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Dark matter chaos in the Solar system

J. Lages1 and D. L. Shepelyansky2‹
1Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS & Université de Franche-Comté, F-25030 Besançon, France
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ABSTRACT
We study the capture of Galactic dark matter particles in the Solar system produced by rotation
of Jupiter. It is shown that the capture cross-section is much larger than the area of the Jupiter
orbit being inversely diverging at small particle energy. We show that the dynamics of captured
particles is chaotic and is well described by a simple symplectic dark map. This dark map
description allows us to simulate the scattering and dynamics of 1014 dark matter particles
during the lifetime of the Solar system and to determine the dark matter density profile as
a function of distance from the Sun. The mass of captured dark matter in the radius of the
Neptune orbit is estimated to be 2 × 1015g. The radial density of captured dark matter is found
to be approximately constant behind the Jupiter orbit being similar to the density profile found
in galaxies.
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1 IN T RO D U C T I O N

A Galactic wind of dark matter particles (DMP; see e.g. Bertone,
Hooper & Silk 2005) flies through the Solar system (SS) and a
part of it becomes captured due to rotation of planets around the
Sun. The capture process, dominated by Jupiter, is related to the
non-trivial aspects of the restricted three-body problem (see e.g.
Valtonen & Karttunen 2005). We demonstrate that this process is
described by a simple dynamical symplectic map (see e.g. Chirikov
1979; Lichtenberg & Lieberman 1992) which allows us to perform
extensive numerical simulations of DMP capture. Our studies show
that the capture cross-section is much larger than the area of the
Jupiter orbit being diverging as an inverse square of DPM velocity
in agreement with recent analytical estimates by Khriplovich &
Shepelyansky (2009).

The dynamical map analysis allows us to simulate DMP capture
and ejection on the whole lifetime scale of the SS for 1014 DMP
being more efficient than the direct simulations of DPM dynamics
by Peter (2009). Our approach provides a DMP density distribution
in the SS with other features of dynamics at present time after
4.5 billion years of evolution of the SS. This DMP distribution
is similar to those found in galaxies by Rubin, Ford & Thonnard
(1980). The dynamics of DMP is shown to be chaotic having certain
similarities with a chaotic comet motion in the SS discussed by
Petrosky (1986), Chirikov & Vecheslavov (1989), Duncan, Quinn
& Tremaine (2005), Dvorak & Kribbel (1990) and Malyshkin &
Tremaine (1999).

� E-mail: dima@irsamc.ups-tlse.fr

Following Bertone et al. (2005) we assume that in a vicinity of the
SS the velocity distribution of DMP has a Maxwell form f (v) dv =√

54/πv2/u3 exp(−3v2/2u2) dv with the average module velocity
u ≈ 220 km s−1. During a scattering of DMP on the Sun its rescaled
total energy w = −2E/mdv

2
p is changed due to planetary rotation.

The main contribution is given by Jupiter, as discussed by Chirikov
& Vecheslavov (1989), and hence we base our studies on the case
of one planet measuring DMP parameters in units of planet radius
rp and velocity vp taken as unity, DMP mass md = 1. The studies
of comet dynamics by Petrosky (1986), Chirikov & Vecheslavov
(1989) and Duncan et al. (2005) in SS with one rotating planet
show that it is well described by a symplectic map and thus DMP
dynamics over an extended orbit is also described by that type of
map.

