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Abstract. We study the problem of two interacting particles in a two-dimensional quasiperiodic potential
of the Harper model. We consider an amplitude of the quasiperiodic potential such that in absence of
interactions all eigenstates are exponentially localized while the two interacting particles are delocalized
showing anomalous subdiffusive spreading over the lattice with the spreading exponent b ≈ 0.5 instead
of a usual diffusion with b = 1. This spreading is stronger than in the case of a correlated disorder
potential with a one particle localization length as for the quasiperiodic potential. At the same time we
do not find signatures of ballistic pairs existing for two interacting particles in the localized phase of the
one-dimensional Harper model.

1 Introduction

The Harper problem describes the quantum dynamics
of an electron in a two-dimensional potential (2D) in a
perpendicular magnetic field [1]. It can be reduced to
the Schrödinger equation on a discrete quasiperiodic one-
dimensional (1D) lattice. This system has fractal spectral
properties [2] and demonstrates a Metal-Insulator Transi-
tion (MIT), established by Aubry and André [3]. The MIT
takes place when the amplitude λ of the quasiperiodic po-
tential (with hopping being unity) is changed from λ < 2
(metallic phase) to λ > 2 (insulator phase). A review of
the properties of the Aubry-André model can be found in
reference [4] and the mathematical proof of the MIT is
given in reference [5].

The investigation of interaction effects between parti-
cles in the 1D Harper model was started in reference [6]
with the case of Two Interacting Particles (TIP). It was
found that the Hubbard interaction between two parti-
cles can create TIP localized states in the regime when all
eigenstates of non-interacting particles are delocalized in
the 1D Harper model (metallic phase at λ < 2). Further
studies also demonstrated the enhancement of localization
effects in presence of interactions [7,8]. This trend was op-
posite to the TIP effect in disordered systems where the
interactions increase the TIP localization length in 1D or
even lead to delocalization of TIP pairs for dimensions
d ≥ 2 [9–18]. Thus interactions between two particles in
systems with disorder can even destroy the Anderson lo-
calization existing for non-interacting particles. The ten-
dency in the 1D Harper model seemed to be an opposite
one.
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Thus the results obtained in reference [19] on the ap-
pearance of delocalized TIP pairs in the 1D Harper model,
for certain particular values of interaction strength and
energy, in the regime, when all one-particle states are ex-
ponentially localized, is really striking. In contrast to the
enhancement of localization features at moderate interac-
tions, it is found that at strong interactions a delocaliza-
tion effect appears. In reference [19] the delocalization of
TIP appears at a relatively strong interaction being the
reason why this effect was missed in previous studies. The
recent advanced analysis [20] showed that so-called Freed
by Interaction Kinetic States (FIKS) appear at various
irrational magnetic flux values being ballistic or quasi-
ballistic over the whole system size N used in numerical
simulations (up to N = 10 946). At certain flux values
the FIKS pairs appear even at a moderate Hubbard in-
teraction U = 1.75 (hopping is taken as t = 1). Also
the FIKS effect shows a stronger delocalization of pairs
for long range interactions [20]. Up to 12% from an initial
state, with TIP being close to each other, can be projected
on the FIKS pairs escaping ballistically to infinity [20].
This observation points to possible significant applications
of FIKS pairs in various physical systems and shows the
importance of further investigations of the FIKS effect.
Indeed, as shown in reference [20], the recent experiments
with cold atoms on quasiperiodic lattices [21–23] should
be able to detect FIKS pairs in 1D.

For the TIP effect in disordered systems the dimen-
sion plays an important role [10,14,15,17,18] and it is
clear that it is important to study the FIKS effect in
higher dimensions. We start these investigations here for
the two-dimensional (2D) Harper model where the (non-
interacting) eigenstates are given by the product of two 1D
Harper (non-interacting) eigenstates so that the MIT
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position for non-interacting states is clearly defined at
λ = 2. We note that 2D quasiperiodic lattices of cold
atoms have been realized in recent experiments (even if
the second dimension was a repetition of 1D lattices) [24]
so that there are new possibilities to investigate the FIKS
effect with cold atoms when the interaction is taken into
account.

The results obtained in this work show that for the 2D
Harper model investigated here the interactions induce a
delocalization of TIP in the regime when all one-particle
states are exponentially localized. However, this delocal-
ization is characterized by a subdiffusive spreading of TIP
over the lattice. We do not find signatures of ballistic FIKS
pairs in the 2D Harper model.

The paper is composed as follows: the model descrip-
tion is given in Section 2, the main results are presented in
Section 3, discussion of results is given in Section 4. High
resolution figures and additional data are available at the
web site1.

