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We develop the synchronization theory of microwave induced zero-resistance states (ZRS) for
two-dimensional electron gas in a magnetic field. In this theory the dissipative effects lead to syn-
chronization of cyclotron phase with driving microwave phase at certain resonant ratios between
microwave and cyclotron frequencies. This synchronization produces stabilization of electron trans-
port along edge channels and at the same time it gives suppression of dissipative scattering on local
impurities and dissipative conductivity in the bulk, thus creating the ZRS phases at that frequency
ratios. The electron dynamics along edge and around circular disk impurity is well described by
the Chirikov standard map. The theoretical analysis is based on extensive numerical simulations of
classical electron transport in a strongly nonlinear regime. We also discuss the value of activation en-
ergy obtained in our model and the experimental signatures that could establish the synchronization

origin of ZRS.

PACS numbers: 73.40.-¢,05.45.-a,72.20.My

I. INTRODUCTION

The experiments on resistivity of high mobility two-
dimensional electron gas (2DEG) in presence of a rela-
tively weak magnetic field and microwave radiation led to
a discovery of striking Zero-Resistance States (ZRS) in-
duced by a microwave field by Mani et al. [I] and Zudov
et al. [2]. Other experimental groups also found the mi-
crowave induced ZRS in various 2DEG samples (see e.g.
[BH5]). A similar behavior of resistivity is also observed
for electrons on a surface of liquid helium in presence
of magnetic and microwave fields [6l [7]. These experi-
mental results obtained with different systems stress the
generic nature of ZRS. Various theoretical explications
for this striking phenomenon have been proposed during
the decade after the first experiments [1}[2]. An overview
of experimental and theoretical results is give in the re-
cent review [g].

In our opinion the most intriguing feature of ZRS is
their almost periodic structure as a function of the ra-
tio j = w/w. between the microwave frequency w and
cyclotron frequency w. = eB/me. (in the following we
are using units with electron charge e and mass m equal
to unity). Indeed, a Hamiltonian of electron in a mag-
netic field is equivalent to an oscillator, it has a magneto-
plasmon resonance at 7 = 1 but in a linear oscillator there
are no matrix elements at j = 2,3, ... and hence a rela-
tively weak microwave field is not expected to affect elec-
tron dynamics and resistivity properties of transport. Of
course, one can argue that impurities can generate har-
monics being resonant at high 5 > 1 but ZRS is observed
only in high mobility samples and thus the density of im-
purities is expected to be rather low. It is also important
to note that ZRS appears at high Landau levels v ~ 50
so that a semiclassical analysis of the phenomenon seems
to be rather relevant.

In this work we develop the theoretical approach pro-

posed in [9]. This approach argues that impurities pro-
duce only smooth potential variations inside a bulk of
a sample so that ZRS at high j appear from the orbits
moving along sharp sample boundaries. It is shown [9]
that collisions with boundaries naturally generate high
harmonics and that a moderate microwave field gives
stabilization of edge channel transport of electrons in a
vicinity of j =~ j, = 14+ 1/4, 2+ 1/4, 3+ 1/4... pro-
ducing at these j a resistance going to zero with increas-
ing microwave power. This theory is based on classical
dynamics of electrons along a sharp edge. The treat-
ment of relaxation processes is modeled in a phenomeno-
logical way by a dissipative term in the Newton equa-
tions. Additional noise term in the dynamical equations
takes into account thermal fluctuations. The dissipation
leads to synchronization of cyclotron phase with a phase
of microwave field producing stabilization of edge trans-
port along the edges in a vicinity of resonant j,. values.
Thus, according to the edge stabilization theory [9] the
ZRS phase is related to a universal synchronization phe-
nomenon which is a well established concept in nonlinear
sciences [10].

While the description of edge transport stabilization
[9) captures a number of important features observed in
ZRS experiments it assumes that the contribution of bulk
orbits in transport is negligibly small. This assumption
is justified for smooth potential variations inside the bulk
of a sample. However, a presence of isolated small scale
scatterers inside the bulk combined with a smooth po-
tential component can significantly affect the transport
properties of electrons (see e.g. [I1]). Also the majority
of theoretical explanations of ZRS phenomenon considers
only a contribution of scattering in a bulk [§]. Thus it
is necessary to analyze how a scattering on a single im-
purity is affected by a combined action of magnetic and
microwave fields. In this work we perform such an anal-
ysis modeling impurity by a rigid circular disk of finite



radius. We show that the dynamics in a vicinity of disk
has significant similarities with dynamics of orbits along
a sharp edge leading to appearance of ZRS type features
in a resistivity dependence on j.

The paper is composed as follows: in Section IT we
discuss the dynamics in edge vicinity, in Section IIT we
analyze scattering on a single disk, in Section IV we study
scattering on many disks when their density is low, here
we determine the resistivity dependence on j and other
system parameters, physical scales of ZRS effects are ana-
lyzed in Section V| effects of two microwave driving fields
and other theory predictions are considered in Section VI,
discussion of the results is given in Section VII.

We study various models which we list here for a reader
convenience: wall model described by the Newton equa-
tions , with microwave field polarization perpen-
dicular to the wall (model (W1) equivalent to model
(1) in [9]); the Chirikov standard map description
of the wall model dynamics called model (W2) (equiv-
alent to model (2) in [9] at parameter p = 1); the sin-
gle disk model with radial microwave field called model
(DR1); the Chirikov standard map description of
model (DR1) called model (DR2) (here v, — v, in (@),
p > 1); the model of a single disk in a linearly polar-
ized microwave field and static electric field called model
(D1); the model of transport in a system with many disks
called model (D2) which extends the model (D1); exten-
sion of model (D2) with disk roughness and dissipation in
space called model (D3); the wall model (W2) extended
to two microwave fields is called model (W3).

II. DYNAMICS IN EDGE VICINITY

We remind first the approach developed in [9]. Here,
the classical electron dynamics is considered in a proxim-
ity of the Fermi surface and in a vicinity of sample edge
modeled as a specular wall. The motion is described by
Newton equations

dv/dt = we X v+ wécoswt —y(v)v+ L.+ I (1)

where a dimensionless vector € = eE/(mwuvp) describes
microwave driving field E. Here an electron veloc-
ity v is measured in units of Fermi velocity vgp and
v(v) = 40(]v]? — 1) describes a relaxation processes to
the Fermi surface. We also use the dimensionless am-
plitude of velocity oscillations induced by a microwave
field € = e|E|/(mwuvp). As in [9], in the following we use
units with vg = 1. The last two terms I.. and I, in
account for elastic collisions with the wall and small an-
gle scattering. Disorder scattering is modeled as random
rotations of v by small angles in the interval +a; with
Poissonian distribution over time interval 7; = 1/w. The
amplitude of noise is assumed to be relatively small so
that the mean free path /. is much larger than the cy-
clotron radius 7. = vp/w.. We note that the dissipative
term is also known as a Gaussian thermostat [12] or as a
Landau-Stuart dissipation [I0]. The dynamical evolution

described by Eq. is simulated numerically using the
Runge-Kutta method. Following [9] we call this system
model (W1) (equivalent to model (1) in [9]).

We note that for typical experimental ZRS parameters
we have: electron density n. = 3.5 - 10em ™2, effec-
tive electron mass m = 0.065m., microwave frequency
[ = w/2r = 50GHz, Fermi energy Er = mv%/2 =
mneh?/m = 0.01289V, corresponding to Ep/kp =
149.5 K elvin, with Fermi velocity vy = 2.641 - 107cm/s.
At such a frequency the cyclotron resonance w = w, =
eB/mc takes place at B = 0.1161Tesla with the cy-
clotron radius r. = vp/w. = 0.8873um. At such a
magnetic field we have the energy spacing between Lan-
dau levels hw = hw, = 0.2067mV = 2.40K - kg corre-
sponding to a Landau level v = Ep/hw. ~ 62. For a
microwave field strength E = 1V/cm we have the pa-
rameter € = eE/(mwur) = 0.003261. With these phys-
ical values of system parameters we can always recover
the physical quantities from our dimensionless units with
m=e=vp = 1.

