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Abstract –We study numerically the thermoelectricity of the classical Wigner crystal placed in a
periodic potential and being in contact with a thermal bath modeled by the Langevin dynamics.
At low temperatures the system has sliding and pinned phases with the Aubry transition between
them. We show that in the Aubry pinned phase the dimensionless Seebeck coefficient can reach
very high values of several hundreds. At the same time the charge and thermal conductivity of
crystal drop significantly inside this phase. Still we find that the largest values of ZT factor are
reached in the Aubry phase even if for the studied parameter range we obtain ZT < 2. We argue
that this system provides an optimal regime for reaching high ZT factors and realistic modeling
of thermoelecriticy. Possible experimental realizations of this model are discussed.

Introduction. – Computer microelectronic elements
go to nanoscale sizes and control of electrical currents
and related heat flows becomes a technological challenge
(see e.g. [1, 2]). By the thermoelectric effect a temper-
ature difference ∆T generates an electrical current that
can be compensated by a voltage difference ∆V . The ra-
tio S = ∆V/∆T is known as the Seebeck coefficient, or
thermopower, which plays an important role in the ther-
moelectric material properties. The thermoelectric mate-
rials are ranked by a figure of merit factor ZT = S2σT/κ
[3], where σ is the electric conductivity, T is material tem-
perature and κ is the thermal conductivity. To be compet-
itive with usual refrigerators one needs to find materials
with ZT > 3. Various experimental groups try to reach
this high value by skillful methods trying to reduce the
thermal conductivity κ of samples keeping high electron
conductivity σ and high S (see e.g. [4, 5], [6, 7], [8]). At
room temperature the maximal values ZT ≈ 2.4 have been
reached in semiconductor superlattices [4] while for silicon
nanowires a factor ZT ≈ 1 has been demonstrated [5, 6].
This shows that the volume reduction allows to decrease
the thermal conductivity of lattice phonons and increase
ZT values.

It is interesting to consider the situations when the con-
tribution of lattice phonons is completely suppressed to
see if in such a case one can obtain even larger ZT fac-
tors. Such extreme regime can be realized with an electron

gas, e.g. in two dimensions (2DEG), where at T ∼ 1K a
contribution of lattice phonons is completely suppressed.
In such a regime recent experiments [9] reported giant See-
beck coefficients S ∼ 30mV/K obtained in a high resistiv-
ity domain.

While it is challenging to eliminate the contribution of
lattice phonons experimentally it is rather easy to realize
such a situation in numerical simulations simply replacing
a lattice of atoms by a fixed periodic potential. After that
we are faced the problem of thermoelectricity of Wigner
crystal in a periodic potential. In this Letter we study
this problem in one dimension (1D), which can be viewed
as a mathematical model of silicon nanowires. We note
that the ground state and low temperature properties of
this system in classical and quantum regimes have been
investigated in [10]. It has been shown that at a typical
incommensurate electron density the Wigner crystal slides
easily in a potential of weak amplitude while above a crit-
ical amplitude the electrons are pinned by a lattice. The
results [10] show that the properties of the Wigner crystal
are similar to those of the Frenkel-Kontorova model where
the transition between sliding and pinned phases is known
as the Aubry transition [11] (see detailed description in
[12]). The positions of electrons on a periodic lattice are
locally described by the Chirikov standard map [13, 14].
Similar dynamical properties appear also for the Wigner
crystal in wiggling snaked nanochannels [15].
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The previous studies of the Wigner crystal in a peri-
odic potential [10] have been concentrated on analysis of
the ground state properties at lower temperatures. Here
we analyze the transport properties of the crystal at finite
temperatures studying its electron and thermal conduc-
tivities. Our approach allows to obtain the Seebeck coef-
ficient and the figure of merit ZT at different regimes and
various parameters. We note that there has been a signifi-
cant interest to the heat transport and thermal conductiv-
ity in nonlinear lattices [16,17] but till present there have
been no studies of thermoelectricity of interacting elec-
trons in periodic lattices. We present the investigations of
this generic case in this Letter.

