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Dark matter chaos in the Solar System

J.Lages
Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS & Université de Franche-Comté, 25030 Besançon, France

D.L.Shepelyansky
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We study the capture of galactic dark matter particles in the Solar System produced by rotation
of Jupiter. It is shown that the capture cross section is much larger than the area of Jupiter orbit
being inversely diverging at small particle energy. We show that the dynamics of captured particles
is chaotic and is well described by a simple symplectic dark map. This dark map description allows
to simulate the scattering and dynamics of 1014 dark matter particles during the life time of the
Solar System and to determine dark matter density profile as a function of distance from the Sun.
The mass of captured dark matter in the radius of Neptune orbit is estimated to be 2 · 1015g. The
radial density of captured dark matter is found to be approximately constant behind Jupiter orbit
being similar to the density profile found in galaxies.

PACS numbers: 95.35.+d, 05.45.Ac, 96.25.De, 96.30.Vb

A galactic wind of dark matter particles (DMP) [1]
flies through the Solar System and a part of it becomes
captured due rotation of planets around the Sun. The
capture process, dominated by Jupiter, is related to the
nontrivial aspects of the restricted three-body problem
[2]. We demonstrate that this process is described by
a simple dynamical symplectic map [3, 4] which allows
to perform extensive numerical simulations of DMP cap-
ture. Our studies show that the capture cross section is
much larger than the area of Jupiter orbit being diverging
as an inverse square of DPM velocity in agreement with
recent analytical estimates [5]. The dynamical map anal-
ysis allows to simulate DMP capture and ejection on the
whole life time scale of the Solar System for 1014 DMP
being more efficient than the direct simulations of DPM
dynamics [6]. Our approach provides a DMP density
distribution in the Solar System with other features of
dynamics at present time after 4.5 billion years evolution
of the Solar System. This DMP distribution is similar
to those found in galaxies [7]. The dynamics of DMP
is shown to be chaotic having certain similarities with a
chaotic comet motion in the Solar System discussed in
[8–12].

Following [1] we assume that in a vicinity of the So-
lar System (SS) the velocity distribution of DMP has a
Maxwell form f(v)dv =

√

54/πv2/u3 exp(−3v2/2u2)dv
with the average module velocity u ≈ 220km/s. During
a scattering of DMP on the Sun its rescaled total energy
w = −2E/mdv

2
p is changed due to planetary rotation.

The main contribution is given by Jupiter [9] and hence
we base our studies on the case of one planet measuring
DMP parameters in units of planet radius rp and veloc-
ity vp taken as unity, DMP mass md = 1. The studies
of comet dynamics [8–10] in SS with one rotating planet
show that it is well described by a symplectic map and
thus a DMP dynamics over an extended orbit is also de-

scribed by that type of map. This dark map has a form
similar to the Halley map [9]:

wn+1 = wn + F (xn) , xn+1 = xn + w
−3/2
n+1 , (1)

where xn = tn/Tp (mod1) is given by time tn taken
at the moment of DMP n − th passage through peri-
helion, Tp is the planet period. The second equation
in (1) follows from the Kepler law for the DMP orbital
period. The amplitude of kick function F (x) is propor-
tional to the ratio of planet mass mp to the Sun mass MS

(F ∼ mp/Ms) [8, 9]. Its shape depends on DMP perihe-
lion distance q, inclination angle θ between the planetary
plane (x, y) and DMP plane, and perihelion orientation
angle ϕ. However, F (x) is independent of energy w for
1/|w| ≫ rp = 1. Thus the dark map describes DMP
dynamics for bounded and unbounded energies as well
as its capture process corresponding to a transition from
positive w < 0 to negative energies w > 0.
Our direct numerical simulations of Newton equations

confirms this map description by F -function as it is
shown in Fig. 1 for various values of q, θ, ϕ, including
the Halley comet case analyzed in [9]. In agreement with
the theory [8] the maximum Fmax drops exponentially
for q ≫ rp so that only DMP with q < 2rp can be effec-
tively captured. At q ≫ rp we find F ∼ sin 2πx in agree-
ment with [8]. The visible peaks in Fmax correspond to
close encounters between DPM and planet happening at
rather specific angles for q ≤ rp. We will see later that
such events give a small contribution in the capture cross
section σ. In fact, F−function contribution comes from
encounter distances of the order of rp thus being much
larger than the radius of the planet body rb. This analyt-
ical result [5, 8, 9, 13] is in agreement with the detailed
numerical simulations [6] invalidating previous numerical
studies [14, 15] which considered contributions only from
rb scale. Finally, we note that the dark map gives an effi-
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FIG. 1: Left panel: dependence of kick function F (x) on
Jupiter phase x for DMP orbit parameters shown by pluses:
a) q = 0.11, θ = 2.83, ϕ = 1.95 of the Halley comet case; here
crosses show data for the Halley comet with all SS planets
taken from Fig.1 of [9]; b) q = 1.5, θ = 0.7, ϕ = π/2; c)
q = 0.5, θ = π/2, ϕ = 0; curves show fit functions of numerical
data marked by pluses. Right panel: dependence of maximal
amplitude Fmax on q for a, b, c cases of left panel.