Examples of orbits running along the edge of specular
wall are given in [9] (see Fig.1 there). A microwave field
creates resonances between the microwave frequency w
and a frequency of nonlinear oscillations of orbits col-
liding with the wall. Due to a specular nature of this
collisions the electron motion has high harmonics of cy-
clotron frequency that leads to appearance of resonances
around j = 1,2,3,4... (there is an additional shift of ap-
proximate value 1/4 to j, values due to a finite width of
nonlinear resonance).

To characterize the dynamical motion it is useful to
construct the Poincaré section following the standard
methods of nonlinear systems [I3] [I4]. We consider the
Hamiltonian case at vy = 0 in absence of noise. Also
we choose a linear polarized microwave field being per-
pendicular to the wall which is going along z-axis (same
geometry as in [9]). In this case the generalized momen-
tum p, = v, + By = y. is an integral of motion since
there are no potential forces acting on electron along the
wall (here we use the Landau gauge with a vector poten-
tial A, = By). The momentum p, determines a distance
1. between a cyclotron center and the wall, which also re-
mains constant in time. The Hamiltonian of the system
has the form:

H =p/2+ (p. — By)*/2 + ewycoswt + Vi (y) ,  (2)

where V,,(y) is the wall potential being zero or infinity
for y < 0 or y > 0. Thus, we have here a so called case
of one and half degrees of freedom (due to periodic time
dependence of Hamiltonian on time) and the Poincaré
section has continuous invariant curves in the integrable
regions of phase space [13] [14].

The Poincaré sections for , at j =17/4,9/4 and
various amplitudes of microwave field € are shown in
Fig. It shows a velocity v, at moments of collision
with the wall at y = 0 as a function of microwave phase
¢ = wt at these moments of time. All orbits initially
start at the wall edge y = 0 with the initial velocity
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FIG. 1: Poincaré sections of Hamiltonian (2] for j = 7/4 (left
column) and j = 9/4 (right column) and different amplitudes
of microwave field e = 0.02,0.04,0.2 (from bottom to top).
Here, the integral p,/mvr = 1, trajectories start from wall
with fixed v; = p; = vo = 1. Data for model (W1) at v = 0,
oy = 0.

Uy = Vg = Py = Ye. The value of p, = y. is the inte-
gral of motion. However, the kinetic energy of electron
Ep = (v2 4+ v2)/2 varies with time. We see that at a
small € = 0.02 the main part of the phase space is cov-
ered by invariant curves corresponding to integrable dy-
namics. However, a presence of chaotic component with
scattered points is also visible in a vicinity of separatrix
of resonances, especially at large ¢ = 0.2. The points at
vy close to zero correspond to orbits only slightly touch-
ing the wall, while the orbits at v, /vy > 1 have a large
cyclotron radius and collide with the wall almost per-
pendicularly. There are also sliding orbits which have
the center of cyclotron orbit inside the wall (y. > 0) but
we do not discuss they here. Indeed, the orbits, which
only slightly touch the wall (y. ~ —vr/w,.), play the most
important role for transport since the scattering angles
in the bulk are small for high mobility samples and an
exchange between bulk and edge goes via such type of
dominant orbits [9].

We note that the section of Fig.[l|at j = 9/4, e = 0.02
is in a good agreement with those shown in Fig.1b of [9].
However, here we have single invariant curves while in
[9) the curves have a certain finite width. This happens

due to the fact that in [9] the Poincaré section was done
with trajectories having different values of the integral
Pz = Y. that gave some broadening of invariant curves.
For a fixed integral value we have no overlap between
invariant curves as it is well seen in Fig. [1| here.

The phase space in Fig. [1] has a characteristic reso-
nance at a certain v, /vy value which position depends
on j [9]. An approximate description of the electron dy-
namics and phase space structure can be obtained on
a basis of the Chirikov standard map [13| [14],[15]. In
this description developed in [9] an electron velocity has
an oscillating component dv, = esinwt (assuming that
w > w.) and a collision with the wall gives a change
of modulus of v, by 2dv, (like a collision with a mov-
ing wall). For small collision angles the time between
collisions is At = 2(7 — vy)/w.. Indeed, 27 /w, is the cy-
clotron period. However, the time between collisions is
slightly smaller by an amount 2v, /w,.: at v, K vy ~ vp
an electron moves in an effective triangular well created
by the Lorentz force and like for a stone thrown against
a gravitational field this gives the above reduction of At
(formally this expression for At is valid for sliding orbits
but for orbits slightly touching the wall we have the same
At but with minus that gives the correction —2v,/w.).
The same result can be obtained via semiclassical quan-
tization of edge states developed in [I6]. It also can be
found from a geometric overlap between the wall and
cyclotron circle. This yields an approximate dynamics
description in terms of the Chirikov standard map [13]:

Ty = vy + 2esin ¢ + I, o= ¢+ 2(m — vy /p)wjwe, (3)

with the chaos parameter K = 4ew/(pw,.). Usually we are
in the integrable regime with K < 1 due to small values
of € used in experiments. A developed chaos appears
at K > 1 [I3, [I4]. Here bars mark the new values of
variables going from one collision to a next one, v, is the
velocity component perpendicular to the wall, ¢ = wt is
the microwave phase at the moment of collision. Here we
introduced a dimensionless parameter p which is equal to
p =1 for the case of the wall model W2 considered here.
However, we will show that for the dynamics around disk
with a radial field in model (DR1) we have the same map
with p = 1 + r./rq. Due to that it is convenient to
write all formula with p. We note that a similar map
describes also a particle dynamics in a one-dimensional
triangular well and a monochromatic field [17].

The term I.. = —v.vy + o, in describes dissipa-
tion and noise. The later gives fluctuations of veloc-
ity v, at each iteration (—a < a, < «; corresponding
to random rotation of velocity vector in ) Damp-
ing from electron-phonon and electron-electron collisions
contribute to .. The Poincaré sections of this map are in
a good agreement with those obtained from the Hamilto-
nian dynamics as it is seen in Fig. [I|here and Fig.1 in [9].
Following [9] we call this system model (W2) (equivalent
to model (2) in [9]).

A phase shift of ¢ by 27 does not affect the dynam-
ics and due to that the phase space structure changes



periodically with integer values of j. Indeed, the posi-
tion of the main resonance corresponds to a change of
phase by an integer number of 27 values ¢ — ¢ = 2rm =
2(m — vy /p)w/w, that gives the position of resonance at
Ures = Uy = mp(l — mw/w) = wpdj/j where m is the
nearest integer of w/w, and §j is the fractional part of
7. Due to this relation we have the different resonance
position for j = 7/4 and 9/4 being in agreement with the
data of Fig.[l]at small values of € when nonlinear correc-
tions are small (we have here p = 1). Thus at j = 9/4
we have the resonance position at v, = 0.11117 ~ 0.35
in agreement with Fig. 1| (right bottom panel). For j = 2
we have v, = 0 and at j = 7/4 the resonance position
moves to negative value v, = —0.45. Thus, at j = 2;7/4
the resonance separatrix easily moves particles out from
the edge at v, < 0 where they escape to the bulk due to
noise. In contrast at j = 9/4 particles move along sepa-
ratrix closer to the edge being then captured inside the
resonance which gives synchronization of cyclotron phase
with the microwave phase. This mechanism stabilizes the
transmission along the edge.

FIG. 2: (Color online) Density distribution w of electrons
as a function of their dimensionless cyclotron center position
Ye/Te between two walls and the frequency ratio j = w/we.
The distance between specular walls is 6r.. The amplitude
of microwave field is € = 0.1 with polarization parallel (left
panel) and perpendicular (right panel) to the walls (see text
for more details). Here vo/w = 0.05, a; = 0.01, 7z = 1/w,
The variation of j = w/w. is obtained by changing magnetic
field (w. = B) keeping w = const; 100 electrons are simulated
at each j up to time ¢, = 10°/w. Density is proportional to
color changing from zero (black) to maximal density (white).
Data for model (W1).