Model description. – The Hamiltonian of the 1D
Wigner crystal in a periodic potential reads:

H =
∑

i





p2i
2

+K cosxi +
1

2

∑

j 6=i

1

|xi − xj |



 , (1)

where xi, pi are coordinate and momentum of electron i,
K is an amplitude of periodic potential or lattice. As in
[10] we use the units with e = m = kB = 1, where e
and m are electron charge and mass, kB is the Boltzmann
constant, the lattice period is 2π. The rescaling back to
physical units is given in [10]. It is interesting to note that
at e = kB = 1 we have S as a dimensionless coefficient, e.g.
S = 30mV/K from [9] corresponds to S = 2585. Gener-
ally, in an ergodic regime induced by a developed dynami-
cal chaos or thermal bath, one expects to have S ∼ 1 since
a variation of potential or temperature should produce ap-
proximately the same charge redistribution. Thus, in our
opinion, large values of dimensionless Seebeck coefficient S
indicate a strongly nonergodic regime of system dynamics.
We will see below confirmations of this statement.
We concentrate our studies on a case of typical irrational

electron density ne = ν/2π, per lattice period, given by
the golden rotation number ν = νg = 1.618.... As in
[10] we use the Fibonacci rational approximates with N
electrons (0 ≤ i ≤ N − 1) on M lattice periods (e.g. 34
and 21 or 55 and 34).
According to [10] the Aubry transition at density νg

takes place at K = Kc = 0.0462 so that the Wigner crys-
tal is in a sliding phase for K < Kc and it is pinned by the
potential at K > Kc. In the latter case there are exponen-
tially many static configurations being exponentially close
in energy to the Aubry cantori ground state. The sliding
phase corresponds to the continuous Kolmogorov-Arnold-
Moser (KAM) curves with νg rotation number.
To study the thermoelectic effect in system (1) we add

interactions with a substrate, which plays a role of a ther-
mal bath with a given temperature distribution T (x) along
x-axis of the electron chain. We also add a static electric
field Edc. The thermal bath is modeled by the Langevin
force (see e.g. [16]) so that the equations of electron motion
take the form:

ṗi = −∂H/∂xi + Edc − ηpi + gξi(t) , ẋi = pi . (2)

0

1·105

2·105

8 9 10 11 12 13
x/2π

t

Fig. 1: Electron density variation in space and time from one
Langevin trajectory at K = 2.6Kc, T = 0.11Kc, η = 0.02,
N = 34, M = L/2π = 21; density changes from zero (dark
blue) to maximal density (dark red); only a fragment of x space
is shown.

Here, the parameter η phenomenologically describes dissi-
pative relaxation processes, and the amplitude of Langevin
force is given by the fluctuation-dissipation theorem g =√
2ηT . The normally distributed random variables ξi

are as usually defined by correlators 〈〈ξi(t)〉〉 = 0,
〈〈ξi(t)ξj(t′)〉〉 = δijδ(t − t′). The time evolution is ob-
tained by the 4th order Runge-Kutta integration with a
time step ∆t, at each such a step the Langevin contribu-
tion is taken into account. We checked that the results
are not sensitive to the step ∆t by its variation by a fac-
tor ten, the data are mainly obtained with ∆t = 0.02. We
use the hard wall boundary conditions for electrons at the
ends of the chain x = 0;L with the total system length
L = 2πM . We also note that the Coulomb interaction
couples all electrons in the sample. However, the results
of [10,15] show that only nearest neighbors are effectively
count. Due to that we present the numerical results for
this approximation. We ensured that our results are not
sensitive to including other neighbors.

A typical variation of electron density in space x and
time t is shown in Fig. 1 for the Aubry pinned phase.
Transitions, induced by thermal fluctuations, from one to
two electrons inside one potential minimum are well visi-
ble.

Numerical results for Seebeck coefficient. – To
compute S we impose a constant temperature gradient on
the Langevin substrate with a temperature difference ∆T
at the sample ends. Then we compute the local electron
temperature Te(x) = 〈p2(x)〉t where the time average of
electron velocities are done over a large time interval with
up to t = 107. To eliminate periodic oscillations along the
chain we divide it on M bins of size 2π and do all aver-
aging inside each bin. Typical examples of variations of
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Fig. 2: Left panels: dependence of electron temperature Te(x)
(top, blue points) and rescaled density ν(x) (bottom, black
points) on distance x along the chain placed on the Langevin
substrate with a constant temperature gradient (it is shown by
the blue line) at average temperature T̄ = 0.01 and tempera-
ture difference ∆T = 0.2T̄ ; black line shows the fit of density
variation in the bulk part of the sample. Right panel: density
variation produced by a static electric field Edc = 4 × 10−4

