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Abstract

Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, andplanetary satellites, with
diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bellsor contact binaries. The
spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically
and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the
zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup”
threshold. We illustrate the properties of the chaotic orbital zones in examples of the global orbital dynamics about
asteroid 243Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143Itokawa.

Key words: celestial mechanics – chaos – comets: general – minor planets, asteroids: general – planets and
satellites: dynamical evolution and stability

1. Introduction

The orbital dynamics around irregularly shaped bodies
(having complex gravity fields) was extensively studied in
the last two decades. The reason is twofold: first, satellites of
small bodies such as asteroids were discovered; second, space
missions were planned and accomplished to asteroids and
cometary nuclei. Therefore, many aspects of the orbital
dynamics in rotating complex gravity fields were studied, both
theoretically and in numerical simulations; see Scheeres
(1994, 2012) and references therein. Small bodies of the solar
system (asteroids, trans-Neptunian objects, cometary nuclei,
andplanetary satellites) with diameters of less than 1000
kmusually have strongly irregular shapes (Melnikov &
Shevchenko 2010; Jorda et al. 2016), in many cases resembling
dumb-bellsor “contact binaries.” Various models for gravity
fields of the “central body” were used: that of a triaxial
ellipsoid with uniform density (Chauvineau et al. 1993; Mysen
et al. 2006; Olsen 2006; Mysen & Aksnes 2007), a rod
(Bartczak & Breiter 2003), a dumb-bell or “bilobed” model
(Marchis et al. 2014; Feng et al. 2016), a collection
(“molecule”) of gravitating points (Petit et al. 1997), a
polyhedral model (Werner 1994; Werner & Scheeres 1996),
and a truncated gravitational field derived from a shape model
(Feng et al. 2017). Orbits around actual small bodies, such as
asteroids Castalia, Eros, and Hektor, were extensively modeled
(Scheeres et al. 1996, 2000; Yu & Baoyin 2012; Marchis et al.
2014). Concerning the dumb-bell model, it was also used in the
problem ofspin–spin resonances in a system of two aspherical
gravitating bodies (Hut 1981; Batygin & Morbidelli 2015): the
quadrupole moment of the secondary was represented as a
dumb-bell of two equal masses. This model provides a setting
for a qualitative description of the tidal evolution and the
resulting spin–spin coupling of tight binary systems of
elongated bodies (Batygin & Morbidelli 2015).

Many studies were devoted to resonant phenomena and
thedetermination of orbital stability regions; see, in particular,
Scheeres (1994), Hu & Scheeres (2004), Mysen et al. (2006),
Olsen (2006), Mysen & Aksnes (2007), Scheeres (2012), and

references therein. The existence of “chaotic gravitational
zones” around rotating elongated bodies was outlined by
Mysen et al. (2006). A destabilizing role of resonances between
a particle’s orbital motion and the rotational motion of the
central elongated body was revealed by Mysen et al. (2006),
Olsen (2006), andMysen & Aksnes (2007); in particular, see
Figures 1–5 in Olsen (2006) and Figures 2 and 9 in Mysen &
Aksnes (2007), where the integer spin–orbit resonances form a
characteristic “saw of instability” in the plane of initial values
of the semimajor axis and eccentricity of the orbiting particle.
Quite recently, numerical simulations of orbits around contact
binaries were performed by Feng et al. (2016) emphasizing the
stabilization effect of the fast rotation of the contact binary: for
faster binary’s rotation, periodic orbits start to lose stability
closer to the barycenter; this is explained by averaging of the
perturbation.
The preceding theoretical studies were based on the analysis