In [9] it is shown that the orbits started in edge vicin-
ity are strongly affected by a microwave field that leads
to ZRS type oscillations of transmission along the edge
and longitudinal resistivity R,,. The ZRS structure ap-
pears both in the frame of dynamics described by
(model (W1)) and map description (model (W2)).
The physical mechanism is based on synchronization of a
cyclotron phase with a phase of microwave driving that
leads to stabilization of electron transport along the edge.
An extensive amount of numerical data has been pre-
sented in [9] and we think there is no need to add more.
Here, we simply want to illustrate that even those or-
bits which start in the bulk are affected by this synchro-
nization effect. For that we take a band of two walls

with a band width between them being Ay = L = 6r.
Initially 100 trajectories are distributed randomly in a
bulk part between walls when a cyclotron radius is not
touching the walls (—2r. < y. < 2r.). Their dynam-
ics is followed during the run time ¢, = 10°/w accord-
ing to Eq. and a density distribution w(y.) averaged
in a time interval 5 - 10* < wt < 10° is obtained for a
range of 0.5 < j <7 (261 values of j are taken homoge-
neously in this interval). The value of ¢, approximately
corresponds to a distance propagation along the wall of
Tw ~ Uyty ~ 0.1vpt, ~ 5 - 103vp /w ~ 0.2em at typi-
cal values vp ~ 2-107cm/s, w/2m = 100GHz. This is
comparable with a usual sample size used in experiments
[1, 2]. Similar values of r,, were used in [9].
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FIG. 3: Profile of density distribution w(y.) as a function
of yc/r. for microwave polarization parallel (left panels) and
perpendicular (right panels) to the walls. Here we have no
microwave at top panels, ¢ = 0.1, j = 1.7 at middle panels,
e = 0.1, j = 2.4 at bottom panels. In all panels we have noise
amplitude o; = 0.01 as in Fig. 2] dashed curves in bottom
panels are obtained with a; = 0.05. Simulations are done
with 500 trajectories, other parameters are the same as in
Fig. [2l Data for model (W1).

The dependence of density w on y. and j are shown
in Fig. 2] for two polarizations of microwave field. The
data show that orbits from a bulk can be captured in
edge vicinity for a long time giving an increase of density
in a vicinity of edge. This capture is significant around
resonance values j ~ j,. This is confirmed by a direct
comparison of density profiles in Fig. |3| at j = 1.7 =~
2—1/4 and j = 24 ~ 2+ 1/4. In the later case we
have a large density peak due to trajectories trapped in
aresonance (see Fig.[1) where they are synchronized with
a microwave field. An increase of noise amplitude «; gives
a significant reduction of the amplitude of these resonant
peaks (Fig. [3| bottom panels). The increase of density
is more pronounced for polarization perpendicular to the
wall in agreement with data shown in Fig.2 of [9].

We also performed numerical simulations using Eq.
with a smooth wall modeled by a potential V,,(y) =
ky?/2. For large values r/w. (e.g. k/w. = 10) we find
the Poincaré sections to be rather similar to those shown



in Fig. [l| that gives a similar structure of electron density
as in Figs. A finite wall rigidity can produce a cer-
tain shift of optimal capture conditions appearing as a
result of additional correction to a cyclotron period due
to a part of orbit inside the wall.

The data presented in this Section show that electrons
from the bulk part of the sample can be captured for
a long time in edge vicinity thereby increasing the elec-
tron density near the edge. This effect is very similar to
the accumulation of electrons on the edges of the electron
cloud under ZRS conditions that was reported for surface
electrons on Helium in [7]. However we have to empha-
size that the confinement potential for surface electrons
is very different from the hard wall potential assumed
in our simulations, as a consequence our results cannot
be applied directly to this case. It is possible that the
formation of ballistic channels on the edge of the sample
combined with the redistribution of the electrons density
can effectively short the bulk contribution and induce di-
rectly a vanishing R,,. However, it is also important
to understand how a scattering on impurities inside the
bulk is affected by a microwave radiation. We study this
question in next Sections.

III. SCATTERING ON A SINGLE DISK

It should be noted that resistivity properties of a reg-
ular lattice of disk antidots in 2DEG had been studied
experimentally [I8, 9] and theoretically [20 21]. But ef-
fects of microwave field were not considered till present.

In our studies we model an impurity as a rigid disk of
fixed radius r4 = vp/w keeping w = const and changing
we, = B. In a magnetic field a cyclotron radius moves
in a free space only due to a static dc-electric field Eg4..
We fix the direction of Fy. along x—axis and measure its
strength by a dimensionless parameter e, = Eg./(wvp).
Even in absence of a microwave field a motion in a vicin-
ity of disk in crossed static electric and magnetic fields
of moderate strength is not so simple. The studies pre-
sented in [22] and [23] show that dynamics in disk vicin-
ity is described by a symplectic disk map which is rather
similar to the map (3]). It is characterized by a chaos
parameter €5 = 2mvq/(rqw.) where vg = vpE4./B is the
drift velocity; €4 gives an amplitude of change of radial
velocity at collision. Orbits from a vicinity of disk can
escape for eq > 0.45 [22].

We start our analysis from the construction of the
Poincaré section in presence of microwave field at zero
static field. To have a case with one and half degrees of
freedom we start from a model case when a microwave
field is directed only along radius from a disk center. The
dynamics is described by Eq. with a dimensionless
microwave amplitude €. The dynamical evolution is ob-
tained numerically by the Runge-Kutta method. At first
we consider a case without dissipation and noise. Due to
radial force direction the orbital momentum is an addi-
tional integral of motion (as p, = y. for the wall case) and
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FIG. 4: Poincaré section for Hamiltonian dynamics in a disk
vicinity in presence of radial microwave field. Left column
panels: j = 7/4,2,9/4 at ¢ = 0.04 (from top to bottom);
right column panels: j = 7/4,13/4,9/4 at e = 0.02. Here the
integral of orbital momentum is £o/vprq = vo/vr = 1, trajec-
tories start from disk with fixed tangent velocity component
vo = 1. Data for model (DR1).

thus we have again 3/2 degrees of freedom. We call this
disk model with radial microwave field as model (DRI).

The Poincaré sections at the moments of collisions with
disk are shown in Fig. for model (DR1). Here, v,
is the radial component of electron velocity and ¢ is a
microwave phase both taken at the moment of collision
with disk. We see that the phase space structure re-
mains approximately the same when j is increased by
unity (compare j = 9/4,13/4 panels in Fig. [). This
happens for orbits only slightly touching the disk (small
v-) since the microwave phase change during a cyclotron
period is shifted by an integer amount of 27 (in a first
approximation at rq < r.). The similarity between the
wall and disk cases is directly seen from Fig. [5| as well as
periodicity with 7 — j + 1.

In fact in the case of disk with a radial field the dynam-
ics can be also described by the Chirikov standard map
where v, should be understood as a radial velocity
v, at the moment of collision. The second equation has
the same form since the change of the phase between two
collisions is given by the same equation but with the pa-
rameter p = 1+ r./rq. This expression for p is obtained



from the geometry of slightly intersecting circles of ra-
dius ry4 for disk and radius r. for cyclotron orbit (the
angle segment of cyclotron circle is Ay = 2v,./p). For
rq > 1. this expression naturally reproduces the wall
case while at ry < r. we have the correction term pro-
portional to ¥, going to zero that also well corresponds
to the geometry of two disks. After such modification of
p we find that the resonance positions v,..s = mpdj/j are
proportional to p. Thus the model (DR1) reduced to the
map description (3) at p > 1 is called model (DR2).