at a constant substrate temperature T = 0.01; black line
shows the fit of gradient in the bulk part of the sample. Here
N = 34,M = 21, K = 1.52Kc, η = 0.02, averaging is done
over time interval t = 107; S = 3.3 at T = 0.01 ≈ 0.22Kc

electron temperature Te(x) and electron rescaled density
ν(x) = 2πne(x) along the chain are shown for a given ∆T
in Fig. 2 (left panels). The chain ends are influenced by
the boundary conditions, but in the main bulk part of the
sample we obtain a linear gradient variation of Te(x) and
ν(x). The linear fit of Te(x) and ν(x) in the bulk part
allows to determine the response of the Wigner crystal on
substrate temperature variation. In a similar way at fixed
substrate temperature T we can find the density variation
ν(x) induced by a static field Edc at the voltage difference
∆V = EdcL, as it is shown in Fig. 2 (right panel). For
the computation of S we find convenient to apply such
a voltage ∆V which at fixed T creates the same density
gradient as those induced by temperature difference ∆T
at Edc = 0. Then by definition S = ∆V/∆T . The data
are obtained in the linear response regime when ∆T,Edc

are sufficiently small.

The dependencies of obtained Seebeck coefficient S on
K and T are presented in Fig. 3. The data show that
at K < Kc we have S ∼ 1 practically for all temper-
atures. Here the Lanvegin thermostat efficiently produce
ergodic distribution over all configurations of electrons and
we have S ∼ 1 in agreement with the above ergodic argu-
ment. For K > Kc we find a significant increase of S at
low temperatures T < Kc. In this regime the crystal is
pinned by the lattice and different configuration states are
separated by potential barriers ∆U ∼ K −Kc so that the
transitions between configurations are suppressed by the
Boltzmann factor exp(−∆U/T ). Thus here long times are
needed to have a transition between configurations [10]. In
such a regime large voltage ∆V is required to produce the
same density gradient as those given by a fixed ∆T . This
leads to large S values generated by big and rare thermal
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Fig. 3: Left panel: Dependence of the Seebeck coefficient S on
rescaled potential amplitude K/Kc at temperatures T/Kc =
0.065, 0.11, 0.22 and 0.65 shown by black, blue, green and red
colors, respectively from top to bottom. The full and open
symbols correspond respectively to chains with N = 34, M =
21 and N = 55, M = 34. Right panel: Dependence of S on
T/Kc at different K/Kc = 0, 0.75, 1.5, 2.2, 3 shown respectively
by black, violet, blue, green and red points; N = 34, M = 21;
the dashed gray line shows the case K = 0 for noninteracting
particles. The stars show corresponding results from left plane
at same N,M . Dotted curves are drown to adapt an eye. Here
and in other Figs. the statistical error bars are shown when
they are larger than the symbol size. Here η = 0.02.

fluctuations.

To check the stability of obtained results in the noner-
godic regime with large S we use three different numerical
methods:

(a) cold start from the Aubry ground state at a given K
and T = 0, followed by a warm up to required T and then
computing of the responses to a temperature gradient or
electric field; in this approach the system evolves during a
relaxation time trel ∼ 106 until the density response is sta-
bilized, then the computations of gradients are performed
on a time scale tcom determined by the condition of target
statistical accuracy (typically tcom ∼ 107);

(b) zero potential start from the ground state at K = 0
and given T followed by a sweep over K with a step ∆K
(typically ∆K = 0.01); at each step the responses of cur-
rent state to Edc or ∆T are determined; after trel = 5×104

the gradients are computed on times tcom ≥ 104 deter-
mined by target accuracy; next step to K + ∆K starts
from the reached steady state at previous K value, con-
tinuing up to required Kmax value complete one sweep
in K; then we repeat sweeps about 20 to 100 times to
improve statistical accuracy;

(c) hot start from the Aubry ground state at given K
with a warm up to Tmax = 0.05 ≈ Kc, followed by a
sweep from T = Tmax down to T = Tmin = 0.003 with
equidistant steps in lnT , in a way similar to (b) with a
similar number of sweeps.