2 DA R K M A P D E S C R I P T I O N

This dark map has a form similar to the Halley map (see Chirikov
& Vecheslavov 1989):

wn+1 = wn + F (xn) , xn+1 = xn + w
−3/2
n+1 , (1)

where xn = tn/Tp (mod1) is given by time tn taken at the moment
of DMP nth passage through perihelion and Tp is the planet period.
The second equation in (1) follows from the Kepler law for the DMP
orbital period. The amplitude of kick function F(x) is proportional to
the ratio of planet mass mp to the Sun mass M� (F ∼ mp/M�) (see
Petrosky 1986; Chirikov & Vecheslavov 1989). Its shape depends
on DMP perihelion distance q, inclination angle θ between the
planetary plane (x, y) and DMP plane, and perihelion orientation
angle ϕ. However, F(x) is independent of energy w for 1/|w| � rp =
1. Thus, the dark map describes DMP dynamics for bounded and
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Figure 1. Left-hand panel: dependence of the kick function F(x) on Jupiter
phase x for DMP orbit parameters shown by pluses: (a) q = 0.11, θ = 2.83,
ϕ = 1.95 of the Halley comet case; here the crosses show data for the Halley
comet with all SS planets taken from fig. 1 of Chirikov & Vecheslavov
(1989); (b) q = 1.5, θ = 0.7, ϕ = π/2; (c) q = 0.5, θ = π/2, ϕ = 0; curves
show fit functions of numerical data marked by pluses. Right-hand panel:
dependence of maximal amplitude Fmax on q for a, b, c cases of the left-hand
panel.

unbounded energies as well as its capture process corresponding to
a transition from positive w < 0 to negative energies w > 0.

Our direct numerical simulations of Newton equations confirm
this map description by the F function as it is shown in Fig. 1 for
various values of q, θ , ϕ, including the Halley comet case analysed
by Chirikov & Vecheslavov (1989). In agreement with the theory of
Petrosky (1986) the maximum Fmax drops exponentially for q � rp

so that only DMP with q < 2rp can be effectively captured. At q �
rp we find F ∼ sin 2πx in agreement with the results of Petrosky
(1986). The visible peaks in Fmax correspond to close encounters
between DPM and planet happening at rather specific angles for
q ≤ rp. We will see later that such events give a small contribu-
tion in the capture cross-section σ . In fact, F function contribution
comes from encounter distances of the order of rp thus being much
larger than the radius of the planet body rb. This analytical result
of Petrosky (1986), Chirikov & Vecheslavov (1989), Khriplovich
& Shepelyansky (2009) and Shepelyansky (2012) is in agreement
with the detailed numerical simulations by Peter (2009) invalidating
previous numerical studies of Gould & Alam (2001) and Lundberg
& Edsjö (2004) which considered contributions only from rb scale.

Finally, we note that the dark map gives an efficient but approx-
imate description. For the exact dynamics there is a slow variation
of DMP orbital momentum � and q = �2/(2rpv

2
p) and angles θ , ϕ

(see Dvorak & Kribbel 1990). However, the rate of these variations
is rather slow being proportional to mp/M� and does not affect
significantly the chaotic diffusion in energy. Also numerical simu-
lations of DMP dynamics by Peter (2009) point on a small global
variation of q. A similar situation appears in a microwave ioniza-
tion of Rydberg atoms where it is known that the Kepler map in
energy gives a good description of ionization process of 3D atoms
as discussed by Shepelyansky (2012). Also the DPM flow f (v) dv

performs an averaging over all �, θ , ϕ values and hence a variation
of these parameters is averaged out.

3 CAP TURE CROSS-SECTION

In a scattering problem at infinity we have �2 = r2
d v2

p |w|
with the impact scattering distance r2

d = 2qrp/|w|. Hence,
the capture cross-section at energy |w| is σ (w)/σp =
(π2rp|w|)−1

∫ 2π

0 dθ
∫ π

0 dϕ
∫ ∞

0 dqh(q, θ, ϕ), where h is a fraction
of DMP captured after one map iteration from w < 0 to w > 0,

Figure 2. Left-hand panel: dependence of capture cross-section σ for
Jupiter on DMP energy w; the dashed lines show dependence σ ∝ 1/|w|;
1/w2. Right-hand panel: dependence of rescaled captured number of DMP
on energy w for Jupiter, Saturn and a model planet with mp/M� = 0.004
(full, dashed and dot–dashed curves, respectively).

given by an interval length inside F(x) envelope at |w| = constant,
σp = πr2

p . This fraction is determined from numerically computed
F(x), as those shown in Fig. 1, via a continuous fit spline of function
F(x). Using a grid with up to Ng = 105 points in (q, θ , ϕ) volume we
perform a Monte Carlo integration which gives σ (w) as a function
of energy w for the case of Jupiter where the main contribution is
given by |w| ∼ wcap = mpv

2
p/M� ≈ 10−3.