2 Model description

We consider particles in a 2D lattice of size N1 ×N2, 0 ≤
x <N1 and 0 ≤ y <N2. The one-particle Hamiltonian h(j)

for particle j is given by:

h(j) = T (j) + V (j), (1)

T (j) = −
∑
x,y

(
|x, y>j <x+ 1, y|j (2)

+ |x, y>j <x, y + 1|j
)

+ h.c.,

V (j) =
∑
x,y

[
V1(x− x0) + V2(y − y0)

]
|x, y>j <x, y|j . (3)

The point (x0, y0) = (N1/2, N2/2) is the “center point” of
the lattice and the offsets x−x0 or y−y0 in the arguments
of V1 ensure that the potential has locally the same struc-
ture for the region close to the center point when varying
the system sizeN1×N2. The kinetic energy T (j) is given by
the standard tight-binding model in two dimensions with
hopping elements t = −1 linking nearest neighbor sites
with periodic boundary conditions, i.e. x+ 1 (or y+ 1) in
equation (2) is taken modulo N1 (or N2). Note that the
potential is of the form

V (x, y) = V1(x− x0) + V2(y − y0), (4)

where V1(x), V2(y) are effective one-dimensional poten-
tials. In this work we study essentially the quasiperiodic
case with V1(x) = λx cos(αx+β), V2(y) = λy cos(αy+ β)
and here mostly λx = λy = λ = 2.5. Further-
more we choose α = 2π(

√
5 − 1)/2 ≈ 0.61803 as

the golden ratio and β = 1/
√

2. For these parameters
the one-dimensional eigenfunctions (with the V1 poten-
tial) are localized with a one-dimensional localization

1 http://www.quantware.ups-tlse.fr/QWLIB/

tipharper2d

length � = 1/ log(λ/2) ≈ 4.48 (see e.g. [4,20]). For the
purpose of comparison we also study the disorder case
with a random potential V1(x) uniformly distributed in
[−W/2,W/2] and the same random realization for V2(y).
For this case we choose W = 5 corresponding to the
localization length � ≈ 105/W 2 ≈ 4.2 which is quite
close to the localization length of the quasiperiodic case
for λ = 2.5. The particular structure of V implies that
for both cases the eigenfunctions of h(j) are products of
one-dimensional localized eigenstates in x and y with the
potential V1(x− x0) or V2(y − y0).

We note that for the disorder case the potential V (x, y)
is due to the particular sum structure in equation (3) very
different from the standard Anderson two-dimensional dis-
order model. In the latter case V (x, y) would be indepen-
dent random variables for each value of (x, y) while in
our case V (x, y) is a sum of two one-dimensional disorder
potentials providing certain spacial correlations in the po-
tential which are crucial for the value of the quite small
localization length.

We now consider two interacting particles, each of
them submitted to the one-particle Hamiltonian h(j), and
coupled by an interaction potential U(x1, y1, x2, y2) which
has a non-vanishing value U only for |x1 − x2| <UR and
|y1 − y2| <UR

2. Here U denotes the interaction strength
and UR is the interaction range. The total two particle
Hamiltonian is given by:

H = h(1) + h(2) + Û , (5)

where Û is the interaction operator in the two-particle
Hilbert space with diagonal entries U(x1, y1, x2, y2). In
this work we consider two cases with UR = 1, correspond-
ing to Hubbard on-site-interaction, and UR = 2 corre-
sponding to a short range interaction with 9 neighboring
sites coupled by the interaction.

The eigenfunctions of H are either symmetric with
respect to particle permutation (boson case) or anti-
symmetric (fermion case) corresponding to a decomposi-
tion of the Hilbert space in a boson- and fermion-subspace.
However, in this work we prefer to work on the com-
plete space (of dimension N2

1 N
2
2 ) due to the employed

numerical method to determine the time evolution of the
wave function. The evolution is described by the time-
dependent Schrödinger equation (with � = 1)

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉. (6)

The symmetry of the state |ψ(t)> is simply fixed by the
symmetry of the initial condition which is conserved by
the Schrödinger equation and which we choose

|ψ(0)〉 = |x0, y0〉1|x0, y0〉2 (7)

2 In view of the periodic boundary conditions the condition
|x1 − x2| < UR (or |y1 − y2| < UR) is understood to be true
also for the case N1 − |x1 − x2| < UR (N2 − |y1 − y2| < UR),
i.e. if x1 (y1) is close to one boundary and x2 (y2) to the other
boundary.

http://www.epj.org
http://www.quantware.ups-tlse.fr/QWLIB/tipharper2d
http://www.quantware.ups-tlse.fr/QWLIB/tipharper2d


Eur. Phys. J. B (2016) 89: 8 Page 3 of 10

corresponding to both particles being localized on the
same center point with x0 = N1/2 and y0 = N2/2.