The data in left and right panels of Fig.3 are obtained by
the methods (b) and (c) respectively. The stars in the right
panel show the corresponding data from the left plane. A
good agreement between methods (b) and (c) confirms
the validity of obtained results. The results from a more
time-consuming method (a) give a similar agreement with
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those methods (b),(c) of Fig. 3 (data not shown). The
comparison of results with N = 34 and 55 electrons shows
their independence of the chain length. However, at K ≫
Kc and T ≪ Kc very long computations are required to
obtain statistically reliable results.

The obtained results show that large values of S > 100
can be reached in the pinned phase K > Kc at low tem-
peratures. The growth of S is roughly proportional to
the inverse Boltzmann factor. This nonergodic regime is
characterized by big fluctuations. We think that a similar
regime appeared in 2DEG experiments with even larger
values S ∼ 103 [9].

Properties of charge and thermal conductivities.

– The large values of S do not guaranty high values of
figure of merit factor ZT which depends also on charge
and thermal conductivities σ, κ.

To determine σ we use the periodic boundary conditions
and compute the average velocity vel of the Wigner crys-
tal in a weak electric field Edc being in a linear response
regime. The averaging is done over a typical time interval
t = 107 and over all electrons. Then the charge current
is j = nevel = νvel/2π and σ = j/Edc. In absence of
potential at K = 0 we have a crystal moving as a whole
with vel = Edc/η and corresponding to the conductivity
σ = σ0 = νg/(2πη) (νg ≈ 1.618...). This theoretical result
is well reproduced by numerical simulations as it is shown
in Fig. 4 (left panel).

10−4

10−2

1

0 2 4 6
K/Kc

σ
σ0

10−2

10−1

1

10

0 2 4 6
K/Kc

κ
κ0

Fig. 4: Left panel: Rescaled electron conductivity σ/σ0 as a
function of K/Kc shown at rescaled temperatures T/Kc =
0.065, 0.22, 0.65 by black, green and red points respectively.
Right panel: Rescaled thermal conductivity κ/κ0 as a func-
tion of K/Kc shown at same temperatures and colors as in
left panel. Here we have N = 34, M = 21, η = 0.02,
σ0 = νg/(2πη), κ0 = σ0Kc.

For K < Kc the conductivity σ is practically indepen-
dent of T , K. However, for K > Kc we have a sharp
exponential drop of σ with increasing K and decreasing
temperature. This drop is satisfactory described by the
thermal activation dependence σ ∝ exp(−(K−Kc)/T ), at
least when K is significantly larger Kc. We note that the
temperature dependence differs significantly from those in
2DEG experiments [9] where resistivity becomes indepen-
dent of T for T < 1K. We attribute this to 2D features of
these experiments and to quantum effects being important
at T ∼ 1K. Indeed, the quantum fluctuations can produce

sliding of the Wigner crystal even in the classically pinned
phase as it is shown for 1D in [10].

Another important feature of σ variation with the sys-
tem parameters is that σ ∼ 1/η for K < Kc and that σ is
practically independent of η for K > Kc. We will discuss
this point in more detail later.

The thermal gradient produces not only the charge den-
sity variation but also a heat flow J . This flow is related
to the temperature gradient by the Fourier law with the
thermal conductivity κ: J = κ∂T/∂x (see e.g. [2,16]). The
flow J can be determined from the analysis of forces acting
on a given electron i from left and right sides respectively:
fL
i =

∑

j<i 1/|xi − xj |2, fR
i = −∑

j>i 1/|xi − xj |2. The
time averaged energy flows, from left and right sides, to
an electron i moving with a velocity vi are respectively
JL,R = 〈fL,R

i vi〉t . In a steady state the mean electron
energy is independent of time and JL + JR = 0. But the
difference of these flows gives the heat flow along the chain:
J = (JR−JL)/2 = 〈(fR

i −fL
i )vi/2〉t . This computation of

the heat flow, done with hard wall boundary conditions,
allows us to determine the thermal conductivity via the
relation κ = JL/∆T .

In principle, each electron interacts also with the sub-
strate. However, in the central part of the chain the elec-
tron temperature is equal to the local temperature of the
substrate due to local thermal equilibrium. This fact is
directly seen in Fig. 2 (left top panel, cf. blue points and
straight line). Thus, we perform additional averaging of
the heat flow in the central 1/3 part of the chain improving
the statistical accuracy of data.