The dependence σ (w)/σ p is shown in Fig. 2. For |w| < wcap

we find σ/σp ≈ πM�wcap/mp|w| in agreement with analytical es-
timates by Khriplovich & Shepelyansky (2009), for |w| > wcap we
have σ/σp ≈ πM�w2

cap/(mpw
2). The later regime describes con-

tribution of close encounters which has a rapid decrease of σ and
hence gives a small contribution in the capture process. This con-
clusion is confirmed by the analysis of the differential number of
captured DMP per time unit dN = σ (w)ngv

2
pf (w)d|w|/2. Here ng

is a Galactic DMP density with a corresponding mass density ρg =
mdng ∼ 4 × 10−25 g cm−3 (see Bertone et al. 2005) and f(w) is
the velocity distribution function given above with |w| = v2/v2

p at
infinity. A number of DMP crossing the planet orbit area per time
unit is Np = ∫ 1

0 ngσpv
2
pf (w) d|w|/2.

The dependence of dN/Npdw on |w| = v2/v2
p , presented in Fig. 2,

drops quadratically for |w| > wcap showing that the contribution of
close encounters is small. We note that dN/Np dw depends only on
the ratio w/wcap that is confirmed by additional data obtained for
Saturn and a model planet in Fig. 2. As a result the total number
of captured particles is N ∝ mpM� in agreement with results of
Khriplovich & Shepelyansky (2009).

4 C H AOTIC DY NA MIC S

To determine the number of captured DMP Ncap(t), in SS with
Jupiter, as a function of time we model numerically a constant flow
of scattered particles with energy distribution dNs ∝ vf(v)dv per
time unit. The injection, capture, evolution and escape of DMP are
described by the dark map (1) with corresponding values of scattered
parameters q, θ , ϕ and corresponding to them F(x) function with
the scattering DMP distribution dNs ∝ dq dw (we use q ≤ qmax =
4rp since above this value Fmax is very small).

The scattering and evolution processes are followed during the
whole lifetime of SS taken as tS = 4.5 × 109 yr. The total number
of DMP, injected during time tS in the whole energy range 0 ≤
|w| ≤ ∞, is Ntot ≈ 1.5 × 1014 with NH = 4 × 109 scattered DMP
in the Halley comet range 0 < |w| ≤ wH ≈ 0.005 [κ = Ntot/NH ≈
2u2/(3v2

pwH) ≈ 3.8 × 104, only DMP with |w| < Fmax participate
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Figure 3. Left-hand panel: the number Ncap of captured DMP, as a function
of time t in years, for energy range w > 0 (dashed curve), w > 4 × 10−5

corresponding to half distance between Sun and Alpha Centauri System
(black curve), w > 1/20 corresponding to r < 100 au (red curve); DMP are
injected at constant flow f(v) at all angles. Right-hand panel: the top part
shows density distribution ρ(w) ∝ dN/dw in energy at time tS for DMP
injection at all parameters q, θ , ϕ (normalized as

∫ ∞
0 ρ dw = 1), the bottom

part shows the Poincaré section of the dark map for DMP injection at fixed
parameters q, θ , ϕ of Fig. 1(b); the inset shows the density distribution of
captured DMP in w in a log–log scale for parameters of Fig. 1(b) (grey
curve) and orbits of the main right-hand panel injected at all parameters
(black curve), a dashed line shows a slope of −3/2.

in dynamics]. We used a random grid of initial q, θ , ϕ values with
up to N0 = 4 × 105 grid points and Ni injected orbits at each grid
point with NH = N0Ni.