cient but approximate description. For the exact dynam-
ics there is a slow variation of DMP orbital momentum
ℓ and q = ℓ2/(2rpv

2
p) and angles θ, ϕ [11]. However, the

rate of these variations is rather slow being proportional
to mp/MS and does not affect significantly the chaotic
diffusion in energy. Also numerical simulations of DMP
dynamics point on a small global variation of q [6]. A
similar situation appears in a microwave ionization of
Rydberg atoms where it is known that the Kepler map
in energy gives a good description of ionization process
of 3D-atoms [13]. Also the DPM flow f(v)dv performs
an averaging over all ℓ, θ, ϕ values and hence a variation
of these parameters is averaged out.
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FIG. 2: Left panel: Dependence of capture cross section σ for
Jupiter on DMP energy |w|; dashed lines show dependence
σ ∝ 1/|w|; 1/w2. Right panel: Dependence of rescaled cap-
tured number of DMP on energy |w| for Jupiter, Saturn and
a model planet with mp/MS = 0.004 (full, dashed, dot-dashed
curves respectively).

In a scattering problem at infinity we have ℓ2 =
r2dv

2
p|w| with the impact scattering distance r2d =

2qrp/|w|. Hence, the capture cross section at energy |w|

is σ(w)/σp = (π2rp|w|)
−1

∫ 2π

0
dθ

∫ π

0
dϕ

∫

∞

0
dqh(q, θ, ϕ),

where h is a fraction of DMP captured after one map

iteration from w < 0 to w > 0, given by an interval
length inside F (x) envelope at |w| = const, σp = πr2p.
This fraction is determined from numerically computed
F (x), as those shown in Fig. 1, via a continuous fit spline
of function F (x). Using a grid with up to Ng = 105

points in (q, θ, ϕ) volume we perform a Monte Carlo in-
tegration which gives σ(w) as a function of energy w
for the case of Jupiter where the main contribution is
given by |w| ∼ wcap = mp/MS ≈ 10−3. The depen-
dence σ(w)/σp is shown in Fig. 2. For |w| < wcap we
find σ/σp ≈ πMSwcap/mp|w| in agreement with ana-
lytical estimates [5], for |w| > wcap we have σ/σp ≈
πMSw

2
cap/(mpw

2). The later regime describes contri-
bution of close encounters which has a rapid decrease
of σ and hence gives a small contribution in the cap-
ture process. This conclusion is confirmed by the anal-
ysis of the differential number of captured DMP per
time unit dN = σ(w)ngv

2
pf(w)dw/2. Here ng is a

galactic DMP density with a corresponding mass density
ρg = mdng ∼ 4 · 10−25g/cm3 [1] and f(w) is the ve-
locity distribution function given above with v2 = v2p|w|
at infinity. A number of DMP crossing the planet orbit

area per time unit is Np =
∫ 1

0
ngσpv

2
pf(w)dw/2. The

dependence of dN/Npdw on |w| = v2/v2p, presented in
Fig. 2, drops quadratically for |w| > wcap showing that
the contribution of close encounters is small. We note
that dN/Npdw depends only on the ratio w/wcap that is
confirmed by additional data obtained for Saturn and a
model planet in Fig. 2. As a result the total number of
captured particles is N ∝ mpMS in agreement with [5].
To determine the number of captured DMP Ncap(t), in

SS with Jupiter, as a function of time we model numer-
ically a constant flow of scattered particles with energy
distribution dNs ∝ vf(v)dv per time unit. The injection,
capture, evolution and escape of DMP is described by
the dark map (1) with corresponding values of scattered
parameters q, θ, ϕ and corresponding to them F (x) func-
tion with the scattering DMP distribution dNs ∝ dqdw
(we use q ≤ qmax = 4rp since above this value Fmax

is very small). The scattering and evolution processes
are followed during the whole life time of SS taken as
tS = 4.5 · 109years. The total number of DMP, injected
during time tS in the whole energy range 0 ≤ |w| ≤ ∞,
is Ntot ≈ 1.5 · 1014 with NH = 4 · 109 scattered DMP
in the Halley comet range 0 < |w| ≤ wH ≈ 0.005
(κ = Ntot/NH ≈ 2u2/(3v2pwH) ≈ 3.8 · 104, only DMP
with |w| < Fmax participate in dynamics). We used a
random grid of initial q, θ, ϕ values with up to N0 = 4·105

grid points and Ni injected orbits at each grid point with
NH = N0Ni.