As already noted, in absence of the interaction, i.e.
U = 0, the eigenstates are localized with a typical local-
ization length � (in each direction). Thus, our aim is to
study if interaction leads to a delocalization of TIP dur-
ing the time evolution or to some kind of diffusion of TIP
in coordinate or Hilbert space.

To solve (6) numerically we write H = Hx + Hp as
a sum of two parts which are either diagonal in position
space Hx = V (1) +V (2) + Û or in momentum space Hp =
T (1) + T (2) and evaluate the solution of equation (6) as:

|ψ(t)〉 = exp(−iHt)|ψ(0)〉 (8)

using the Trotter formula approximation:

exp(−iHt) ≈ (OpOx)t/Δt,

Op = exp(−iHpΔt), Ox = exp(−iHxΔt) (9)

with two unitary operators Op and Ox. The integration
time step Δt is supposed to be small as compared to typ-
ical inverse energy scales and the value of t is chosen such
that t/Δt is integer. Formally, equation (9) becomes ex-
act in the limit Δt → 0. However, a finite value of Δt
implies a modification of the Hamiltonian with H → H̃
with H̃ defined by OpOx = exp(−iH̃ Δt) and related
to H by a power law expansion in Δt where the correc-
tions are given as (higher order) commutators between Hx

and Hp. In this work we choose the value Δt = 0.1 but we
have verified for certain parameter values that the results
presented below do not change significantly if compared
with Δt = 0.05. The efficiency and stability of this type
of integration methods have been demonstrated in refer-
ence [9,20,25,26].

The operators Ox and Op are either diagonal in posi-
tion representation or momentum representation. In order
to evaluate (8) using (9) we first apply the operator Ox to
the initial state given in position representation which can
be done efficiently with Ntot = N2

1 N
2
2 operations by mul-

tiplying the eigenphases of Ox to each component of the
state. Then the state is transformed to momentum repre-
sentation using a fast Fourier transform in the four dimen-
sional configuration space (corresponding to two particles
in two dimensions) with help of the library FFTW [27]
which requires about Ntot(logN1 +logN2) operations. At
this point we can efficiently apply the operator Op to the
states, again by multiplying the eigenphases to each com-
ponent of the state and finally we apply the inverse Fourier
transform to come back in position representation. The
eigenphases of Ox and Op can be calculated and stored in
advance.

We determine the time evolution of |ψ(t)> using equa-
tion (9) for different square and rectangular geometries
with system sizes up to 128 × 128 (i.e. N1 = N2 = 128)
or 1024 × 8 (i. e. N1 = 1024, N2 = 8). At N1 = N2 = 128
the Hilbert space of the whole system becomes as large
as NH = N4

1 ≈ 2.7 × 108. In order to analyze the struc-
ture of the TIP state we introduce different quantities and
densities described below.

First let us denote by:

ψ(x1, y1, x2, y2) = 〈x1, y1|1〈x2, y2|2ψ〉 (10)

the (non-symmetrized) two particle wave function and for
simplicity we omit the argument for the time dependence.
Then the one-particle density ρ1(x, y) in 2D is defined as

ρ1(x, y) =
∑
x2,y2

|ψ(x, y, x2, y2)|2. (11)

We note that the normalization of the state |ψ〉 im-
plies

∑
x,y ρ1(x, y) = 1. Using this one-particle den-

sity we define the variance with respect to the center
point (x0, y0) by:

〈r2〉 =
∑
x,y

[
(x− x0)2 + (y − y0)2

]
ρ1(x, y) (12)

and also the inverse participation ratio (IPR) “without
center” by:

ξIPR =

[∑
(x,y)∈S ρ1(x, y)

]2

∑
(x,y)∈S ρ

2
1(x, y)

, (13)

where the sums run over the set

S =
{
(x, y)

∣∣∣ |x− x0| > N1/10, |y − y0| > N2/10
}
,

(14)
containing only lattice sites (x, y) outside the center rect-
angle of (linear) size 20% around the center point (x0, y0).
This kind of definition for the IPR allows to detect a par-
ticular kind of partial delocalization where only a small
fraction of probability diffuses to large distances with re-
spect to the center point while the remaining probabil-
ity stays strongly localized close to the center point. This
quantity was already used with success in our studies of
FIKS pairs in reference [20] for the 1D TIP Harper prob-
lem. Using the standard definition for the IPR (where S
would be the set of all lattice sites) allows only to de-
tect a strong delocalization of the full probability. For the
variance 〈r2〉 the contribution of the probability at the ini-
tial state is not so pronounced and thus we compute this
quantity for the whole lattice.