of perturbation functions and their expansions, in particular,
resonant terms in the expansions. In our article, we present a
different technique, based on theanalysis of symplectic maps
(see, e.g., Meiss 1992), in particular, a generalized Kepler map.
The Kepler map approach allows one to understand straight-
forwardly the global orbital behavior. Let us recall that the
Kepler map is a two-dimensional area-preserving map,
describing the eccentric circumbinary motion of a massless
particle in the gravitational field of a primary and a perturber
(the secondary moving around the primary in a circular orbit
deeply inside the particle’s orbit). The motion is described in
terms of changes in theparticle’s energy and conjugated orbital
phase measured at its apocenter and pericenter passages. In
particular, it was shown that the Kepler map describes the
dynamics of highly eccentric comets (Petrosky 1986; Malyshkin
& Tremaine 1999), Comet Halley among them (Chirikov &
Vecheslavov 1989). In an appropriate physical model, it
explains the phenomenon of strong microwave ionization of
excited hydrogen atoms (Casati et al. 1988) and autoionization
of molecular Rydberg states (Benvenuto et al. 1994). A review
of the Kepler map theory in a historical context is given in
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Shevchenko (2011). Recent applications of the Kepler map
theory along with its corresponding advancements concern
processes of disintegration of three-body systems and Levý
flight statistics in these processes (Shevchenko 2010), capture
of dark matter by the solar system and by binary stellar systems
(Lages & Shepelyansky 2013; Rollin et al. 2015), accurate
symplectic map description of the long-term dynamics of
Comet Halley (Rollin et al. 2015). In this article, the Kepler
map is used mostly for analytical purposes, thus to provide an
analytical description of resonances and borders of dynamical
chaos in the stability diagrams. However, it is also used as a
numerical tool, whose advantage is in the enormously high
speed of computation, which allows one to construct the
stability diagrams with very high spatial resolution (see
Section 3, Figures 4, 5, and7).

In our work, we consider a passively gravitating particle
orbiting a gravitating dumb-bell. If the dumb-bell is fixed in
space, the particle cannot gain or loose orbital energy or
angular momentum for its orbital motion, because their source
is absent. But if the dumb-bell rotates, the particle’s energy or
angular momentum may vary strongly, so that the particle may
even escape or fall on the primary, depending on initial
conditions. Obviously, one expects that the particles close to
the primary are more prone to such disturbances than those
away from it.

It is already known that a gravitating binary, such as a binary
star or a binary asteroid, has a circumbinary chaotic zone,
where all circumbinary orbits of the orbiting particles with any
initial eccentricity are chaotic (Shevchenko 2015). However,
what would be the case if one considers the motion around a
rigid dumb-bell, for which the spinning frequency ω can be
smaller or larger than the Keplerian frequency w0 fixed by
Kepler’s third law? Here we give an answer to this question
generalizing the Kepler map description (Petrosky 1986;
Chirikov & Vecheslavov 1989) to describe the motion of a
particle in the gravitational field of a spinning body modeled by
a dumb-bell with masses m m,1 2 separated by constant distance
(dumb-bell size) d. In such a way, we model an irregular body
by two contact uniform-density spheres (equivalent to two

point masses) asis shown in Figure 1 for an example of
asteroid 25143 Itokawa (Gaskell et al. 2008). The dumb-bell is
spinning around its center of mass with an angular frequency ω,
which can be different from the Keplerian frequency w0 of
revolution of masses m m,1 2. The dynamics of particles orbiting
the dumb-bell is considered in the plane orthogonal to the
spin axis.
The Kepler map description of orbits about a spinning non-

axisymmetric body is achieved by introducing a parameter, ω,
which is the rate of rotation of the model contact binary (see
Figure 1). The value of ω is arbitrary. We derive analytical
expressions for the kick function, representing the energy
increment for the test particle when it passes the apocenter of
its orbit. We consider the planar case, i.e., the case of the orbits
lying in the plane orthogonal to the small body spin axis. We
note that the Kepler map appears also for molecular Rydberg
states with a rotating dipole core (Benvenuto et al. 1994). In the
gravitational potential, the dipole term cancels, and in the
dumb-bell case the quadrupole and octupole contributions of
the central body’s gravitational field provide leading terms in
the kick function. However, we show that, in a wide range of
spinning frequencies w w< 0, retaining the quadrupole term is
enough to qualitatively describe the chaotic zone around the
spinning body. Strikingly, such a zone swells significantly for
w w< 0 down to a certain threshold. In our approach, we derive
the kick function in a closed form, valid in the whole range of
parameters’ values. To connect our theoretical findings with
observational data, we illustrate the properties of the chaotic
orbital zones in examples of the global orbital dynamics about
asteroid 243Ida (which has a moon, Dactyl, orbiting near the
edge of the chaotic zone) and asteroid 25143Itokawa.