The expression for v,.s works rather well. Indeed, for
j = 2.1 in Fig. 5| we obtain v,..s = 0.149 for model (W2)
and 0.463 for model (DR2). These values are in a good
agreement with numerical values v,..; =~ 0.15 for model
(W2) and vyes =~ 0.6 for model (DR1). In the later case
the agreement is less accurate due to a larger size of non-
linear resonance. The comparison of Poincaré sections
given by the Chirikov standard map and the dynam-
ics from Newton equations, shown in Fig. [5] confirms the
validity of map description.

According to the well established results for the
Chirikov standard map [I3] we find for models (W1),
(W2) and (DR1), (DR2) the width of separatrix dv and
the corresponding resonance energy width E, = (§v)?/2:

E, = 16ewpEr/w; p=1+r./rq; (4)

Upes = TPOJ/J; dv=4\/ep/j;
5 = Suj/(@mp); j=1+w/we

where §j. is the resonance shift produced by a resonance
half width 6v/2 = v,s. This relation shows that for the
disk case this energy is increased by a factor p compared
to the wall case. In majority of our numerical simulations
we have p =1+ j.

Thus a radial field models (DR1), (DR2) represent a
useful approximation to understand the properties of dy-
namics in a disk vicinity but a real situation corresponds
to a linear microwave polarization and the Poincaré sec-
tion analysis should be modified to understand the dy-
namics in this case.

Due to that we start to analyze the scattering problem
on a disk in presence of weak static field €5, and microwave
field e using Eq. . For the scattering problem we find
more simple to have dissipation to work only at the time
moments of electron collisions with disk: at such time
moments the radial component of electron velocity is re-
duced by a factor v, — v./(1 + v4), the reduction is
done only if the kinetic energy of electron is larger than
the Fermi energy. Such a dissipation can be induced by
phonon excitations inside the antidot disk. We fix geom-
etry directing dc-field along x—axis and microwave along
y—axis. The noise is modeled in the same way as above
in Eq. (I)). We call this system disk model (D1).

Examples of electron cyclotron trajectories scattering
on disk are shown in Fig. [l In absence of microwave
field a trajectory escapes from disk rather rapidly. A
similar situation appears at j = 2 and microwave field
with € = 0.04. In contrast for j = 9/4 and € = 0.04 a

FIG. 5: Poincaré sections for wall model (W1) (left) and disk
model with radial electric field (DR1) (right) at e = 0.01 and
j = 2.1 (top, middle) and j = 3.1 (bottom). Top panels
are obtained from the Chirikov standard map at p =1
(left top panel), corresponding to the wall model (W2), and
at p = 1+ j = 3.1 (right top panel), corresponding to the
disk model (DR2). Middle and bottom panels are obtained
from solution of Newton equations for wall (left) and disk
(right). Other parameters are as in Fig. [l|and Fig. |4 v, and
v, are expressed in units of vr. There is no dissipation and
no noise.

trajectory can be captured for a long time or even forever
depending on initial impact parameter.

For some impact parameters a trajectory can be cap-
tured for a very long time t., in certain cases in absence
of noise we have t. = co. At such long capture times the
collisions with disk become synchronized with the phase
¢ of microwave field at the moment of collisions. This
is directly illustrated in Fig. [7] where we show the angle
# of a collision point on disk, counted from z—axis, in
dependence on ¢. Indeed, the dependence 6 on ¢ forms
a smooth curve corresponding to synchronization of two
phases. At the same time the radial velocity at collisions
v, moves along some smooth invariant curve v,(¢) in the
phase space (v, ¢). However, to make a correct compari-
son with the radial field models (DR1), (DR2) we should
take into account that the cyclotron circle rotates around
disk so that we should draw the Poincaré section in the
rotational phase ¢’ = ¢ — 6. In this representation we
see the appearance of the resonance (see right column of
Fig. [7) that is similar to those seen in Figs. for the
radial field models.

A more direct correspondence between radial field
models (DR1), (DR2) and the model (D1) with a linearly
polarized microwave field is well seen from the Poincaré
sections shown in the rotation frame of phase ¢ = ¢ — 6
in Fig. In this frame we see directly the resonance
at 7 = 2.1,2.25 being very similar to the wall case and
the radial field model. However, the positions of reso-
nance at v, = v,¢s are different from those in Fig. [5
Of course in the rotation frame the orbital momentum is
only approximately conserved that gives a broadening of
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FIG. 6: (Color online) Scattering of electron cyclotron tra-
jectory on a disk scatterer (blue/black circle) in model (D1).
Top left panel shows the case in absence of microwave, € = 0,
j = 9/4. Top right panel: temporary captured path at
e = 0.04, 7 = 9/4. Bottom left panel: path captured for-
ever at € = 0.04, j = 9/4. Bottom right panel: no capture
at € = 0.04, 5 = 2. The trajectory part colliding with disk
is shown by black curve, its part before and after collisions is
shown in gray. The red (light gray) points and curves show
the trajectory of cyclotron center. Here the dissipation pa-
rameter is vq/w = 0.01; the static electric field is directed
along x—axis and €; = 0.001; microwave field is directed along
y—axis. There is no noise here. Coordinates x, y are expressed
in units of rq. Data for model (D1).

invariant curves in Fig.

We explain this as follows. For the linear polarized
field of model (D1) the radial component of microwave
field is proportional to €, ~ esin 6 coswt ~ 0.5¢ sin(wt—0)
where we kept only slow frequency component of radial
field (the neglected term with sin(wt + ) gives resonant
values vy..s > vr). The radial field e, gives kicks to the
radial velocity component at collisions with disk similar
to the case of model (DR2) described by Eq. @): o, =
v + 0.5¢ Sin¢/a ()Z_SI = d)/ + (271—] - 2’17T.7/p) - 21_)7”(/) - 1)/:0
Here we use the radial field component phase ¢’ = wt — 0
at a moment of collision with disk (the tangent compo-
nent does not change v, and can be neglected). The
phase variation ¢’ — ¢ has the first term 27j — 25,5 /p
being the same as for the radial field model (DR2), and
an additional term related to rotation around disk with
—Af# = =27, (p — 1)/p which comes from geometry. In-
deed, the segment angles of intersections of circles ry and
r. are: for disk radius r4 it is A9 = 29, (p — 1)/p and for
cyclotron radius r, it is Ay = 2%,./p. Thus, their ratio is
AO/Ap = r./rq in agreement with the geometrical scal-
ing. This result can be obtained from the expression for
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FIG. 7: Synchronization between disk collision angle 6 and
microwave phase ¢. Left column: Dependence of angle 6 of
collision point on disk, counted from r—axis, and radial ve-
locity vy, taken at collision, on microwave phase ¢. Right col-
umn: Same as in left column with ¢’ = ¢ — 0. Here j = 2.25,
e = 0.04, e, = 0.001, v4/w = 0.01, vg = v, there is no noise;
points are shown for times 104/w <t< 105/w, the capture
time of this orbit is t. > 10° /w. Data for model (D1).
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FIG. 8: Poincaré sections in phase plane (v,,¢’) with ¢’ =
¢—0 for j =2.1, e =0.01 (left top); j = 2.25, e = 0.01 (right
top); j = 2.75, € = 0.02 (left middle); j = 2.25, e = 0.02
(right middle); 7 = 2.75, ¢ = 0.04 (left bottom); j = 2.25,
€ = 0.04 (right bottom); v, is expressed in units of vp. Data
for model (D1), no noise no dissipation.

Ay by interchange of two disks that gives the above ex-
pression for Af (at r4 = r. both shifts Ay = 27, /p and



AO = 26,.(p —1)/p are equal).

Thus again the dynamical description is reduced down
to the Chirikov standard map with slightly modified pa-
rameters giving us for the model (D1) the chaos parame-
ter K = 2¢(j+ p—1)/p being usually smaller than unity,
resonance position v,.s, resonance width év and the res-
onance energy width E, = (dv)?/2:

E, = 8epEr/(p+j—1); p=1+7c/ra; (5)
Ures = Tp6j/(j+p—1); v ="4vep/(2(j + p—1));
5je = 5U(p+j - l)/(27l'p); Jj= w/wc ;

where §j. is a shift of resonance produced by a finite
separatrix half width dv/2. For our numerical simula-
tions we have p = 1 + j with v,es = w(5 + 1)d5/(24),
dv=24/e(j+1)/j and 6j. = (2/m)\/€j /(G + 1).