We furthermore introduce the following densities

ρx(x) =
∑

y

ρ1(x, y), (15)

ρy(y) =
∑

x

ρ1(x, y), (16)

ρxx(x1, x2) =
∑
y1,y2

|ψ(x1, y1, x2, y2)|2, (17)

ρlin(s) =
∑
x, y

s = |x − x0| + |y − y0|

ρ1(x, y). (18)

The density ρx(x) (or ρy(y)) is simply the one-particle
density integrated over the y-direction (or x-direction).

http://www.epj.org
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Fig. 1. Variance 〈r2〉 (left column) and IPR without cen-
ter ξIPR (right column) versus interaction strength U for 0 ≤
U < 20 for 2D quasiperiodic potential (λ = 2.5). The top
panels correspond to Hubbard interaction (UR = 1) and the
square geometry N1 = N2 = 64; the center panels correspond
to UR = 2 for N1 = N2 = 64; the bottom panels correspond
to UR = 2 with rectangular geometry N1 = 256, N2 = 8. In
all panels the iteration time is t = 2500 except for the two
bottom panels where additional data points for t = 10 000 and
0 ≤ U ≤ 6.0 are shown.

ρxx(x1, x2) is the two particle density integrated over both
y-directions giving information about the spatial correla-
tions of both particles in x-direction. Here ρlin(s) is the
linear density obtained from the one-particle density by
summing over all sites with same (1-norm)-distance s =
|x−x0|+ |y−y0| from the center point and is well defined
for 0 ≤ s < (N1 +N2)/2. This density is similar in spirit
to a radial density obtained by integrating over all points
with the same distance from the center point. However, us-
ing the 1-norm (and not the Euclidean 2-norm) to measure
the distance is both more convenient for the practical cal-
culation and actually physically more relevant for the case
where ρ1(x, y) ∼ exp[−(|x−x0|+ |y− y0|)/l] = exp(−s/l)
is similar to a product of two exponentially localized func-
tions in x and y with the same localization length l.

3 Time evolution results

As in reference [20] we first determine the most promising
values of the interaction strength U by computing 〈r2〉
and ξIPR at a certain large t. Here we use a moderate
system size since computations should be done for many
values of U at UR = 1 (Hubbard interaction) and UR = 2
(9 nearest sites coupled on a square lattice). The results
are presented in Figure 1. We see that there are regions

100

101

102

103

101 102 103 104 105

<
r2 >

t

U=3.5
UR=1

96x96
128x128

dis. 128x128
U=0, 64x64

100

101

102

103

101 102 103 104 105

<
r2 >

t

U=3.5
UR=2

96x96
128x128

dis. 128x128

100

101

102

101 102 103 104 105

<
r2 >

t

U=3.5
UR=2

512x8
1024x8

dis. 1024x8

101

102

103

104

101 102 103 104 105

ξ I
P

R

t

U=3.5
UR=1

96x96
128x128

dis. 128x128

101

102

103

104

101 102 103 104 105

ξ I
P

R

t

U=3.5
UR=2

96x96
128x128

dis. 128x128

100

101

102

101 102 103 104 105

ξ I
P

R

t

U=3.5
UR=2

512x8
1024x8

dis. 1024x8

Fig. 2. Variance 〈r2〉 (left column) and IPR without center
ξIPR (right column) versus iteration time 10 ≤ t ≤ 105 in
a double logarithmic scale. The two top panels correspond to
Hubbard interaction with interaction range UR = 1, the square
geometry N1 = N2 = 128 (blue curve) or N1 = N2 = 96 (red
crosses for 10 ≤ t ≤ 104). In the top left panel also data for
U = 0, N1 = N2 = 64, 10 ≤ t ≤ 2500 (grey points) are
shown. The two center panels correspond to UR = 2 and the
same geometries as in the top panels. The two bottom panels
correspond to UR = 2 with rectangular geometries N1 = 1024,
N2 = 8 (blue curve) and N1 = 512, N2 = 8 (red crosses).
Furthermore in all panels data for a random disorder potential
(W = 5) of the particular form (4) (see text) and same panel
values N1, N2 are shown by black squares. In all panels the
interaction strength is U = 3.5. All curves and symbols, except
the black squares, correspond to the 2D Harper model at λ =
2.5. The number of shown data points is artificially reduced to
increase the visibility.

of U where the values of 〈r2〉 are by a factor 4−10 larger
than in the case of U = 0 where 〈r2〉 ≈ 10 (see Fig. 2). The
results of Figure 1 show various cases with the Hubbard
interaction UR = 1 (top panels), interactions with nearby
sites UR = 2 (middle panels). The case of rectangular ge-
ometry at UR = 2 is shown in bottom panels. However,
in all cases, in contrast to the 1D TIP Harper model [20]
there are no sharp peaks in U except maybe at U = 3.5
for UR = 2. In the following, we choose this value for a
more detailed analysis at larger sizes N1, N2 and larger
times t. However, we have also studied some other U val-
ues, e.g. U = 6 with qualitatively similar results but typ-
ically with less delocalization than the most interesting
value U = 3.5.