The time dependence Ncap(t) in Fig. 3 shows that ini-
tially it grows linearly with time. This growth slows down
after a time scale td ≈ 107 years. For a finite SS region
with w > 1/20 we see that there is a saturation of cap-
tured number of DMP. Indeed, according to the results
for the Halley comet [9] the scale td ∼ 107yr is a typical
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FIG. 3: Left panel: The number Ncap of captured DMP, as a
function of time t in years, for energy range w > 0 (dashed
curve), w > 4 · 10−5 corresponding to half distance between
Sun and Alpha Centauri System (black curve), w > 1/20
corresponding to r < 100AU (red curve); DMP are injected
at constant flow f(v) at all angles. Right panel: Top part
shows density distribution ρ(w) ∝ dN/dw in energy at time
tS for DMP injection at all parameters q, θ, ϕ (normalized as
∫

∞

0
ρdw = 1), bottom part shows the Poincaré section of the

dark map for DMP injection at fixed parameters q, θ, ϕ of
Fig. 1b; inset shows density distribution of captured DMP
in w in log-log scale for parameters of Fig. 1b (gray curve)
and orbits of the main right panel injected at all parameters
(black curve), a dashed line shows a slope -3/2.
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FIG. 4: Left panel: Radial density ρ(r) ∝ dN/dr at present
time tS for SS with Jupiter averaged over all NAC DMP (the

normalization is fixed as
∫

6rp
0

ρdr = 1, rp = rJ = 1). Right

panel: Volume density ρv = ρ/r2 from the data of left panel,
dashed line shows slope -2, horizontal line shows average den-
sity for rp/5 ≤ r ≤ rp.

scale of diffusive escape of a comet or DMP from SS due
to chaotic diffusion in energy. The analytical estimates
given in [5, 9] also give a similar escape time. Thus after
that time the injected flow is compensated by the escape
process and we obtain a system in an equilibrium state
with a fixed number of captured DMP with a certain
energy distribution ρ(w). An example of such a distribu-
tion for a typical orbit parameters q, θ, ϕ at present time
t = tS is shown in the inset of the right panel of Fig 3
(gray curve). There is a peak of density at small ener-
gies w < 0.002 where the orbital period is very long and

chaotization is slow. For the range 0.002 < w < wch we
have an approximate algebraic decay ρ ∼ 1/w3/2 which
corresponds to the ergodic measure where DMP density
is proportional to the orbital period Tw ∼ 1/w3/2. The
chaotic diffusion to large energies is stopped by a critical
invariant Kolmogorov-Arnold-Moser (KAM) curve which
separates chaos region from integrable one at w = wch .
The analytical estimate [5], based on the Chirikov crite-
rion [3, 4], gives for Fmax ≈ 5mp/MS the value wch ≈ 0.3
that is in a good agreement with the case of Fig. 3 where
wch ≈ 0.2. In a region wch/2 < w < wch we have sta-
bility islands, being well visible in the Poincaré section,
that gives significant fluctuations in density ρ(w). How-
ever, for w < wch/2 the chaos component is homogeneous
in the phase plane (w, x). This means that DMP are in-
jected in the chaotic component of a chaotic layer around
separatrix w = 0, and thus the DMP dynamics in SS is
essentially chaotic.

FIG. 5: Density of captured DMP in SS at present time tS.
Top panels: DMP surface density ρs ∝ dN/dzdrρ shown at
left in cross plane (0, y, z) perpendicular to Jupiter orbit (data

are averaged over rρ =
√

x2 + y2 = const), at right in Jupiter
plane (x, y, 0); only the range |r| ≤ 6rJ around the Sun is
shown. Bottom panels: corresponding DMP volume density
ρv ∝ dN/dxdydz at left in plane (0, y, z), at right in Jupiter
plane (x, y, 0); only the range |r| ≤ 2rJ around the Sun is
shown. Color is proportional to density with yellow/black for
maximum/zero density.