At p=j5+1Eq. gives the values v,.s = 0.232 at
j = 2.1 while the numerical data of Fig. [§ give v,es =~ 0.2,
and we have at j = 2.25 the theory value v,..s = 0.567
being in a good agreement with the numerical value
Vres ~ 0.5 of Fig. For j = 2.75 we have the reso-
nance position at v, < 0 corresponding to the bulk and
thus the resonance is absent. The resonance width in
Fig. Blat j = 2.25, e = 0.01 can be estimated as v ~ 0.3
that is in a satisfactory agreement with the theoretical
value év = 0.24 from . We remind that in model
(D1) we have only approximate conservation of orbital
momentum that gives a broadening of invariant curves
and makes determination of the resonance width less ac-
curate. In spite of this broadening we see that the res-
onance description by the Chirikov standard map works
rather well.

In Fig. [9] we show the dependence of average capture
time ¢. on j in the model (D1). The averaging is done
over Ny = 500 trajectories scattered on disk at all such
impact parameters that cyclotron orbit can touch the
disk. Here, we show the ratio t./t.(0) where ¢.(0) is an
average capture time in absence of microwave. According
to our numerical data we have approximate dependence
wt.(0) ~ 3//€ corresponding to a period of nonlinear
oscillations in a disk map description discussed in [22][23].

The data of Fig. [ show a clear periodic dependence
of capture time ¢, on j corresponding to the periodicity
variation of Poincaré section with j (see Figs. .
This structure is especially well visible at weak static
fields. With an increase of €, this structure is suppressed.
Indeed, at large €5 even without microwave field the tra-
jectories can escape from disk as it discussed in [22], 23]
and microwave field does not affect the scattering in this
regime.

The distributions of capture times are shown in Fig.[10]
We clearly see that at resonant values of j a microwave
field leads to appearance of long capture times. For
example, we have the probability to be captured for
t. > 180/w being W = 0.46 at j = 2.25 while at j = 2 we
have W = 0(left panel in Fig. ; and we have W = (.38
at j = 2.37 while at j = 1.9 we have W < 3-10~% (right
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FIG. 9: Dependence of rescaled capture time t./t.(0) on j
at € = 0.04 shown at various static fields: e, = 2.5-107* (top
left), 1073 (top right), 8 - 10™® (bottom left), 0.016 (bottom
right). Here v4/w = 0.01, there is no noise. Data for model
(D1).

panel in Fig. . These data confirm much stronger cap-
ture at certain resonant values of j.
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FIG. 10: Differential probability distribution t.dW/dt. of

capture times t. for parameters of Fig. [0} Left panel: j =
2 (dashed curve for minimum of capturing probability) and
j = 2.25 (full curve at maximum of capturing probability)
at € = 0.001. Right panel: similar cases at 7 = 1.9 (dashed
curve) and j = 2.37 (full curve) at e, = 0.002. Data are
obtained with N, = 5 - 10* trajectories started at different
impact parameters and running up to time t = 3 - 105/w.
Here t. is expressed in units of 1/w. Data for model (D1).

The data of Figs. [0} [I0] show that the scattering pro-
cess on disk is strongly modified by a microwave field.
However, to determine the conductivity properties of a
sample we need to know what is an average displacement
Az along static field after a scattering on a single disk.
Indeed, in our model a dissipation is present only during
collisions with disk while in a free space between disks the



dynamics is integrable and Hamiltonian. Hence during
such a free space motion there is no displacement along
the static field (the dissipative part of conductivity or
resistivity appears only due to dissipation on disk). The
dependence of Az on j is shown in Fig. In absence
of microwave field at ¢ = 0 we find Az « 1/j o< B that
corresponds to a simple estimate Az o w.y4. The nu-
merical data show that Az is practically independent of
€s and that Az = 0 in absence of dissipation at v4 = 0.
In presence of microwave field we see that the displace-
ment along the static field has strong periodic oscillations
with j. The striking feature of Fig.[11]is the appearance
of windows of zero displacement Az =~ 0 at resonance
values j, = 9/4,13/4,17/4.... We discuss how this scat-
tering on a single disk modifies the resistance of a sample
with large number of disks in next Section.

0.5

FIG. 11: Average shift Az along static field after scattering
on a single disk shown as a function of j at various amplitudes
of static and microwave fields: e, = 0.0005, ¢ = 0 (gray dashed
curve); €, = 0.001, ¢ = 0 (black dashed curve); e, = 0.0005,
e = 0.04 (gray full curve); e; = 0.001, ¢ = 0.04 (black full
curve). The data are obtained by averaging over Ny = 5- 103
scattered trajectories with random impact parameters; here
~va/w = 0.01, noise amplitude a; = 0.005. Data for model
(D1).

IV. RESISTANCE OF SAMPLES WITH MANY
DISKS

To determine a resistance of a sample with many disks
we use the following scattering disk model. The scatter-
ing on a single disk in a static electric field €4 is com-
puted as it is described in the previous Section with a
random impact parameter inside the collision cross sec-
tion o4 = 2(r.+rq). After that a trajectory evolves along
y-axis according to the exact solution of Hamiltonian
Eq. (no dissipation and no noise) up to a collision with
next disk which is taken randomly on a distance between
2(re + rq) and 24, where £, = 1/(o4ng) is a mean free
path along y—axis and ny is a two-dimensional density of

disks (of course £, > 2(r.+74)). In a vicinity of disk the
dynamical evolution is obtained by Runge-Kutta solution
of dynamical equations as it was the case in previous Sec-
tion. We use low disk density with ngr3 ~ 1/100. The
collision with disk is done with a random impact param-
eter in the x—axis of disk vicinity: the impact parameter
is taken randomly in the interval [—(r. + r4), (e + 74)]
around disk center. Noise acts only when a center of cy-
clotron radius of trajectory is on a distance r < rq + 7,
from disk center so that a collision with disk is possible.
After scattering on a disk a free propagation follows up
to next collision with disk.

Along such a trajectory we compute the average dis-
placement dz and Jy after a time interval d¢t. In this
way the number of collisions with disks is N & dy/fe
and a total displacement in x—axis is 0x ~ N.Ax where
Ax is an average displacement on one disk discussed in
previous Section. We compute the global displacements
dz,0y on a time interval 6t = 10°/w averaging data over
200 trajectories. We call this system model (D2).

Rax j=1 I Ra:y
0.004-} 0.8
j|u i
00024 | | 0.4
0.04- = 0.0

T T
0.2 04 0.6

B=1/)

FIG. 12: Dependence of resistivity R;, and R., on magnetic
field B = 1/j (resistivity is expressed in arbitrary numeri-
cal units). Blue and gray curves show respectively R;; and
R.y in absence of microwave field. Black curve with points
show R, dependence of B at microwave field € = 0.04 (here
B is expressed in units of 1/w = const). Here ¢; = 0.001,
~va/w = 0.01, noise amplitude «; = 0.005, 7; = 1/w. Res-
onant values j, are shown by arrows; bars show statistical
errors for R;,. Data are obtained by averaging over 200 tra-
jectories propagating up to time t = 106/w. Data for model
(D2).