2. The Kepler Map Description

We consider the motion of a passively gravitating particle in
the planar circular restricted three-body problem m1–m2-particle,
where the two masses m1 and m2 are connected by a massless
rigid rod, thus forming a dumb-bell (see Figure 1). The
Keplerian rate of rotation of a contact binary, i.e., two tangent
spheres, is

w p r= ( )3 , 10

where ρ is the density of the irregular body (Scheeres 2007). For
a typical density r = 1g/cm3,we have w = ´ -2.5 100

4 s−1

corresponding to a period of about 7 hr. There are many
observed asteroids with significantly larger rotation periods
(see, e.g., Pravec et al. 2008). From now on, we express the
physical quantities in the following units:  =M 1 (where

= +M m m1 2 is the total mass of the irregular gravitating
body, we choose m m2 1 and we define m = m M 0.52 ),
d=1 is the size of the effective dumb-bell (Figure 1), and the
Keplerian frequency w = + =( )m m d 1;0 1 2

3 particle’s
energy per unit of mass, E, is then expressed in units of wd2

0
2.

We consider solely the case of prograde (with respect to the
dumb-bell rotation) orbits of the particle; analysis of the
retrograde case is analogous. The Kepler map for the motion
around a gravitating dumb-bell, if one allows for the arbitrary
rotation rate ω of the dumb-bell, takes the form (Casati
et al. 1988; Benvenuto et al. 1994)

f f f pw= + D = ++ + +( ) ∣ ∣ ( )E E E E, 2 2 2i i i i i i1 1 1
3 2

Figure 1. We model a non-axisymmetric small body (e.g., here 25143 Itokawa
Gaskell et al. 2008) by a contact binary m m1 2 ( = +M m m1 2). The size of
the dumb-bell is d, the small body center of mass is marked by the cross. The
axis of rotation is perpendicular to the figure plane and passes through the
center of mass.
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where the subscript i enumerates the pericenter passages with
the rotation phase f w= ti i and the corresponding particle
energy Ei taken at apocenter. We retrieve the original Kepler
map derived in Chirikov & Vecheslavov (1989) and Petrosky
(1986) by setting w w= = 10 . The equation for the rotation
phase fi variation is given by the third Kepler law. Originally,
the map has been derived for particle’s orbit with a period
larger than the period of the binary, i.e., w ∣ ∣E2 13 2 (Casati
et al. 1988; Benvenuto et al. 1994). We obtain the kick function
DE generalizing to the case of a binary with an arbitrary non-
Keplerian rotation velocity w w¹( )0 the work of Roy &
Haddow (2003) and Heggie (1975) devoted to energy change
in hard binary due to distant encounters. Defining

w w= +( ) ˆ ( ) ˆr a bt tcos sin isthe position of the dumb-bell
lobe of mass m2 relative to the dumb-bell lobe of mass m1 (â
and b̂ are any two orthogonal fixed directions of the plane), and
Ris the position of the test particle relative to the barycenter of
the two lobes, the equation of motion for the test particle
around the dumb-bell is given by

 m w= - F( ) ( )R R r¨ , , , , 3R

where the gravitational potential reads

m w
m
m

m
m

F = -
-
+

-
- -   

( )
( )

( )R r
R r R r
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1

1
. 4
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Here, besides the R1 term, the first two leading terms of the
series are retained. This turns out to be well enough for the
purposes of the present analysis, as comparisons of our results
with previous simulations show (see Sections 4 and 5). The
energy increment

ò m w fD = - F +
-¥

+¥
⎜ ⎟⎛
⎝

⎞
⎠( ) ˙ · ( )RE q

R
dt, , ,

1
6

of a test particle forced to follow a parabola, the focus of which
is the dumb-bell barycenter, is a function of the pericenter
distance q, and of the phase of the dumb-bell f when the test
particle passes at pericenter. Here, the two lobes of the rotating
dumb-bell form a circular binary. Following Roy & Haddow
(2003) in the case of a circular binary but rotating at anarbitrary
frequency rate ω, keeping the two first leading terms for the kick
function (6) we obtain

m w f f fD +( ) ( ) ( ) ( )E q W W, , , sin sin 2 . 71 2

In Equation (7), the exchange of energy between the small
spinning body and the test particle is split in two terms: the first
harmonic comes from the octupole term (µr R3 4) of the

gravitational potential multipole expansion (5) with amplitude

m m m p w

w

- -
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3
8

1
1 4 1 2 5 2 1 4

3 2
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and the second harmonic comes from the quadrupole term
(µr R2 3) with amplitude