The time dependence Ncap(t) in Fig. 3 shows that initially it grows
linearly with time. This growth slows down after a time-scale of td ≈
107 yr. For a finite SS region with w > 1/20 we see that there is
a saturation of captured number of DMP. Indeed, according to the
results of Chirikov & Vecheslavov (1989) for the Halley comet, the
scale td ∼ 107 yr is a typical scale of diffusive escape of a comet
or DMP from SS due to chaotic diffusion in energy. The analytical
estimates given by Chirikov & Vecheslavov (1989) and Khriplovich
& Shepelyansky (2009) also give a similar escape time. Thus, after
that time the injected flow is compensated by the escape process
and we obtain a system in an equilibrium state with a fixed number
of captured DMP with a certain energy distribution ρ(w).

An example of such a distribution for typical orbit parameters
q, θ , ϕ at present time t = tS is shown in the inset of the right-
hand panel of Fig. 3 (grey curve). There is a peak of density at
small energies w < 0.002 where the orbital period is very long
and chaotization is slow. For the range 0.002 < w < wch we have
an approximate algebraic decay ρ ∼ 1/w3/2 which corresponds
to the ergodic measure where DMP density is proportional to the
orbital period Tw ∼ 1/w3/2. The chaotic diffusion to large energies
is stopped by a critical invariant Kolmogorov–Arnold–Moser curve
which separates the chaos region from the integrable one at w =
wch.

The analytical estimate of Khriplovich & Shepelyansky (2009),
based on the Chirikov criterion (see Chirikov 1979; Lichtenberg &
Lieberman 1992), gives for Fmax ≈ 5mp/M� the value wch ≈ 0.3
that is in good agreement with the case of Fig. 3 where wch ≈ 0.2.
In a region wch/2 < w < wch we have stability islands, being well
visible in the Poincaré section, that gives significant fluctuations
in density ρ(w). However, for w < wch/2 the chaos component
is homogeneous in the phase plane (w, x). This means that DMP
are injected in the chaotic component of a chaotic layer around
separatrix w = 0, and thus the DMP dynamics in SS is essentially
chaotic.

5 D E N S I T Y A N D M A S S O F C A P T U R E D
DA R K M AT T E R

To obtain DMP space density we consider Ntot scattered orbits as
described above. Their time evolution is described by the dark map
(1) up to the present moment of time tS. We keep in memory the
initial orbit parameters q, θ , ϕ of captured orbits. Then we consider
only those with w > 4 × 10−5 during the time interval δtS/tS =
±10−3 near time moment tS collecting δNAC ≈ 6.2 × 106 orbits
(while instantaneously we have NAC ≈ 3.3 × 105). For these δNAC

DMP their dynamics in real space is recomputed from their values
of q, θ , ϕ, w, x during the time period of 
t ≈ 100 Jupiter orbital
periods using Newton equations.

The radial density ρ(r) of DMP is obtained by averaging over
103 points randomly and homogeneously distributed over this time
interval 
t for each of δNAC orbits. The obtained normalized radial
distribution ρ(r) is shown in Fig. 4 with the corresponding average
volume density ρv = ρ/r2. It corresponds to a stationary equilib-
rium regime appearing at t � td when injection and escape flows
compensate each other. The striking feature of the obtained result
is that for r > rp we find ρ(r) ≈ constant. This means that the total
DMP mass in a radius r grows linearly with r.

According to the virial theorem such a profile gives a velocity of
visible matter independent of radius v2

m ∼ ∫ r

0 ρ(r ′) dr ′/r ∼ ρ(r),
being similar to those found in galaxies when the DMP mass is
dominant as discussed by Ruben et al. (1980) and Bertone et al.
(2005). Another important feature is that the DMP volume density
ρv remains approximately constant for r < rp = rJ. However, for
r > rJ this density drops as inverse square distance from the Sun.
Thus, we find that a simple model of SS with one rotating planet
is able to reproduce significant features of observed DMP density
distribution in galaxies.