Then the current components are equal to j, = dx/dt,
jy = Oy/dt and conductivity components are oy, =
Ju/Edc, 0ay = Jy/Eaqc (the current is computed per
one electron). We work in the regime of weak dc-field
where j;,j, scales linearly with Eg4.. The current j,
is determined by the drift velocity v4 = F4./B < vp.
Since the mean free path is large compared to disk
size L. > r. > ry we have an approximate relation
Opy = 1/B, 04y = Az/Bl. = oyAzx/l.. As in
2DEG experiments [Il 2] we have in our simulations
Opy/0zz = Ray/Ryx ~ 100 (see Fig. . The resis-
tivity is obtained by the usual inversion of conductiv-



ity tensor with Rup = 040/(02, + 02,) R 0ua/02,,
Ryy = 04y/(02,+02,) = 1/04y. The dependence of R,

Ry, expressed in arbitrary numerical units, on magnetic
field B =w/j = 1/j is shown in Fig.

In absence of microwave field we find R,, o B and
Ryy/Rez = 200 similar to experiments [I} 2]. For small
noise amplitude (e.g. «; = 0.005) we have R,, growing
linearly with B (see Fig. but at larger amplitudes (e.g.
a; = 0.02) its increase with B becomes practically flat
showing only 30% increase in a give range of B variation.
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FIG. 13: (Color online) Rescaled values of resistivity Rzs
(left panel) and Ry (right panel) as function of j = w/w.
at various noise amplitudes «; = 0.005 (black curve), 0.01
(blue/dark curve), 0.02 (red/gray curve). Here e = 0.04, e, =
0.001, other parameters are as in Fig. Curves are drown
though numerical points obtained with a step Aj = 0.1. Data
for model (D2).

In presence of microwave field the dependence of R,
on B is characterized by periodic oscillations with mini-
mal R,, values being close to zero at resonant values of
j = j» well visible in Fig. The dependence of R,
R, rescaled to their values Ry (0), Ry (0) in absence
of microwave field are shown in Fig. [13|at various ampli-
tudes of noise and fixed €, and in Fig.[14]at various € and
fixed noise amplitude «;. We see that increase on noise
leads to an increase of minimal values of R, at resonant
values j,.. In a similar way a decrease of microwave power
leads to increase of minimal values of R, at j.. At the
same time the Hall resistance R, is only weakly affected
by microwave radiation as it also happens in ZRS exper-
iments.

These results are in a qualitative agreement with the
ZRS experiments. On the basis of our numerical stud-
ies we attribute the appearance of approximately zero
resistance at j,. values in our bulk model of disk scat-
terers to long capture times of orbits in disk vicinity at
these j, values (see Fig. @ During this time t¢. noise
gives fluctuations of collisional phase # and due to that
a cyclotron circle escapes from disk practically at ran-
dom displacement Ax that after averaging gives average
Az = 0. Since resistivity is determined by the average
value of Az this leads to appearance of ZRS. We note
that this mechanism is different from the one of edge
transport stabilization discussed here and in [9]. How-
ever, both mechanisms are related to a long capture times
near edge or near disk that happens due to synchroniza-
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FIG. 14: (Color online) Same as in Fig. at various

microwave amplitudes ¢ = 0.01 (red/gray curve), 0.02
(blue/dark curve), 0.04 (black curve); amplitude of noise is
fixed at a; = 0.005. Data for model (D2).

tion of cyclotron phase with microwave field phase and
capture inside the nonlinear resonance.
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FIG. 15: (Color online) Phase space (vr, ¢’) of trajectories at
the moment of collisions with disks for parameters of Fig.
at € = 0.04: j = 2.1 (top left), j = 2.25 (top right), j = 2.75
(bottom left), j = 3.25 (bottom right). Here ¢’ = ¢ — 60 where
¢ = wt is a microwave phase at the moments of collisions
with disk and 6 is the angle on disk at collision moment,
counted from z-axis (same as in Figs. . Data are obtained
from 500 trajectories iterated up to time ¢t = 106/w. Density
of points is shown by color with black at zero and white at
maximum density. The average number of collisions per disk
per trajectory is Neoy = 12.4, 25.9, 9.5, 15.5 respectively for
j =21, 2.25,2.75, 3.75. Data are obtained for model (D2).

To illustrate the capture inside the resonance we
present the distributions of trajectories from Fig.
shown in the phase space plane (v,,¢’) at the moments
of collisions with disks in Fig. This is similar to
the Poincaré sections of Fig. 8] however, now we con-
sider the real case of diffusion and scattering on many
disks in the model (D2) with noise and dissipation. We
see that for j = 2.25 orbits are captured in a vicinity
of the center of nonlinear resonance at ¢’ ~ 0 well seen
in Fig. For j = 2.1 we have a density maximum lo-



cated at smaller values of v,..; and ¢ ~ 0 even if there
is a certain shift of v,..s produced by a significant reso-
nance width at € = 0.04. At j = 2.75 we have a density
maximum at ¢’ ~ &7 corresponding to an unstable fixed
point of separatrix. The total number of collision points
Ny in this case is by a factor 2.5 smaller than in the
case of stable fixed point at j = 2.25. A similar situation
is seen in the case of wall model (W1) (see Fig.1d,f in [9])
even if there the ratio between number of captured points
was significantly larger. The results of Fig. [[5] show that
in the ZRS phase the collisions with disk indeed create
synchronization of cyclotron and microwave phases and
capture of trajectories inside the nonlinear resonance.
However, there are also some distinctions between bulk
disk model (D2) and experimental observations. The first
one is that there are minima for R,,/R..(0) but there
are no peaks which are well visible around integer j val-
ues in ZRS experiments [Il 2],[8] and numerical simula-
tions of transport along the edge [9]. The second one is
appearance of small negative values of R, at j,. values.

15 20 25 30 35 40
J

FIG. 16: Dependence of Reyz/Rz2(0) on j in the disk model
with dissipation at disk collisions at rate v4/w = 0.01 and dis-
sipation in disk vicinity with rate vo/w = 0.02; a disk rough-
ness gives additional angle rotations with amplitude ag = 0.1
(see text); the amplitude of noise in disk vicinity is a; = 0.001.
Here we have € = 0.04, e¢; = 0.001; 51 numerical points in j
are connected by lines to adapt an eye. Data are obtained
by averaging over 100 trajectories propagating up to time
t = 10°/w. Data for model (D3).

We attribute the absence of peaks to a specific dissipa-
tion mechanism which takes place only at disk collisions.
It is rather convenient to run long trajectories using exact
solution for free propagation between disks. Indeed, in
this scheme there is no dissipation during this free space
propagation and thus these parts of trajectories have no
displacement along static field. We also tested a dissi-
pation model with additional v(v) = vo(|v/vr|? — 1) for
|[v| > vp and y(v) = 0 for |v| < vp. This dissipation
works only in a disk vicinity when the distance between
disk center and cyclotron center is smaller than r4 + r..
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The dissipation v4 on disk remains unchanged. We also
added a certain roughness of disk surface modeled as an
additional random angle rotation of velocity vector in the
range *ag, done at the moment of collision with disk.
We call this system disk model (D3). The results for the
resistivity ratio Ry, /Re:(0) are shown in Fig. They
show an appearance of clear peaks of R, /R;;(0) in pres-
ence of such additional dissipation in vicinity of integer
j. There is also a small shift of minima from integer plus
1/4 to integer plus 0.4 — 0.5.

The second point of distinctions from ZRS experiments
is a small negative value of R,, at resonant j values. It
is relatively small for disk model (D2) (see Figs.
and it becomes more pronounced for disk model (D3)
(see Fig. . It is possible that a scattering on disk in
presence of dissipation, noise, static and microwave field
gives a negative displacement Az which generates such
negative R, values. We expect that in the limit of static
field going to zero this effect disappears. Indeed, the
negative values become smaller at smaller e¢; according
to data of Fig.[L1] but unfortunately the small €, limit is
also very difficult to investigate numerically.

We consider that at this stage of the theory the pres-
ence of negatives values for R,, does not constitute a
critical disagreement. The escape parameters for elec-
trons that have been captured on an impurity for a time
long enough to make many rotations around it, are likely
to strongly depend on the model for the electron impu-
rity interaction and further theoretical work on a more
microscopic model is needed. In general a zero average
displacement along the field direction seems natural for
a smooth distribution of trapping times with a charac-
teristic time scale much larger than the rotation time
around the impurity (this assumption does not seem to
hold for our model, see for example the sharp features on
Fig. 10). Finally in Section VII we propose a slightly dif-
ferent mechanism by which the combination of trapping
on impurities investigated here and electron-electron in-
teractions can lead to ZRS.