m m p w w- - -
⎛
⎝⎜

⎞
⎠⎟( ) ( )W q q1 2 exp

2

3
. 92

15 4 1 2 5 2 3 4
5 2

3 2

We note that expression (8),restricted to the case w w= = 10

and m  1, has been obtained using a different method in
Shevchenko (2011). Usually, in the Kepler map (w w= 0) the
kick functionDE is proportional to fsin ,which is just the first
most prominent term in the Fourier expansion of the energy
increment, especially if m  1 (Petrosky 1986; Shevchenko
2011). This is,for example, the case when one considers the
Kepler map description of cometary dynamics around the solar
system modelized by the Sun and Jupiter as perturber (Petrosky
1986; Chirikov & Vecheslavov 1989). However,with an
increase of μ, the second harmonic ( fµsin 2 ) becomes more
and more important, and even remains the sole term for the
case m = 1 2 since the first harmonic ( fµ sin ) disappears
( =W 01 ). Indeed, for m = 1 2, due to the equality of the mass
of primaries, by symmetry, the perturbation frequency is
effectively doubled.
Here, for the case of spinning small bodies, a wide range of

rotation frequencies can be considered; in particular, spinning
frequencies for asteroids range from w p ~ -2 10 3 h−1 to
w p ~ -2 10 h2 1 (Whiteley et al. 2002; Warner et al. 2009;
Hergenrother & Whiteley 2011). For w w ( )q d0

2 3 , the
contributionW1 is obviously dominant since a factor of twoexists
between the arguments of the exponentials entering Equations (8)
and (9). This absolute prominence of W1 over W2 is even
quadratically shifted farther from the small body for w w< 0.
Conversely, which contribution, eitherW1 orW2, dominates is not
so obvious for the region  w w( )q d0

2 3 ,which for w w< 0
encompasses the immediate vicinity of the spinning small body.
The two contributions W1 (8) and W2 (9) depend on the
parameters μ, ω,and q; their relative importance is summarized in
the w( )q, plot for different values of μ (Figure 2). We clearly see
that below the frequency of disruption of a rubble-pile object
(w w< 0), for any mass parameter μ, the quadrupole coefficient
W2 generally dominates the octopole coefficient W1 in the vicinity
of the spinning small body. For example, W W2 1 for q d3 ,
w w0, and for any μ parameter.
Typical amplitudes of energy kick functions DE are shown

in Figure 3. Analytical curves (7) constructed using the first (8)
and the second (9) harmonic terms of the multipole expansion
of the dumb-bell gravitational potential are in good agreement
with kick energy DE obtained by direct integration of
Newton’s equations (Figure 3). Globally, the decrease of the
small body spinning frequency induces an increase of the
energy kick. As expected for =q d7 insignificant kick
( wD ~ -E d10 8 2

0
2) is expected in the case of an ordinary

binary rotating with w w= 0. However, in the case of a
spinning small body at, e.g., w w= 0.1 0, the energy kick is
strongly enhanced ( wD ~ -E d10 2 2

0
2). In comparison with

anordinary binary, such an energy kick increase induced by

3
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a slow spinning frequency allows the zone of chaos to extend
quite far from the central body. In Figure 3 (left panel),
amplitudes of kick functions DE are presented divided by the
mass factor m m-( )1 entering the expression of W2 (9). For

=q d 3, 5, 7,we clearly see that below w w  1, 0.5, 0.30 ,
curves for any reduced mass μ are superimposed stressing
again the fact that the second harmonic term is dominant for
small spinning frequencies (see also Figure 3, right panel).

It should be noted that upon a minor modification this study
can be applied to a more generalized body, namely to a planar
molecule representing a set of coplanar asymmetric dumb-bells
of various sizes and μ with a common center of mass. In this
way, the Kepler map is straightforwardly generalized by means
of adding separate terms corresponding to each elementary
dumb-bell’s contribution in the equation for the energy
increment; each added term has its own amplitude and constant
phase shift in the body’s orientation.

In the frame of 3D atoms in a monochromatic field in 3D a
symplectic map was shown to give a correct description of real
dynamics (Casati et al. 1988). However, for a rotating
gravitating body, the generalization of our dumb-bell Kepler
map to the 3D case is an analytically complicated task, as a 3D
generalization of the classical Kepler map by Emelyanenko
(1990) shows. We reserve this for a future study.