To obtain DMP space density we consider Ntot scat-
tered orbits as described above. Their time evolution is
described by the dark map (1) up to the present mo-
ment of time tS . We keep in memory the initial or-
bit parameters q, θ, ϕ of captured orbits. Then we con-
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sider only those with w > 4 · 10−5 during the time in-
terval δtS/tS = ±10−3 near time moment tS collecting
δNAC ≈ 6.2 · 106 orbits (while instantaneously we have
NAC ≈ 3.3·105). For these δNAC DMP their dynamics in
real space is recomputed from their values of q, θ, ϕ, w, x
during the time period of ∆t ≈ 100 Jupiter orbital peri-
ods using Newton equations. The radial density ρ(r) of
DMP is obtained by averaging over 103 points randomly
and homogeneously distributed over this time interval ∆t
for each of δNAC orbits. The obtained normalized radial
distribution ρ(r) in shown in Fig. 4 with the correspond-
ing average volume density ρv = ρ/r2. It corresponds to
a stationary equilibrium regime appearing at t ≫ td when
injection and escape flows compensate each other. The
striking feature of the obtained result is that for r > rp
we find ρ(r) ≈ const, This means that the total DMP
mass in a radius r grows linearly with r. According to
the virial theorem such a profile gives a velocity of visible
matter independent of radius v2m ∼

∫ r

0
ρ(r′)dr′/r ∼ ρ(r),

being similar to those found in galaxies when the DMP
mass is dominant [1, 7]. Another important feature is
that the DMP volume density ρv remains approximately
constant for r < rp = rJ . However, for r > rJ this
density drops as inverse square distance from the Sun
[16]. Thus we find that a simple model of SS with one
rotating planet is able to reproduce significant features
of observed DMP density distribution in galaxies.

From the data of Figs. 3 we determine the fraction
ηAC = NAC/Ntot ≈ 2.2 · 10−9 of DMP captured at
time tS at energies w > 4 · 10−5 and related fraction
η20 ≈ 1.5 · 10−11 at energies w > 1/20. From Fig. 4
we determine the fraction of NAC orbits in the volume
r ≤ 6rp with ηr6 ≈ 4.3 · 10−4 and in the volume r ≤ rp
with ηr1 ≈ 2.3 · 10−5. The DMP mass corresponding
to these fractions is obtained by multiplication of these
fractions by the total mass of DMP flow passed in the cor-
responding range q ≤ 4rp: Mtot =

∫

∞

0
dvvf(v)σρgtS ≈

69ρgtSkrpMS/u ≈ 0.9 · 10−6MS where we use the cross
section σ = πr2d = 8πkMSrp/v

2 for injected orbits with
q ≤ 4rp, k is the gravitational constant (u/vp ≈ 17).
Thus the mass of DMP with w > 4 · 10−5 is MAC ≈
ηACMtot ≈ 2 · 10−15MS , and in a similar way the mass
at w > 1/20 is M20 ≈ η20Mtot ≈ 1.3 · 10−17MS . The
mass MAC can be estimated as a mass of DPM with
|w| < wH absorbed by F ∼ sinx kick during the diffu-
sion time td that gives MAC ∼ v2pwHtdMtot/(πu

2tS) ∼
10−8Mtot ∼ 10−14MS being only by a factor 5 larger the
above numerical value.

The mass of DMP in the volume of Neptune orbit ra-
dius r < 6rp is Mr6 = ηr6MAC ≈ 0.9 · 10−18MS ≈
1.7 · 1015g and in the radius r < rp the DMP mass is
Mr1 = ηr1MAC ≈ 4.6 · 10−20MS ≈ 1014g. The average
volume density of captured DMP inside the Jupiter orbit
sphere r < rp = rJ is ρJ = 3Mr1/(4πr

3
p) ≈ 1.2 ·10−4ρg ≈

5 · 10−29g/cm3. Thus, the density of captured DMP is
much smaller than the galactic DMP density. However,

it is by a factor 4 · 103 larger than the equilibrium DMP
galactic density ρgH ≈ 0.25ρg/κ

3/2 ≈ 1.4 · 10−32g/cm3

taken in the energy range 0 < |w| < wH .

The density distribution of captured DMP in SS is
shown in Fig. 5. We see that the density decreases with
r at r > rJ in agreement with Fig. 4. A characteristic
bulge is formed around the Jupiter orbit. A maximal
local volume density is about 10 times larger than the
average density ρJ inside r < rJ .

For further studies it is desirable to take into account
the contribution of other planets even if the results pre-
sented in [9] show that the main features of the dynamics
are well described only by Jupiter contribution consid-
ered here. It is natural to expect that, as in the SS with
one planet, the DMP dynamics in galaxies is dominated
by a few stars rotating around the central black hole
and thus an approximately constant radial DMP den-
sity found here behind Jupiter orbit should be typical for
such galaxies in agreement with observational data [7].

We thank I.B.Khriplovich for useful discussions. A
part of numerical computations has been performed at
the mésocentre de calcul de Franche-Comté.
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