Let us note that the radial density ρ(r) ∝ dN/dr is only approx-
imately constant for r > rp. Indeed, a formal fit of data of Fig. 4
(right-hand panel) in the range 2 < r/rp < 20 gives ρv ∼ 1/rβ with
β = 1.53 ± 0.002. We can argue that this dependence can be un-
derstood from the ergodic measure of effectively one-dimensional
chaotic radial dynamics: dμ ∼ dN ∼ ρdr ∼ ∫

dtdw(dN/dw) ∼
dt ∼ dr/vr ∼ √

r dr (assuming that dN/dw is peaked near w ≈
0 as it is seen in the inset of Fig. 3 and hence the radial veloc-
ity vr ∼ √

1/r − w ∼ 1/
√

r and ρv ∼ 1/r3/2). Such a dependence
would lead to velocity of visible matter vm ∝ √

ρ ∝ r1/4 if the DMP
mass would be dominant, as it is the case in galaxies as discussed
by Ruben et al. (1980).

Figure 4. Left-hand panel: radial density ρ(r) ∝ dN/dr at present time tS
for SS with Jupiter averaged over all NAC DMP (the normalization is fixed

as
∫ 6rp

0 ρ dr = 1, rp = rJ = 1). Right-hand panel: volume density ρv = ρ/r2

from the data of the left-hand panel, the dashed line shows slope of −2, the
horizontal line shows average density for rp/5 ≤ r ≤ rp.

 by guest on February 24, 2013
http://m

nrasl.oxfordjournals.org/
D

ow
nloaded from

 

http://mnrasl.oxfordjournals.org/


L28 J. Lages and D. L. Shepelyansky

In fact, the data presented by Ruben et al. (1980, see fig. 7 and
equations 1 and 2) are compatible with the dependence vm ∝ r0.35

which is close to the above theoretical estimate. However, in SS the
DMP mass is small compared to the visible matter and hence the
case of galaxies should be analysed in a more detailed way using
self-consistent conditions for the DMP distribution which would
modify the second equation in the dark map. Though the above
arguments can be useful for the analysis of DMP distribution at r �
rp, in this work we perform the density analysis mainly inside the
Neptune orbit where the radial density ρ(r) can be considered as
approximately constant.

From the data of Fig. 3 we determine the fraction ηAC =
NAC/Ntot ≈ 2.2 × 10−9 of DMP captured at time tS at energies
w > 4 × 10−5 and related fraction η20 ≈ 1.5 × 10−11 at en-
ergies w > 1/20. From Fig. 4 we determine the fraction of
NAC orbits in the volume r ≤ 6rp with ηr6 ≈ 4.3 × 10−4

and in the volume r ≤ rp with ηr1 ≈ 2.3 × 10−5. The DMP
mass corresponding to these fractions is obtained by multiplica-
tion of these fractions by the total mass of DMP flow passed
in the corresponding range q ≤ 4rp: Mtot = ∫ ∞

0 dvvf (v)σρgtS ≈
69ρgtSkrpM�/u ≈ 0.9 × 10−6M� where we use the cross-section
σ = πr2

d = 8πkM�rp/v
2 for injected orbits with q ≤ 4rp, k is the

gravitational constant (u/vp ≈ 17). Thus, the mass of DMP with w

> 4 × 10−5 is MAC ≈ ηACMtot ≈ 2 × 10−15M�, and in a similar
way the mass at w > 1/20 is M20 ≈ η20Mtot ≈ 1.3 × 10−17M�.
The mass MAC can be estimated as a mass of DPM with |w| <

wH absorbed by F ∼ sin x kick during the diffusion time td that
gives MAC ∼ v2

pwHtdMtot/(πu2tS) ∼ 10−8Mtot ∼ 10−14M� being
only by a factor of 5 larger than the above numerical value.