3. Stability Diagrams and Central Chaotic Zone

Stability diagrams are constructed by computing Lyapunov
exponents on a fine grid of initial data, (e, q) or (e, a).
Lyapunov exponents are computed iterating concurrently the
dumb-bell Kepler map (2) and its tangent map (as, e.g.,
described by Chirikov 1979in application to the standard
map). The motion is regarded as chaotic, if the maximum
Lyapunov exponent is non-zero and positive. Such diagrams
are presented in the (q, e) plane for m = 1 2 and for different
values of w w = 0.0680 , 0.4, and 1 (Figure 4). The border
delimiting chaotic domain (red) from regular domain (blue) is
ragged; the most prominent teeth being associated with the
integer p:1 and half-integer +p 1

2
:1 resonances between

particle orbital frequency and small body spinning frequency.
Here any neighboring integer and half-integer resonances are
equallysized due to the symmetry of the dumb-bell for
m = 1 2, indeed half-period and full-period rotations of the
symmetric dumb-bell both result in configurations identical to

the initial one. The stability diagram graphically demonstrates
how the integer and half-integer resonances overlap. Let us
define the central chaotic zone as the zone in q such as at any
initial eccentricity the particle’s dynamics is chaotic. Other-
wise, the chaotic zone is defined as the region where even
particles initially in circular orbits become dynamically chaotic.
From Figure 4, we clearly see that the central chaotic zone
swells significantly as the small body spinning frequency
decreases, since its farthest extent varies from q d2.8 for
w w= 0 to q d7 for w w 0.068 0.

Based on the concept of the chaotic layer around the
separatrix and using analytical expressions for the classical
Kepler map parameter, a strictly analytical expression for the
size of the central chaotic zone around a gravitating binary can
be derived (Shevchenko 2015). In a similar way, the size of the
central chaotic zone around a rotating gravitating dumb-bell
can be analytically estimated. Let us retain in (7) only the
second harmonic contribution, since W2 clearly dominates over
W1 for small spinning frequencies (w w< 0), indeed from
Equations (8) and (9), for w w w- ( )q d 3 2

0 0, we obtain
m» -( )W W q2 1 22 1

7 2 , which diverges as μ approaches
1/2. By the substitution =E W y2 and f = x 2,the map (2) is
reduced to

l= + = ++ + +∣ ∣ ( )y y x x x ysin , 10i i i i i i1 1 1
3 2

with l pw= ∣ ∣W21 2
2

3 2. Following the standard procedure
(Chirikov 1979; Casati et al. 1988; Lichtenberg & Lieberman
1992),the phase Equation in (10) can be linearized in y in a
vicinity of resonant phases p=x j2 with integer j describing
the local dynamics by the Chirikov standard map with the
chaos border l= ( )y K3 2cr

2 5. The chaos parameter =K
=K 0.9716 ...G corresponds to the critical golden curve

(Lichtenberg & Lieberman 1992). At >K KG, the dynamical
chaos is global, and the chaotic diffusion from resonance to
resonance becomes possible (Chirikov 1979; Lichtenberg &
Lieberman 1992). However, at K exceeding KG only slightly,
relatively large islands of stability exist inside the global
domain of chaos. At K=2, the bifurcation of half-integer
resonances occur. At this value, the stability islands start to
disappear. The chaos border in energy is consequently

w wD = » -∣ ∣ ( ) ( )E W y A q B qexp , 11cr 2 cr
7 5 3 10 3 2

Figure 2. Contours of the function w w( ) ( )W q W q, ,1 2 for m  0 (left panel), m = 0.4 (middle panel), and m = 0.49 (right panel).
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where m m p= - -( )A K1 2 32 5 2 5 13 10 2 5 3 5 2 5 and =B 2 157 2 .
The half-width of the chaotic layer,DEcr, and consequently the
chaos border, is qualitatively well described by this Chirikov’s
criterion derived formula (see Figure 6 as an illustrative
example). The particle critical eccentricity ecr, following from
the relation D = - = = -( )E E a e q1 2 1 2cr cr cr cr , is

= - D ( )e q E1 2 , 12cr cr

where DEcr is given by (11).
Let us first consider =K KG, i.e., the value from which

chaos is global: orbits with  w( )e e q,cr are chaotic. In
Figure 4, the analytical curve ( )e qcr , given by (11) and (12) at

=K KG, is superimposed on stability diagrams for different
values of ω. One can see that the ( )e qcr curve (black solid line)
approximately describes the ragged border of the chaotic zone.
At K=2, i.e., the value at which bifurcation of half-integer
resonances of the standard map occurs, the ( )e qcr curve is
shown by black dashed line in Figure 4. This curve gives the
location where regular islands are no more distinguishable. The
good performance of the analytical expression of ( )e qcr for

=K KG and K=2 testifies the adequacy of the map’s
theoretical model (Popova & Shevchenko 2016).