V. PHYSICAL SCALES OF ZRS EFFECT

The ZRS experiments [Il, 2] show that the resistance
R, in the ZRS minima scales according to Arrehenius
law R, o exp(—Tp/T) with a certain energy scale de-
pendent on a strength of microwave field. In typical ex-
perimental conditions one finds very large Ty ~ 20K at
jr =5/4 (see e.g. Fig.3 in [2]). These data also indicate
the dependence Ty o 1/j, o< B. This energy scale kgTj
is very large being only by a factor 7 smaller than the
Fermi energy Fr/kp =~ 150K. At the same time the am-
plitude of microwave field is rather weak corresponding to
€ 7~ 0.003 at field of 1V/em or ten times larger at 10V /em
(unfortunately it is not known what is an amplitude of
microwave field acting on an electron).

As in [9] we argue that the Arrehenius scale is de-
termined by the energy resonance width with Ty =



E./kp. Indeed, the resonance forms an energy barrier
for a particle trapped inside the resonance by dissipative
effects being analogous to a wash-board potential. An
escape from this potential well requires to overcome the
energy F, leading to the Arrehenius law for R, depen-
dence on temperature. Assuming the case of the wall
with p = 1 we obtain at E = 3V/cm the activation
temperature Ty =~ 23K being is a satisfactory agreement
with the experimental observations. The theoretical re-
lation also reproduces the experimental dependence
To < 1/j. at p = 1. In his relation Ty x € x E be-
ing confirmed by the numerical simulations presented in
[9). This dependence is in a satisfactory agreement with
the power dependence found in experiments [I]. In other
samples one finds that the dependence T o € works in
a better way. We think that higher terms in a nonlinear
resonance can be responsible for scaling Ty o< €2 being
different from the relation . Also a finite rigidity of
the wall or disk scatterers can be responsible for appear-
ance of higher power of e.

The energy scale E,. on disks is enhanced by a factor
p =1+ r./rq for the case of radial field . However,
we showed that for a linear polarization the scale F, is
given by Eq. and thus there is no enhancement at
large p. Indeed, we performed direct simulations at pa-
rameters of Fig. [14] with the reduced value of disk radius
by a factor 2. The numerical data give approximately
the same traces Ry, /R;.(0) vs. j at ¢ = 0.01,0.02,0.04
without visible signs of deeper minima at small e. This
confirms the theoretical expressions (). In any case, for
small values ry < 7. one should analyze the quantum
scattering problem which is significantly more complex
compared to the classical case. We may assume that
in a quantum case one should replace r4 by a magnetic
length ap ~ r./\/v VB. In such a case we are getting
p =1+ /v =9 that gives Ty ~ 8K at j ~ 2.25 and
microwave amplitude F =~ 3V/cm. However, in this case
we obtain the scale Tj being practically independent of
j which differs from experimental data. In any case in
experiments the size of impurities is small compared to
r. and a quantum treatment is required to reproduce the
correct picture for R;, dependence on parameters in the
ZRS phase.

Another point is related to the positions of ZRS min-
ima on j axis. We remind that that for the wall model the
resonance is located at v,..s = 7075 /j and that the sep-
aratrix width is dv = 41/€/j. The capture of trajectories
from the bulk is most efficient when a half width of sepa-
ratrix touch the border of bulk at v,, = 0 with v,..s = dv/2
that gives the expression dj. = 21/¢j/m for the wall case.
At € = 0.06, j = 2.25 this gives §j. = 0.22 being in a
good agreement with the numerical data 6j ~ 1/4 for
R,. dependence on j (see Figs.2,3 in [9] with a visible
tendency of §j growth with j). For the data presented
here in Fig. [14] for the disk case at € = 0.04, p = 1+ j,
j = 2.25 we obtain from (5]) §j. = 0.11 that is slightly less
than the numerical value §j = 0.25 for minima location.
We attribute this difference to an approximate nature of
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expression for the resonance width at relatively strong
microwave fields. We also note that in experiments an
additional contribution to the value of §; can appear due
to a finite rigidity of disk and wall potentials.

VI. THEORETICAL PREDICTIONS FOR ZRS
EXPERIMENTS

The theoretical models presented here and in [J] re-
produce main experimental features of ZRS experiments
[1, 21,]8]. However, it would be useful to have some ad-
ditional theoretical predictions which can be tested ex-
perimentally. A certain characteristic feature of both
wall and disk models is appearance of nonlinear reso-
nance. For example, according to the wall model (W2)
described by Eq. the dynamics inside the resonance is
very similar to dynamics of a pendulum. The frequency
of phase oscillations inside the resonance is €1, = VK =
2y/ew/w. = 2/ej < 1 [13]. Here the frequency is ex-
pressed in number of map iterations and since the time
between collisions is approximately 27 /w. we obtain the
physical frequency 2, of these resonant oscillations be-
ing Q,/w = Qprwe/(2Tw) = y/ewe/w/m. At € ~ 0.02 this
frequency is significantly smaller than the driving mi-
crowave frequency. The dynamics inside the resonance
should be very sensitive to perturbations at frequency
wy ~ Q, that gives:

wi/w = ew./w [T . (6)

To check this theoretical expectation we study numer-
ically the effect of additional microwave driving with di-
mensional amplitude €; (¢; < €) and frequency wy. We
use the wall model (W2) based on the Chirikov standard
map described here and in [9]. As for the additional driv-
ing frequency we have ¢; = |E1|/(wivr) where Fy is the
field strength of microwave frequency w;, we assume that
both main and additional fields are collinear and perpen-
dicular to the wall. In presence of second frequency the
map takes the form:

Ty = vy + 2esin¢ + 2¢; sin(wi¢/w) + I, (7)

¢ = ¢+ 21— Uy)w/we -

The only modification appears in the first equation since
now the change of velocity at collision depends on both
fields; the second equation remains the same as in .
As in the model (W2) the term I.. describes the effects
of dissipation with rate 7, and noise with amplitude «
of random velocity angle rotations. We call this system
model (W3).

In the model (W3) the resistance R, is computed
numerically in the same way as in the model (W2) de-
scribed in [9]: the displacement along the edge between
collisions is 0z = 2v,/w.; it determines the total dis-
placement Az along the edge during the total computa-
tion time At ~ 10*/w; then R,, o 1/D, = At/(Ax)?
where D, is an effective diffusion rate along the edge.



A0 T T
—Iogléwl/m) 4

4 :
RA/R(0)

FIG. 17: (Color online) Left panel: Dependence of rescaled re-
sistance Rg./R5,(0) on frequency ratio wi/w in model (W3)
described by the map . Here, the test driving at frequency
w1 has fixed amplitude €1 = 0.007; the main microwave driv-
ing is located in the ZRS phase at j = w/w. = 2.25, and
its amplitude takes values ¢ = 0.02 (blue curve), 0.03 (green
curve), 0.04 (magenta curve), 0.06 (red curve) (these curves
follow from top to bottom at w;/w = 0.2). The values of
R;» are computed at fixed e; = 0.007 and corresponding e;
the values of R;,(0) are computed at e = 0 and € = 0.02.
The data are obtained at noise amplitude a = 0.02 and dis-
sipation 7. = 0.01; averaging is done over 2000 trajectories
for 5000 iterations of map . Right panel: Dependence of
peak position wi/w on main microwave driving amplitude €
obtained from data of left panel at e; = 0.007 and additional
data at €1 = 0.003 (blue points), the theory dependence @
at w/we = 2.25 is shown by the straight red line. Data for
model (W3).