In Figure 2, we show for U = 3.5, the two values
UR = 1 and UR = 2 and different geometries the time
dependence of 〈r2〉 and ξIPR. All the cases with a square
geometry N1 = N2 show an unlimited growth of these
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two quantities up to largest times t = 105 reached in our
numerical simulations. For the Hubbard case at UR = 1
the system size is sufficiently large to avoid saturation ef-
fects due the finite system size and the change of size from
N1 = N2 = 96 to 128 does not affect the values of 〈r2〉 and
ξIPR at U = 3.5. For UR = 2 we have larger values of 〈r2〉
and ξIPR and it is clear that the size N1 = N2 = 96 is suf-
ficiently large only up to t ≈ 104 while for N1 = N2 = 128
the size is sufficient only up to t ≈ 3 × 104 with a finite
size induced saturation of growth for 3 × 104 < t ≤ 105.

In a drastic contrast with the 1D case [20] we observe
only a subdiffusive growth of 〈r2〉 ∝ tb1 and ξIPR ∝ tb2

with time. The power law fits of the data used in Figure 2
provide the values: b1 = 0.438± 0.004, b2 = 0.503± 0.007
for UR = 1; b1 = 0.521 ± 0.002, b2 = 0.506 ± 0.009 for
UR = 2 for the range 100 ≤ t ≤ 105 at N1 = N2 = 128.

For comparison, we also present in Figure 2 the same
quantities for the case of the particular disordered po-
tential described in Section 2. For this we use the same
interaction strength U = 3.5 and the disorder parameter
W = 5 which gives approximately the same localization
length in 1D as for the 1D Harper model at λ = 2.5 (how-
ever, for the usual 2D Anderson model we would have a
significantly larger value of the one-particle IPR ξ ≈ 150,
see e.g. Fig. 2 in Ref. [28]). For UR = 2 and t > 102 both
the absolute values and the growth rates of 〈r2〉 and ξIPR

for the disorder case are significantly lower as compared
to the 2D Harper model. For UR = 1 the disorder values
of the variance are above the variance values of the 2D
Harper model, for the time interval 10 ≤ t ≤ 105 shown in
the figure, but the curve for the Harper case has a stronger
growth rate (larger slope).

Actually, according to Figure 2 the two curves for 〈r2〉
seem to intersect at a certain time tint and therefore we
expect the variance of the 2D Harper model to become
stronger than the variance of the disorder case for t > tint.
From the figure it seems that tint is close or slightly below
105 but this is only due to the rather thick data points
and the logarithmic scale. A careful analysis of the data
(higher resolution figure and more precise extrapolation
of both curves using power law fits for 104 ≤ t ≤ 105)
shows that the intersection point is likely to be close to
the value tint ≈ 2.4 × 105. For UR = 1, the other quan-
tity ξIPR for the disorder case is clearly below the curve of
the Harper model. Our interpretation is that apparently
for TIP in the disorder case there is a relative strong initial
spreading at short times and a modest length scale but for
a strong weight of the wave packet while for the Harper
case there is a slower but long range delocalization for a
smaller weight of the wavepacket which is better visible
from the IPR ξIPR without the center rectangle (this kind
of “long range small weight” delocalization was also found
for the FIKS pairs of the TIP 1D Harper model [20] but
there the growth rate is actually ballistic, corresponding
to power law exponents b1,2 ≈ 2, and not sub-diffusive).

The lower growth rate for the disorder case at both
values of UR is also clearly confirmed by the power law
fits which provide (for the same time and size ranges as
for the Harper case) the exponents: b1 = 0.218 ± 0.005,

10-15

10-10

10-5

100

 0  20  40  60  80  100  120

ρ x

x

U=3.5
UR=1
128x128

U=0, 64x64, t=2500

10-25

10-20

10-15

10-10

10-5

100

 0  200  400  600  800  1000

ρ x

x

U=3.5,   1024x8
UR=2

t=100
t=1000

t=10000
t=100000

dis. t=100000

10-15

10-10

10-5

100

 0  20  40  60  80  100  120

ρ x

x

U=3.5
UR=2
128x128

Fig. 3. Density ρx(x) versus x in a semilogarithmic represen-
tation for different values of interaction range, geometry and
iteration times at U = 3.5. The color labels shown in the bot-
tom right corner of the bottom panel apply to all three panels:
t = 100 (red curve), t = 1000 (green curve), t = 10 000 (blue
curve), t = 100 000 (pink curve), disorder potential (W = 5) for
t = 100 000 (black squares). In the top left panel also data for
U = 0, N1 = N2 = 64, t ≤ 2500 (grey points) are shown (with
center point shifted from 32 to 64). All curves, except the black
squares, correspond to the quasiperiodic potential (λ = 2.5).
For grey points and black squares the number of shown data
points is artificially reduced to increase the visibility.

b2 = 0.404 ± 0.035 for UR = 1 and b1 = 0.181 ± 0.007,
b2 = 0.302 ± 0.009 for UR = 2.