By calculating the w( )e q,cr dependence, given by (12) at
=K KG, one can find the limits w( )q1 and w( )q2 of the central

chaotic zone around the spinning irregular body; these limits
( <q q1 2) are the roots of the equation =( )e q 0cr at ω fixed.
Trajectories with < <q q q1 2 and any initial eccentricity are
chaotic. In Figure 5, upper left panel, the central chaotic zone
around a spinning symmetric dumb-bell (m = 1 2) is repre-
sented by the red domain. This global picture confirms that the
central chaotic zone swells significantly as ω decreases. For
m = 1 2, the farthest limit of the central chaotic zone,
q d7.8 , occurs for w w 0.08 0. This is ∼2.8 times the

farthest limit for the Keplerian frequency w w= 0. Conversely,
the increase of ω beyond w0 leads to a shrinking of the central
chaotic zone in agreement with the stabilization effect around
the fast rotating contact binary (Feng et al. 2016).
The swelling of the central chaotic zone can be explained

analyzing the ω dependence of the kick amplitude W2 (9) and
of the width DE2 cr (11) of the chaotic layer around the
separatrix (E= 0). Taking the example of a symmetric dumb-
bell (m = 1 2), for =q d5 and a spinning rate w w= 0, the
kick amplitude, w» - ( )W d102

8
0

2 (see Figure 3, left panel), is
inefficient to produce chaotic orbits at any eccentricity since the
lowest reachable semimajor axis is = D »( )a E d1 2 500cr cr
and the lowest reachable eccentricity is »e 0.99cr . For =q d5 ,
but with a much slower dumb-bell spinning rate, e.g., w =

w0.3 0, the kick amplitude is switched on, w» -· ( )W d2 102
3

0
2

(see Figure 3, left panel), in comparison to the w w= 0 case,
giving »a qcr , and thus creating a chaotic layer with orbits of
any eccentricity. As a remark, we note that the swelling of the
chaotic zone at w < 1 has a price: the exponent decreases,
proportional to ω at w w  10 .
For w w0.24 0,a central regular zone appears in the

immediate vicinity of the irregular small body. This central
regular zone is surrounded by the chaotic zone and increases as
ω is decreased from w w 0.24 0 down to w w 0.068 0. This
central regular zone appears in a region where test particles
with circular orbits have a period smaller than the rotation
period of the irregular small body (see thewhite dotted line
for 1:1 resonance in Figure 5, upper left panel). Below w 

w0.068 0, no zeros of (12) existand consequently no central
chaotic zone exists around the irregular spinning body (i.e.,
for >q 1).
The most extended chaotic zone is provided by the symmetric

case (m = 1 2, Figure 5, upper left panel). For the opposite
case, at μ tending to zero, the chaotic zone vanishes, because the

Figure 3. Amplitude of the energy kickDE as a function of the small body rotation frequency ω, computed by direct integration of the dynamics of a massless particle
around a rotating dumb-bell, for =q d3 , =q d5 , and =q d7 , and for different reduced masses m = 0.01 (,), m = ( )0.1 , m = ( )0.4 , and m = ( )0.5 . Plain lines
give amplitudes of the analytically determined kick functionDE (7) using (8) and (9). Left panel: for the sake of clarity of the figure, amplitudes of the energy kick,