The dependence of computed thermal conductivity κ
on the amplitude of the potential K is shown in Fig. 4
(right panel). It is convenient to present κ via a ratio to
κ0 = σ0Kc to have results in dimensionless units. Similar
to the charge conductivity σ, we find that κ ≈ 3.9κ0 at
K < Kc being practically independent of temperature T .
However, the transition to zero temperature and η = 0 is
singular due to divergence of κ in weakly nonlinear regular
chains as discussed in [16].

In the pinned phase at K > Kc we see an exponential
drop of κ with increase of K and decrease of T at T < Kc.
As for σ, we find that forK > Kc the thermal conductivity
is practically independent of dissipation rate η. We will
discuss this in more detail below.

Results for figure of merit factor ZT . – Now we
determined all required characteristics and can analyze
what ZT values are typical for our system and how ZT
depends on the parameters.

The main results are presented in Fig. 5. They show
that in our system we have ZT ≤ 2. At fixed T we have
an optimal value of K with a maximum of ZT at a cer-
tain K ∼ 2Kc, its position moves slightly to larger K
with an increase of T (left panels). At fixed K = 2.6Kc,
taken approximately at the maximum of ZT (left bottom
panel). There is a visible increase of ZT with increasing
T approximately by a factor 3 in a range 0.1 ≤ T/Kc ≤ 1
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Fig. 5: Left panels: Dependence of ZT on K/Kc at temper-
atures T/Kc = 0.11 (top panel) and T/Kc = 0.65 (bottom
panel); the black points and open triangles correspond respec-
tively to η = 0.02 and η = 0.05. Right panels: Dependence of
ZT on T/Kc for K/Kc = 0.75 (top panel) and K/Kc = 2.6
(bottom panel) at η = 0.02. In all panels N = 34, M = 21.

(right panels). A further increase up to T ≫ Kc is not
very interesting since then we come to the case without
lattice where ZT is small.
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Fig. 6: Left panels: Dependence of ratios Rσ (top) and Rκ

(bottom) on K/Kc at T/Kc = 0.65. Right top panel: Same as
in left panels for ratio RS. All ratios are defined in the text.
Right bottom panel: dependence of ZT on η at T/Tc = 0.65;
ZT values are averaged over interval 2.1 < K/Kc < 3.1. Here
N = 34, M = 21.

The results for two values of dissipation η = 0.02; 0.05
shown in Fig. 5 indicate that ZT drops with increase of
η. To understand the effects of η in a better way we show
the dependence of ratio RS = S(η = 0.05)/S(η = 0.02) on
K/Kc at fixed T/Kc = 0.65 in Fig. 6. The dependence of
similar ratios Rσ and Rκ for σ and κ are also shown there.
We find Rσ ≈ Rκ ≈ 0.5 at K ≪ Kc and Rσ ≈ Rκ ≈ 1 for
K > Kc. At K ≪ Kc the ratios are close to the expected
value 0.4 following from the theoretical scaling σ0 ∝ 1/η
and similar expected dependence κ0 ∝ 1/η. However, in
the pinned phase the dependence of σ and κ on η practi-
cally disappears. The physical mechanism of this effect is

due to the fact that the electrons are pinned by the lat-
tice and Wigner crystal phonons are localized, and hence,
their mean free path becomes smaller than its value at
K = 0 when it is given by the dissipative exchange with
the Langevin substrate. The ratio RS is not sensitive to
the variation of K/Kc even if S changes strongly with K
(see Fig. 3). A similar behaviour of ratios is obtained at
lower T/Kc ≈ 0.1 with somewhat more sharp change be-
tween limit values 0.5 and 1 around K/Kc ≈ 2. We also
checked that the ratios constructed for other values of η
(e.g. η = 0.01, 0.1, instead of above η = 0.05) also sat-
urate at unit value for K/Kc > 2. Thus, at K/Kc > 2,
the localization effects, induced by pinning, dominate over
mean free path at K = 0.
The dependence of ZT on η is also shown in Fig. 6. We

see that a decrease of η generates a slow growth of ZT even
if at so low value as η = 0.01 we still have ZT < 2. Here,
we give numerical values of η in our computational units.
It is more physical to look of a dimensionless ratio η/ω0

where ω0 is a maximal frequency of small oscillations near
a vicinity of the Aubry ground state at K = Kc. Accord-
ing to the results [10] we have ω0 ≈ 2

√
Kc ≈ 0.41. Thus

all our data are obtained in the regime of long relaxation
time scale (η/ω0 ≪ 1).