In Figure 2 we also consider the case of two rectangular
geometries with N1 = 1024 or N1 = 512 and N2 = 8. In
this case there is a clear saturation of growth of the con-
sidered variables independent of the system size. These
data show that for N2 ∼ � we have a localization of TIP
in the quasi-1D Harper model at the considered interac-
tion strength. However, this result does not exclude the
possibility of appearance of FIKS pairs in the quasi-1D
limit at other interaction values, even if our preliminary
tests indicate similar localization results.

The time evolution of the projected one-particle prob-
ability distribution ρx(x) is shown in Figure 3. For the
square geometry N1 = N2 = 128 the width of the dis-
tribution is growing with time and it becomes practically
flat at maximal times t = 105 for both values UR = 1 or
UR = 2. In the case of disorder we have also a significant
spreading of probability over lattice sites which is some-
what comparable with those of the 2D Harper case. For
the rectangular geometry we have a significantly larger
probability on the tails for the 2D Harper model as com-
pared to the disorder case. This is in agreement with the
data for 〈r2〉 in Figure 2 (bottom left panel).

These results show that there are no ballistic type
FIKS pairs propagating through the whole system as it
was the case for TIP in the 1D Harper model [19,20]. Such
a conclusion is confirmed by the analysis of the time evolu-
tion of the linear density ρlin(s) defined in equation (18) as
shown in Figure 4. The typical width of this density does
not increase linearly in time in contrast to the 1D Harper
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1 10-1 10-2 10-3 10-5 10-8 0

Fig. 4. Density plot of the time evolution of the linear den-
sity ρlin(s). The vertical axis corresponds to the iteration
time 0 ≤ t ≤ 10 000 and the horizontal axis corresponds to
0 ≤ s < (N1 + N2)/2. The left column corresponds to the
quasiperiodic potential (λ = 2.5) and the right column to the
disorder case (W = 5). All panels correspond to the interaction
strength U = 3.5. Top (center) panels correspond to UR = 1
(UR = 2) and the square geometry N1 = N2 = 128. Bottom
panels correspond to UR = 2 and the rectangular geometry
N1 = 512, N2 = 8. The numerical values of the colorbar are
given in units of the maximal value of the shown density with
red for maximum, green for intermediate and blue for minimal
values. For a better visibility of small densities the color codes
have been attributed to uniform slices of ρlin(s)

1/8 therefore
providing a nonlinear color scale.

case (see, e.g. Fig. 3 in Ref. [20]) and we have in Figure 4
(for the square geometry cases) curves in the (s, t)-plane,
corresponding to a subdiffusive spreading 〈s2〉 ∼ tb with
an exponent b ∼ 0.5 (we discuss the numerical computa-
tion of b in Fig. 10). For the disorder case (with square
geometry) the corresponding curves of Figure 4 are also in
a qualitative agreement with the reduced exponent b ∼ 0.2
found above by the fit of 〈r2〉. Concerning the rectangu-
lar geometries the curves visible in Figure 4 show satura-
tion also in agreement with Figure 2 even though for the
quasiperiodic potential the tails of the distribution (visible

Fig. 5. Density plot for the densities ρ1(x, y) (left column)
and ρxx(x1, x2) (right column) with x (or x1) for the horizontal
axis and y (or x2) for the vertical axis. All panels correspond
to U = 3.5, UR = 1 and the square geometry N1 = N2 =
128 with the quasiperiodic potential (λ = 2.5). The different
rows correspond to the iteration time t = 100 (first row), t =
1000 (second row), t = 10 000 (third row) and t = 100 000
(fourth row).

by light blue zones) still continue to increase which is also
quite in agreement with the bottom panel of Figure 3.

The one-particle density ρ1(x, y) for the square geome-
try 128×128 and UR = 1 (or UR = 2) is shown at different
moments of time in the left column of Figure 5 (Fig. 7)
for the 2D Harper case and of Figure 6 (Fig. 8) for the
disorder case. The relative distribution of TIP probability
in the (x1, x2)-plane, i. e. the quantity ρxx(x1, x2) defined
by equation (17), is shown for the same parameters in the
right columns of these figures.