D
f

∣ ∣Emax , are presented divided by the parameter m m-( )1 . Inset: example of kick function fD ( )E for =q d5 , m = 0.1, and w w= 0.3 0 computed from direct

integration of the dynamics of a massless particle around a rotating dumb-bell (×). The green solid line gives the kick function fD ( )E (7). Right panel: ratio
D

f
∣ ∣E Wmax 2 with the same data as in the left panel.
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perturbation from the second (smaller) lobe tends to zero. Hence
for intermediary cases with m < 1 2, the chaotic zone is less
extended, and the octopole contribution W1, though weak for
small ωʼs, is not negligible around and beyond w w= 0. Figure 5,
upper right panel, gives the example of the central chaotic zone
for non-symmetric dumb-bell with m = - 1 2 1 12 0.211.
We have computed the analytical border of the central chaotic
zone using (12) with either, as explained above, only the second
harmonic contribution W2 (red domain in Figure 5, upper right
panel), or with only the first harmonic contribution W1 instead of
W2 (dark red domain in Figure 5, upper right panel). We observe
quite a continuous overlap between the chaotic zones induced by
the two contributions W1 and W2,which give together a
qualitative global picture of the central chaotic zone around an
irregular spinning small body. The white dashed line repre-
sentsthe contour where =W W1 2. The dependence of W2 in μ
tells us that the chaotic domain induced by W2 is less and less
wide as μ decreases from m = 1 2 toward m = 0. The chaotic
domain induced by W1 is the widest for m = - 1 2 1 12
0.211, and is less and less wide as μ increases (decreases) from
m  0.211 toward m = 1 2 (m = 0). Figure 5, bottom panels,
show stability diagrams of test particles initially in circular orbits
(e= 0) for the symmetric case m = 1 2 (left panel) and for the
m = - 1 2 1 12 0.211 non-symmetric case (right panel).
The fractal contour (Figure 5 bottom panels) of the central chaotic
zone around the small body is well approximate by analytically
obtained contours (12).

4. Ida and Dactyl

We now apply the Kepler map approach to real celestial bodies.
Among the solar system bodies, there exists quite a marked size
border line between the close-to-spherical large bodies and the
essentially ellipsoidal (potato-like) small bodies. This border lies
at R=300–500km, where R is the characteristic radius of the
body (see Figures 1–2 in Melnikov & Shevchenko 2010).

Moreover, asteroids and cometary nuclei usuallyresemble
dumb-bells, i.e., they are more like dumb-bells than ellipsoids.
A well-known example is the nucleus of comet 67P/
Churyumov–Gerasimenko, the target of the Rosetta mission

(Jorda et al. 2016). Another example is asteroid 25143 Itokawa
(Figure 1), the target of the Hayabusa mission (Fujiwara
et al. 2006). In fact, several asteroids are observed to have a
bilobed shape; in particular, 243Ida among them, is famous to
have a small natural satellite. The satellite, named Dactyl,
moves in an orbit prograde with the rotation of Ida, with a very
small inclination ( < i 8 Petit et al. 1997) with respect to the
equatorial plane of Ida.
Asteroid 243Ida can be approximately described as a

symmetric dumb-bell (m = 1 2). As follows from data
presented in Belton et al. (1995, 1996) andPetit et al.
(1997), Ida resembles an aggregate of two merged bodies with
the ratio of masses m m 12 1 (Petit et al. 1997). We set the
density ρ and the rotation period p w=P 2rot of the asteroid,
respectively, to be equal to 2.24 g cm−3 (Petit et al. 1997) and
4.63 hr (Vokrouhlický et al. 2003). Using formula(1), the
corresponding spinning frequency for Ida is w w 0.953 0.
Besides, for the twin binary, consisting of two tangent spherical
masses m, one has rp = =d m M3 23 , where M and d are,
respectively, the total mass and size of the dumb-bell.
Therefore, for Ida, one has d 24.9 km.
As an illustration (Figure 6), we show the phase portrait
f( )E, of Dactyl’s dynamics around Ida obtained by iterating

the Kepler map (2). As discussed above, by calculating the
w( )e q,cr dependence, given by (12) at =K KG, one can find

the radius of the central chaotic zone around the asteroid; it is
given by the root of the equation =( )e q 0cr at w w 0.953 0. In
the case of Ida, the root is  q d2.85 71km. This estimate
for the chaotic zone extent is in good qualitative agreement
with the numerical-experimental findings on the stability limit
for Dactyl’s orbit size found in Petit et al. (1997).
Critical curves at =K KG and at K=2 are superimposed on

stability diagrams for Ida in the (q, e) plane (Figure 7, left
panel) and in the (a, e) plane (Figure 7, middle panel); the
location of Dactyl is shown by a black dot. The 51/1 and 52/1
resonant teeth engulf the cell where Dactyl is located. The
resonances densely accumulate higher in the diagram, on
approaching the parabolic separatrix. From Figure 7,it is clear
that Dactyl is chaotic, in agreement with the numerical-
experimental findings in Petit et al. (1997).

