trace parallels between this model problem and the Little suggestion

for electron transport in organic molecules. We also show that in the presence of periodic potential

inside the snaked channel the sliding phase exists only inside a certain window of electron densities

that has similarities with a pressure dependence of conductivity in organic conductors. Our studies

show emergence of dynamical glassy phase in a purely periodic potential in the absence of any disorder

that can explain enormously slow variations of resistivity in organic conductors. Finally we discuss

the KAM concept of superfluidity induced by repulsive Coulomb interaction between electrons. We

argue that the transition from the sliding KAM phase to the pinned Aubry phase corresponds to the

superfluid-insulator transition.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Wigner crystal [1] appears when the energy of Coulomb
repulsion between charges of same sign becomes dominant
comparing to kinetic energy of charge motion. On a one-dimen-
sional (1D) straight line this crystal can move ballistically as a
whole at an arbitrary small velocity. Here, we discuss the proper-
ties of Wigner crystal sliding in 1d in the presence of a periodic
potential and in 1d snaked nanochannel following recent works
[2,3]. An example of snaked nanochannel of a sinusoidal form is
shown in Fig. 1. The snaked form of a channel is very similar to
the Little suggestion [4] on possibilities of superconductivity in
organic molecules. As described in Refs. [4,5], it is assumed that
organic molecules form some effective wiggled or snaked channel
with an effective density of electrons n which slides along the
channel opening a new view on possibilities of superconductivity
in such materials.

The question about sliding in such a channel is rather nontrivial
being linked with fundamental results of dynamical systems [6,7]
which we briefly discuss. In fact in a local approximation of small
charge oscillations the forces depend linearly on displacements
corresponding to a string of particles, linked locally by linear
springs and placed in a periodic potential. The density of particles
or charges corresponds effectively to a fixed rotation number
in a dynamical symplectic map which describes the recurrent
ll rights reserved.

pelyansky).
positions of particles in a static configuration with a minimum of
energy. For linear springs this map is exactly reduced to the
Chirikov standard map [6]. This model in known also as the
Frenkel–Kontorova model which detailed description is given in
Ref. [8]. At small channel deformation a or small amplitude of
periodic potential K the particles can freely slide in the periodic
potential that corresponds to the regime of invariant Kolmogorov–
Arnold–Moser (KAM) curves which rotation number determines
the particle density. In this regime the spectrum of small excita-
tions is characterized by a phonon spectrum with the dispersion
relation o¼ csk where k is dimensionless wave vector and cs is
dimensionless sound velocity. Above a certain critical strength of
deformation the KAM curve at a given n is destroyed being
replaced by an invariant Cantor set known as cantori [9]. In this
regime the excitations above the ground state have a gap
o2 ¼ ðcskÞ

2
þD2 and the chain becomes pinned by the potential.

The gap D is proportional to the Lyapunov exponent of dynamical
orbits on such cantori set [7,9]. The transition between sliding and
pinned phases is known as the Aubry transition [8]. In the pinned
phase the Aubry theorem guarantees that at fixed n there is a
unique ground state which static equilibrium configuration corre-
sponds to the cantori set with positions of particles forming a
devil’s staircase. However, from the physical view point this
ground state is rather hard to reach since in its vicinity there are
exponentially many equilibrium configurations which energy is
exponentially close to the energy of the ground state. Numerical
studies show that already for 100 particles the energy difference is
as small as 10�25 in dimensional units [10]. This phase was called
the dynamical spin glass (or dynamical instanton glass) since such
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Fig. 1. (a) A schematic image of the Little suggestion for electron transport in

organic molecules (after [4,5]). (b) A schematic image of electron Wigner crystal

with charges ei (points) sliding in a snaked sinusoidal nanochannel, dashed lines

show force directions between nearby electrons.

Fig. 2. Hull function s¼ hðxÞ (a, b) and phonon spectrum oðk=NÞ (c, d) for

incommensurate electron density n¼N=L¼ 144=233 is shown at a¼0.6 (a, c)

and a¼1.2 (b, d). Here x gives the positions si of electrons at a¼0. Here a gives the

dimensional amplitude of sinusoidal channel described by equation y¼ a sin x.

Fig. 3. Poincaré section for the dynamical map (1) at a¼0.2 (left panel), 0.6 (right

panel).
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properties appear in spin glasses [11] which have random dis-
ordered on-site energies and interactions. In contrast to that these
properties of the Aubry phase appear in the absence of any
disorder being of purely dynamical origin of cantori in a purely
periodic potential.

The studies of properties of the quantum Frenkel–Kontorova
model has been started in Ref. [12] and further significantly
advanced in Ref. [13]. It was shown [13] that quantum fluctua-
tions lead to melting of the pinned phase at sufficiently large
values of dimensionless Planck constant _. This transition is a zero
temperature T¼0 quantum phase transition. At small _51 an
T¼0 the phonon mode is frozen but quantum tunneling gives
transitions between quasi-degenerate equilibrium classical con-
figurations which can be viewed as instantons. At small _51 the
density of instantons is small and their interactions are weak.
When _ increases the instanton density grows and above a certain
critical _c � 1 the quantum melting of pinned phase takes place at
zero temperature leading to zero gap, appearance of quantum
phonon mode and quantum chain sliding [13]. The results
obtained for the Wigner crystal in a periodic potential [2] in
classical and quantum regimes confirm this qualitative picture. At
fixed amplitude of periodic potential K the classical Wigner
crystal is pinned at small charge densities nonc1 [2]. Indeed, at
n-0 we have a problem of one electron with zero kinetic energy
and obviously, an electron is pinned by a periodic potential.
2. Sliding Wigner snake

The situation is different in the case of snaked nanochannel:
noninteracting electrons, corresponding to the limit n51, move
freely inside the wiggled channel and pinning of the Wigner
crystal appears only above a certain critical charge density n4n2.
An example of sliding and pinned regimes is shown in Fig. 2. The
data clearly show that the sliding phase at a¼0.6 has a smooth
hull function and sound dispersion law for small oscillations
of the crystal. In contrast, in the pinned regime at a¼1.2 the
hull function has a form of fractal devil’s staircase and gapped
spectrum of small oscillations.