There is a clear spreading of probability in the (x, y)-
plane growing with time. At largest times t = 105 this
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Fig. 6. The same as Figure 5 but for the disorder potential
(W = 5) and all other parameters identical as in Figure 5.

spreading starts to saturate due to the finite system size
and a part of probability returns back due to the peri-
odic boundary conditions. This is especially visible in the
(x1, x2)-plane with significant contributions in the corners
x1 = 0, x2 = N2 − 1 and x1 = N1 − 1, x2 = 0 while
at shorter times t ≤ 104 the distribution has a well pro-
nounced “cigar” shape corresponding to TIP remaining
close to each other. We note that for the Harper case the
probability distribution inside this cigar is more homoge-
neous while for the disorder case there is well visible cross-
structure which we attribute to the fact that we have the
same disorder structure in x and y directions. In principle,
the same is true for the 2D Harper case but is is possible
that there the localization seems to be better preserved
(the cigar is more narrow). Indeed, for the usual 2D un-
correlated disorder the one-particle localization length at
W = 5 is significantly larger as compared to the case

Fig. 7. The same as Figure 5 for the quasiperiodic potential
(λ = 2.5) with U = 3.5, UR = 2 and all other parameters
identical as in Figure 5.

of the particular correlated disorder considered here (see
e.g. [28]). In presence of interactions the separability of
correlated disorder is broken that can lead to an addi-
tional increase of TIP spreading. Indeed, the width of the
cigar in the above figures is larger for the disorder case.

The comparison of Figures 5 and 6 also confirms the
above observation that for UR = 1 the quantity 〈r2〉 is ini-
tially (for t = 100 and t = 1000) significantly larger for the
disorder case (Fig. 6) than for the Harper case (Fig. 5).
However, the cross structure visible in Figure 6 clearly
shows that this stronger initial delocalization for the dis-
order case is mostly due to stronger individual propagation
of one particle in one direction and the coherent propaga-
tion of TIP sets in at later times while for the Harper case
the coherent TIP propagation is already important at the
beginning and dominates the spreading of 〈r2〉. We believe
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Fig. 8. The same as Figure 5 but for the disorder potential
(W = 5) with U = 3.5, UR = 2 and all other parameters
identical as in Figure 5.

that the stronger statistical fluctuations of the one-particle
1D localization length for the disorder case are partly re-
sponsible for this observation. We remind that for the
Harper 1D model the one-particle 1D localization length
is really quite constant for all eigenstates while for the dis-
order case there are considerable statistical fluctuations,
even for one-particle 1D eigenstates of similar energy.

However, for the increased interaction range UR = 2
Figures 7 and 8 clearly confirm the observation of the
center panels of Figure 2 that the delocalization effect is
for the Harper case stronger than the correlated disorder
case also for the shorter and intermediate time scales.

The probability distributions for the rectangular ge-
ometry are shown in Figure 9. In this case the width of

Fig. 9. Density plot for the density ρxx(x1, x2) with x1 for
the horizontal axis and x2 for the vertical axis. All panels
correspond to U = 3.5, UR = 2 and the rectangular geome-
try N1 = 512, N2 = 8. The left column corresponds to the
quasiperiodic potential (λ = 2.5) and the right column to the
disorder potential (W = 5). The different rows correspond to
the iteration time t = 100 (first top row), t = 1000 (second
row), t = 10 000 (third row) and t = 100 000 (fourth bottom
row).

the cigar is also smaller in the case of the 2D Harper po-
tential as compared to the disorder case. The density at
t = 104 gives some weak indication on presence of far
away probability at large x1 = x2 ≈ N1 distances, which
would be expected for ballistic FIKS pairs. However, the
probability there is very small and also at t = 105 both
cases show similar probability profiles corresponding to
localization of the wave packet.
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Fig. 10. Variance 〈r2〉 (top left panel) and IPR without cen-
ter ξIPR (top right panel) versus iteration time 10 ≤ t ≤ 105

in a double logarithmic scale for the asymmetric case of the
quasiperiodic potential (λx = 2.5, λy = 3.5) with rectangu-
lar geometry N1 = 128, N2 = 48 and U = 3.5, UR = 2.
Both quantities are shown by the blue line and the green line
shows for comparison a power law ∼ t1/2. The bottom left
(right) panel shows for the same parameters the density ρx(x)
(or ρy(y)) versus x (or y) in a semilogarithmic representation.
The color labels correspond to different iteration times: t = 100
(red curve), t = 1000 (green curve), t = 10 000 (blue curve),
t = 100 000 (pink curve).