10−1

1

T
/K

c

0 1 2 K/Kc

Fig. 7: Dependence of ZT on K/Kc and T/Kc shown by color
changing from ZT = 0 (dark blue) to maximal ZT = 1.92
(light rose). Here η = 0.02, N = 34, M = 21.

The global dependence of ZT on K/Kc and T/Kc is
presented in Fig. 7 for the investigated parameter range.
The maximal value ZT ≈ 1.9 is reached at K/Kc ≈ 2.6
and T/Kc ≈ 1.1. It is possible that ZT values may be
higher at K > 2.6Kc and T > Kc. However, at so large K
and T the transitions between different minima fluctuate
strongly and also there appear close encounters between
electrons and hence, the integration step should be signif-
icantly reduced. Therefore, this range requires even more
detailed and advanced numerical simulations.

Discussion. – Our studies of the Wigner crystal in a
periodic potential show that in the Aubry pinned phase at
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K > Kc the Wigner crystal has very larger Seebeck coeffi-
cients S which grow exponentially with a decrease of tem-
perature or increase of the potential amplitude. However,
at the same time the charge and thermal conductivities
drop significantly. As a result, for the all variety of cases
studied we obtain the maximal value of ZT ≤ 2. Thus,
there is a rather nontrivial compensation of three quanti-
ties S, σ, κ which determine the figure of merit, ZT . In
global, the pinned phase has larger ZT values, compared
to the sliding phase at K < Kc. Hence, there are hopes
to reach even larger ZT in this pinned phase at optimized
system parameters. We find that ZT weakly increases
with a decrease of the seed relaxation rate η. Thus a fur-
ther decrease of η may allow to reach ZT > 3. However,
special efforts should be performed to determine this seed
η for real materials since in the pinned phase the charge
and thermal conductivities drop significantly, compared
to the sliding phase, becoming practically independent of
seed relaxation rate.
It is also possible that further temperature increase sig-

nificantly above T > Kc may produce ZT > 3. However,
the growth of ZT with T is slow, being close to logarith-
mic growth, so that such high T may be not interesting in
practice. We also note that at large K and T the accuracy
of numerical integration should be improved significantly
due to close encounters between electrons.
Thus the task to reach ZT > 3 seems to be hard even

in our simple model where the thermal conductivity of
atomic lattice phonons is eliminated from the beginning
and only electronic conductivity contribution is left. In
this sense our model provides a superior bound for ZT
factor in 1D. We expect that for the Wigner crystal in
two- and three-dimensional potentials the factor ZT will
be reduced, compared to 1D case, since it will be more
difficult to localize phonons of Wigner crystal. Thus, in a
certain sense we expect that our model provides the most
optimal conditions for large ZT values and still we remain
at ZT < 2. Hence, further investigations are required.
Finally we provide some physical values of our model

parameters. In physical units we can estimate the critical
potential amplitude as Uc = Kce

2/(ǫd), where ǫ is a di-
electric constant, ∆x is a lattice period and d = ν∆x/2π
is a rescaled lattice constant [10]. For values typical for a
charge density wave regime [18] we have ǫ ∼ 10, ν ∼ 1,
∆x ∼ 1nm and Uc ∼ 40mV ∼ 500K so that the Aubry
pinned phase should be visible at room temperature. The
obtained Uc value is rather high that justifies the fact that
we investigated thermoelectricity in the frame of classical
mechanics of interacting electrons. In any case the real
thermoelectric devices should work at room temperature
and in this regime the classical treatment of electron trans-
port can be considered as a good first approximation.
We think that it would be useful to perform experi-

mental studies of electron transport in a periodic poten-
tial. We hope that such type of experiments can be pos-
sible with charge density waves (see e.g. [18] and Refs.
therein), strongly interacting electrons in ultraclean car-

bon nanotubes with interaction energies of 100mV [19],
experiments with electrons on a surface of liquid helium
[20], and cold ions in optical lattices [21].
The research of OVZ was partially supported by the

Ministry of Education and Science of Russian Federation.
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