To see the effect of additional weak test driving e; at
frequency w; we place the system in the ZRS phase at
Jj = w/w, = 2.25 and measure the variation of rescaled re-
sistance R, /RS, (0). Here R, is the resistance in pres-
ence of both microwave fields e and e; while RS, (0) is
the resistance at e; = 0 and a certain fixed €. The de-
pendence of Ry;/RS.(0) on the frequency ratio is shown
in Fig. [I7] at left panel. The main feature of this data is
appearance of peak at low frequency ratio w;/w < 0.1.
In the range 0.1 < wy/w < 0.4 the testing field ¢; is non-
resonant and does not affect R, however at wy/w < 0.1
it becomes resonant to the pendulum oscillations in the
wall vicinity and hence strongly modifies R,, value. The
dependence of this resonance ratio wq /w on amplitude of
main driving field € is shown in right panel of Fig.
The numerical data are in a good agreement with the
above theoretical expression @

The theoretical dependence @ allows to check the syn-
chronization theory of edge state stabilization. It also al-
lows to measure the strength of main microwave driving
force acting on an electron that still remains an exper-
imental challenge. The experimental testing of relation
@ requires to work with good ZRS samples which have
every low resistance in ZRS minima since this makes the
effect of testing field w; to be more visible. We note
that the recent experiments in a low frequency regime
w/we < 1 [24] demonstrate that R, is sensitive to low
frequency driving. The expression (@ is written for the
case when R, is mainly determined by a transport along
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edges. If the dominant contribution is given by bulk disk
scatterers then a certain numerical coefficient A should
be introduced in the right part of the expression. Ac-
cording to the data of Fig. |8] and Eqgs. we estimate
A ~ 0.5 (the separatrix width is smaller for the disk case
compared to the wall case at the same €).

Another interesting experimental possibility of our the-
ory verification is to take a Hall bar of high mobility
2DEG sample and put on it antidots with regular or dis-
ordered distribution (it is important to have no direct
collision-less path for a cyclotron radius in crossed dc-
electric and magnetic fields) with a low density of anti-
dot disks ngr? < 1 (as in our numerical studies) so that
an average distance between antidots is larger than the
cyclotron radius r.. The regular antidot lattices have
been already realized experimentally [I8] [19]. The effect
of microwave field on electron transport in a regular lat-
tice has been studied in the frame of ratchet transport
in asymmetric lattices [25]. Even a case of symmetric
circular antidots has been studied in [25] but the lattice
was regular and no special attention was paid to analysis
of resistivity at ZRS resonant regime with j ~ j.. We
think that the experimental condition of [25] can be rel-
atively easy modified to observe the ZRS effect on disk
scatterers discussed here.

VII. DISCUSSION

Above we presented theoretical and numerical results
which in our opinion explain the appearance of microwave
induced ZRS in high mobility samples. The synchroniza-
tion theory of ZRS proposed in [9] and extended here
is based on a clear physical picture: high harmonics
w/we = j > 1 are generated by collisions with sharp edge
boundary or isolated impurities which are modeled here
by specular disks. The ZRS phases appear in a vicinity
of resonant values j,. ~ 1+ 1/4, 24+ 1/4, ... . At these
Jr values the cyclotron phase of electron motion becomes
synchronized with the microwave phase due to dissipative
processes present in the system.

For trajectories at the edge vicinity this synchroniza-
tion gives stabilization of propagation along edge chan-
nels that creates an exponential drop of resistivity con-
tribution of these channels with decreasing amplitude
of thermal noise and increasing amplitude of microwave
field. The contribution to resistivity from trajectories in
the bulk is analyzed in the frame of scattering on many
well separated disk impurities. Here again the synchro-
nization of cyclotron phase with the microwave phase
takes place approximately at the same resonant j,. val-
ues. At these j, values the synchronization leads to long
time capture of trajectories in disk vicinity. During this
long time an initial cyclotron phase is washed out by
noisy fluctuations and many rotations around disk and
thus an electron escapes from a disk with an average zero
displacement along the applied dc-field even if dynamics
in disk vicinity is dissipative. This provides the main



mechanism of suppression of dissipative resistivity con-
tribution from isolated impurities in the bulk. As a result
the contribution of bulk to dissipative conductivity o,
is suppressed, as it was assumed in [9], and the main
contribution to current is given by electron propagation
along edge states stabilized by a microwave field.

As we showed above the resonance width or resonance
energy scale E, are approximately the same for the disk
and wall cases (see Egs. (4] [B)). We note that for the
disk case the energy E, is not sensitive to the disk radius
as soon as it is significantly smaller than the cyclotron
radius. Thus we expect that at j, values the conductivity
0zz in the bulk is suppressed by a microwave field and
at these fields the current is flowing essentially along sta-
bilized edge states. In the case of Corbino geometry we
have radial conductivity o, which is determined by the
bulk scattering and now the minima of o,.. are located at
jr values (see e.g Figs. Where Ryx X Oy ~ Oppr).
The ZRS experiments performed in the Corbino geome-
try give minima of o, at these j, values (see e.g. [26]27])
being in agreement with the synchronization theory.

It is interesting to note that the nonlinear dynamics
in vicinity of edge and disk impurity is well described by
the Chirikov standard map [13]. The map description
explains the location of resonances at integer values of j
with an additional shift 67 ~ 1/4 produced by a finite
separatrix width of nonlinear resonance. A finite rigidity
of wall or disk potential can give a modification of this
shift 7.

Our results show that the ZRS phases at j, appear
only at weak noise corresponding to high mobility sam-
ples. Strong noise destroys synchronization and trajecto-
ries are no more captured at edge or disk vicinity. We also
note that internal sample potentials with significant gra-
dients act like a strong local dc-field which destroys sta-
bility regions around disk impurities or near edge. Due to
that the ZRS effect exists only in high mobility samples.
The resistance at ZRS minima drops significantly with
the growth of microwave field strength since it increases
the amplitude of nonlinear resonance which captures the
synchronized trajectories.

The synchronization theory of ZRS is based on classi-
cal dynamics of noninteracting electrons. It is possible
that electron-electron interaction effects can also sup-
press the contribution to resistivity from neutral short
range range scatterers (interface roughness, adatoms,...).
Indeed, long capture times can increase the electron den-
sity around these short ranged impurities transforming
them into long range charged scatters that the other elec-
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trons can circumvent by adiabatically following the long
range component of the disorder potential thereby avoid-
ing a scattering event. However, the theoretical descrip-
tion of this short-ranged impurity cloaking mechanism
for the ZRS effect remains a serious challenge.

Another important step remains the development of
a quantum synchronization theory for ZRS. Even if in
experiments the Landau level is relatively high v ~ 60,
there are only about ten Landau levels inside a nonlin-
ear resonance [9] and quantum effects should play a sig-
nificant role. The general theoretical studies show that
the phenomenon of quantum synchronization persists at
small effective values of Planck constant f.ss but it be-
comes destroyed by quantum fluctuations at certain large
values of hesy [28].

The importance of quantum ZRS theory is also re-
lated to a short range nature of the impurities consid-
ered here, typically on a scale of a few nanometers or
even less. We have modeled these impurities by disks
with a radius that was only several times (in fact j
times) smaller than the cyclotron radius which is not so
close to microscopic reality. We could argue that in the
quantum case a nanometer sized impurity would act ef-
fectively as an impurity of a size of quantum magnetic
length ap ~ r./\/v = r./8 ~ 100nm. This gives a ratio
re/ap ~ 8 which is comparable with the one used in our
simulations with r./rq = j ~ 7 but of course a quantum
treatment of scattering on nanometer size impurity in
crossed electric and magnetic and also microwave fields
remains a theoretical challenge. We note that such type
of scattering can be efficiently analyzed by tools of quan-
tum chaotic scattering (see e.g. [29, [30]) and we expect
that these tools will allow to make a progress in the quan-
tum theory development of striking ZRS phenomenon.

We hope that the synchronization theory of microwave
induced ZRS phenomenon described here can be tested
in further ZRS experiments.
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