Finally in Figure 10 we consider an asymmetric case of
the 2D Harper model with λx = 2.5, λy = 3.5, N1 = 128
and N2 = 48. Here we have a significantly stronger lo-
calization of non-interacting particles in the y-direction
with �y = 1/ log(λy/2) ≈ 1.79. Thus we could expect ap-
pearance of 1D ballistic FIKS pairs in such a case. How-
ever, this scenario is not confirmed by the data which
still give a subdiffusive spreading with the fit exponents
b1 = 0.563 ± 0.004 and b2 = 0.431 ± 0.016 for the time
range 10 ≤ t ≤ 1000 and the power law fits 〈r2〉 ∝ tb1

and ξIPR ∝ tb2 . The probability distribution in x becomes
rather broad at large times t = 105 and it is possible
that even larger system sizes are required to firmly state
if this subdiffusion continues on longer times. Furthermore
the density ρy(y) does not show a strong localization in
the y-direction in presence of interaction, despite the very
small value of �y, and there are quite large tails of ρy(y)
for y being close to the transversal boundaries. Therefore
the scenario of an effective 1D-situation in x due to strong
y-localization does not really happen thus explaining that
we have no visible indications for FIKS pairs in such an
asymmetric situation.

4 Discussion

We presented here the study of interaction effects in the
2D Harper model where the two-dimensional quasiperi-
odic potential is given as the sum of two one-dimensional
quasiperiodic potentials for the x and the y direction.

Our results show that in this system the interactions in-
duce a subdiffusive spreading over the whole lattice with
the spreading exponent being approximately b ≈ 0.5 for
the second moment and IPR. Such a delocalization takes
place in the regime when all one-particle eigenstates are
exponentially localized. In this 2D TIP Harper model we
do not find signs of ballistic FIKS pairs, which are well
visible for the 1D TIP Harper case [19,20].

It is possible that the physical reason of absence of
FIKS pairs in 2D Harper model is related to the fact that
for TIP in 2D we have a much more dense spectrum of
non-interacting eigenstates (see e.g. Eq. (29) in Ref. [20]
where the indexes m1,m2 of non-interacting eigenstates of
two particles now become vectors in 2D). Due to this there
are practically no well separated energy bands typical for
the one-particle 1D Harper model and thus there is lit-
tle chance to have an effective Aubry-André Hamiltonian
with λeff and the interaction induced hopping matrix el-
ements teff generating a metallic phase with λeff < 2teff .
Of course, there is still a possibility that we missed some
FIKS cases at specific U values but for all studied cases
of TIP in the 2D Harper model we find a subdiffusive
spreading being qualitatively different from the FIKS ef-
fect in the 1D Harper case. For a rectangular geometry
with a narrow size band in one direction we even obtain
a localization of TIP spreading.

When the quasi-periodic potential is replaced by a dis-
order potential of the particular form (4) we also find a
subdiffusive spreading but with a smaller exponent b ≈
0.25 (on available time range and system size). In princi-
ple, for TIP in the 2D disorder potential we expect to have
localized states for short range interactions [10,15,17].
However, here we consider a particular correlated disor-
der (with a potential being a sum of two one-dimensional
potentials in x and y) and in such a case the one-particle
localization length at W = 5 (�1 ≈ ξ ≈ 5) is signifi-
cantly smaller than for the usual 2D disorder potential
(see e.g. [28] with ξ ≈ 150). We think that in presence
of interactions and sufficient iteration times such correla-
tions of disorder are suppressed and we have a situation
similar to the TIP case of the usual 2D Anderson model
where at W = 5 the one-particle localization length �1 is
rather large and thus the TIP localization length �2, ex-
pected to be an exponent of �1 [10,15], is also very large
(ln �2 ∼ l1) and is not reachable at time scales and system
sizes used in our studies. In any case the smaller value of
b ≈ 0.25 for the disorder case, compared to the 2D Harper
case with b ≈ 0.5, indicates that some residual effects of
FIKS pairs give a stronger delocalization of TIP for the
2D Harper model.

It is interesting to note that a somewhat similar sub-
diffusive spreading appears in the 2D Anderson model
with a mean field type nonlinearity (see e.g. [26]). How-
ever, there the value of the spreading exponent b ≈ 0.25
is smaller (the value b ≈ 0.5 found here is more simi-
lar to the 1D Anderson model with nonlinearity studied
in Ref. [25,29]). However, the physical origin of a cer-
tain similarity of these nonlinear mean-field models with
the TIP case studied here remains unclear since here we
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have a linear Schrödinger equation while the models of
references [25,26,29] are described by classical nonlinear
equations (second quantization is absent).

We think that the 2D TIP Harper model provides
us new interesting results with subdiffusive spreading in-
duced by interactions. This model rises new challenges for
advanced mathematical methods developed for quasiperi-
odic Schrödinger operators [30,31]. It is also accessible to
experimental investigations with ultracold atoms in 2D
quasiperiodic optical lattices which can be now built ex-
perimentally [24]. Thus we hope that the TIP problem
in 1D and 2D Harper models will attract further detailed
theoretical and experimental investigations.

This work was granted access to the HPC resources of CALMIP
(Toulouse) under allocation 2015-P0110.
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