The mass of DMP in the volume of the Neptune orbit ra-
dius r < 6rp is Mr6 = ηr6MAC ≈ 0.9 × 10−18M� ≈ 1.7 × 1015g

and in the radius r < rp the DMP mass is Mr1 = ηr1MAC ≈
4.6 × 10−20M� ≈ 1014g. The average volume density of cap-
tured DMP inside the Jupiter orbit sphere r < rp = rJ is ρJ =
3Mr1/(4πr3

p ) ≈ 1.2 × 10−4ρg ≈ 5 × 10−29 g cm−3. Thus, the den-
sity of captured DMP is much smaller than the Galactic DMP den-
sity. However, it is by a factor of 4 × 103 larger than the equilibrium
DMP Galactic density ρgH ≈ 0.25ρg/κ

3/2 ≈ 1.4 × 10−32 g cm−3

taken in the energy range 0 < |w| < wH.
The density distribution of captured DMP in SS is shown in Fig. 5.

We see that the density decreases with r at r > rJ in agreement with
Fig. 4. A characteristic bulge is formed around the Jupiter orbit.
A maximal local volume density is about 10 times larger than the
average density ρJ inside r < rJ.

6 D ISC U SSION

For further studies it is desirable to take into account the contribu-
tion of other planets even if the results presented by Chirikov &
Vecheslavov (1989) show that the main features of the dynamics
are well described only by Jupiter contribution considered here. It
is natural to expect that, as in the SS with one planet, the DMP dy-
namics in galaxies is dominated by a few stars rotating around the
central black hole and thus a constant radial DMP density behind
the Jupiter orbit found here should be typical for such galaxies in
agreement with observational data discussed by Ruben et al. (1980).

In global our studies show that the average captured DMP density
inside the Jupiter orbit is by a factor of 104 smaller than the Galactic
DMP density ρg. The main reason for that is a small value of
captured DMP energy wcap ∼ mp/M� ∼ 0.005 which is very small
compared to the dimensional Galactic DMP velocity u/vp ∼ 17.
However, if we consider the Galactic density in the capture energy

Figure 5. Density of captured DMP in SS at present time tS. Top panels:
DMP surface density ρs ∝ dN/dz drρ shown on left in the cross plane (0, y, z)

perpendicular to the Jupiter orbit (data are averaged over rρ =
√

x2 + y2 =
constant), on right in the Jupiter plane (x, y, 0); only the range |r|≤ 6rJ around
the Sun is shown. Bottom panels: corresponding DMP volume density ρv ∝
dN/dx dy dz on left in the plane (0, y, z), on right in the Jupiter plane (x, y,
0); only the range |r| ≤ 2rJ around the Sun is shown. Colour is proportional
to density with yellow/black for maximum/zero density.

range of 0 < |w|<wcap, then we find that it is significantly enhanced
by a factor of 4 × 103 due to the capture process considered here.
Thus, the further analysis of chaotic capture process of dark matter
in binary systems can bring interesting results.

It would be also interesting to consider the inverse ionization
process of DMP. According to the dark map (1) the escape velocity
square of DMP from a binary system of a star of mass ms rotating
in a vicinity of a black hole of mass Mb is v2

d ∼ (ms/Mb)v2
s . For a

star moving in a vicinity of the Schwarzschild radius we may have
the star velocity vs ∼ c/3, and for the mass ratio ms/Mb ∼ 0.01 we
obtain the escape velocity of DMP vd ∼ c/30 ≈ 104 km s−1 that is
almost hundred times larger than the average Galactic DMP velocity
u ∼ 200 km s−1. Any other body of mass significantly smaller than
ms is ejected with a similar velocity that can generate compact
wandering black holes crossing the Universe at high velocity vd.
Thus, the stars on a distance of the Schwarzschild radius from black
holes can work as some kind of black hole accelerators generating
high-velocity DMP in the universe.
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