More detailed results on dependence of gap D on charge
density n and deformation a are described in Ref. [3]. In Ref. [3]
it is also shown that for moderate deformations ao1 the charge
positions in a static configuration are described by a symplectic
dynamical map

v ¼ vþ2a2ð1�cos vÞsin 2f,

f ¼fþvþa2 sin v cos 2f, ð1Þ

where v¼ xi�xi�1, f¼ xi are conjugated action-phase variables,
bar marks their values after iteration. The map is implicit but
symplectic (see e.g. [7]). Examples of Poincaré sections of this map
at two values of deformation a are shown in Fig. 3. Phase space
region with scattered points corresponds to chaotic dynamics with
pinned phase, while the smooth invariant KAM curves correspond
to the sliding phase.

In many aspects the properties of the Wigner crystal in snaked
nanochannels are similar to those of the Frenkel–Kontorov model
[10] and the Wigner crystal in a periodic potential [2]: in the
pinned phase there are exponentially many static configurations
being exponentially close in energy and corresponding to the
dynamical glass phase. However, there are also some specific
features: for rational values of densities n¼ nm ¼ 1=m, where m is
an integer, the Wigner snake can slide freely since a displacement
does not modify the Coulomb energy of electron interactions.

In analogy with the results presented in Ref. [2], we expect that
the quantum Wigner crystal shows a zero temperature quantum
phase transition going from a pinned phase at _o_c � 1 to a
sliding phase at _4_c . However, a direct demonstration of this
fact requires further numerical simulations using quantum Monte
Carlo methods described in Refs. [2,12,13].
3. Discussion

In the above section we considered the Wigner crystal in a
snaked nanochannel without any internal potential. It is natural
to assume that a more realistic case of molecular organic
conductors, as shown in the Little suggestion in Fig. 1, has not
only channel deformation but also a periodic potential inside
the channel. Thus the case of organic conductors corresponds
to a case of snaked channel with a periodic potential inside it.



Fig. 4. Schematic phase diagram of the ðTMTCFÞ2X family taken from Ref. [14] (see

details there).
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The combination of results of Refs. [2,3] shows that for a given
deformation and amplitude of the periodic potential we have the
sliding phase in a certain range of charge densities n

nc1ononc2: ð2Þ

We suppose that the sliding KAM phase may correspond to
effective superconducting behavior of electron transport in
organic conductors. Indeed, the pressure diagram of organic
conductors shown in Fig. 4 from Ref. [14] shows that super-
conductivity exists only is a finite range of pressure. We assume
that pressure gives variation of effective charge density inside the
molecular channels in the Little suggestion in Fig. 1. This leads us
to the KAM concept of superconductivity of electrons without
attractive forces: the Wigner crystal of electrons slides freely
inside a snaked molecular crystal channel if the charge density is
located inside of KAM phase defined by Eq. (2). Of course, further
studies are required for development of this concept. In fact. the
sliding KAM phase can be viewed as a superfluid phase of
electrons. Indeed, we see that in the KAM phase there is a
spectrum of excitations with a finite sound velocity cs. Thus
according to the Landau criterion [15] the sliding of electrons
with velocities vocs is superfluid. Hence, the transition from the
sliding KAM phase to the pinned Aubry phase corresponds to the
transition from superfluid to insulator. In this superfluid liquid
the charge carries have change ‘‘e’’ and not ‘‘2e’’ as it is the case
for BCS pairs. May be effect of interactions between electrons in
parallel snaked channels should be taken into account to have 2e-
pairs. We note that it is known that repulsive interactions can
create superfluid phase in disordered 1d systems, e.g. in the
repulsive Hubbard model with disorder [16].

The existence of dynamical spin glass phase with pinned
Wigner crystal shows that there should be very slow relaxation
processes corresponding to very slow transitions between quasi-
degenerate static equilibrium configurations. In fact the experi-
ments with organic conductors show very slow variations of
conductivity which take place of a scale of days. Such experi-
mental results have been reported at ECRYS-2011 by Miyagawa
[17] and Monceau [18]. Usually it is argued that the glassy phase
appears due to impurities. We think that the origin of this
phenomenon is not related to disorder and impurities, which
presence should be rather small in organic crystals used in
experiments [17,18]. In contrast this glassy phase appears as a
result of dynamical spin glass phase described in Refs. [2,12,13,3]
which exists in purely periodic structures without any impurities
and disorder.

Finally, we note that in Ref. [2] it was proposed to study the
dynamical spin glass with cold ions in optical lattices which can
model the problem of Wigner crystal in a periodic potential. Such
experiments with cold ions are now under active discussions
[19,20] and their experimental realization is on the way [21].
Acknowledgments

This work is supported in part by ANR PNANO project
NANOTERRA.
References

[1] E. Wigner, Phys. Rev. 46 (1934) 1002.
[2] I. Garcia-Mata, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. D 41 (2007) 325.
[3] O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. B 82 (2011) 61.
[4] W.A. Little, Phys. Rev. A 134 (1964) 1416;

W.A. Little, Sci. Am. 212 (1965) 21.
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