Figure 4. Stability diagrams for m = 1 2 and for w w = 0.0680 (left panel), 0.4 (middle panel), and 1 (right panel). Chaotic (regular) domains are shown by reddish
(blueish) areas. Chaos is determined by computing the Lyapunov exponent Λ for a trajectory with initial orbital elements (q, e). Here 106 iterations of the Kepler map
for dumb-bell (2) have been computed for each initial orbital elements (q, e). The solid line gives the chaos border given by the analytical formula (12) with =K KG.
The dashed line gives the border of the bifurcation of half-integer resonances given by (12) with K=2. Symbols ●, , and  mark the limit of the central chaotic
zone (see Figure 5).
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Note that, in fact, short-time observations from the Galileo
spacecraft gave no data on the stability of Dactyl’s orbit. It can
be chaotic and thus short-lived. On the other hand, the
determination of Dactyl’s orbit may have also suffered
inaccuracies (again due to the shortness of the observations),
occasionally placing Dactyl in the chaotic region of the
diagram.

5. Itokawa and Hayabusa

In the case of Ida, w w0 is not far from unity, therefore, the
found central chaotic zone is analogous to the one existing
usual Keplerian binary. In our second example, 25143Itokawa,
ω is much less than w0 and chaotic zone’s swelling is expected
to be large.

Figure 5. Extent of the central chaotic zone around a small body as a function of the its spinning frequency ω. Upper left panel:case of a symmetric dumb-bell
(m = 1 2): the analytically obtained central chaotic zone is represented by the red domain. The blue area represents the complementary zone of stable orbits. The
symbols ●, , and  mark the limit of the central chaotic zone for w  0.068, 0.4, and 1, respectively (see the corresponding symbols in Figure 4). Upper right
panel:case of a non-symmetric dumb-bell (here m = - 1 2 1 12 0.211): the central chaotic zone in red (dark red) is obtained analytically assuming that the
second (first) harmonic term in (7) with amplitude W2 (W1) is dominant. The white dashed line represent the curve on which w w=( ) ( )W q W q, ,1 2 . Bottom left and
right panels: stability diagrams in the w( )q, plane for e=0. The reduced mass is m = 0.5 (bottom left panel) and m = - 1 2 1 12 0.211 (bottom right panel).
Chaos is determined by computing the Lyapunov exponent Λ. Here 106 iterations of the Kepler map for dumb-bell (2) have been computed for each couple of initial
parameters w( )q, with e=0. Solid white lines delimit central chaotic zones obtained analytically (see upper panels). In each of the panels, white dotted lines
represent p:1 and 1:p resonances. For the sake of clarity, all of the resonances, marked by dotted lines, are labeled only in the bottom left panel. The location and
distribution of resonances are determined by the ratio of orbital period to dumb-bell spinning period. The resonance ¢p p: is given by the curve w w= ¢ -( )q d p p0

2 3.

7

The Astronomical Journal, 153:272 (10pp), 2017 June Lages, Shepelyansky, & Shevchenko



Itokawa was the target of the Hayabusa mission (Fujiwara
et al. 2006). Its shape is bilobed (Figure 1), and is described as a
contact binary of two ellipsoids with sizes 490×310×260m
(“body”) and 230×200×180m (“head”), and densities
1750 kgm−3 and 2850 kgm−3, respectively; the centers of the
ellipsoids are separated by d 280 m (Lowry et al. 2014). The
period of rotation of Itokawa is 12.132 hr(Kaasalainen et al.
2003), and its mass is estimated as ´3.58 1010 kg(Fujiwara
et al. 2006). Based on these observational data one readily
calculates p w= =P 2 4.54 h0 0 , w = 0.37, m m 2.91 2 , and
m  0.26.

The stability diagram computed on the basis of these data
using the Kepler map for non-symmetric dumb-bell (2) is
shown in Figure 7, right panel. The radius of the central chaotic
zone q 4.6 is almost twice the chaotic zone we would have
obtained for Itokawa’s parameters but w = 1 (not shown). We
also clearly see that the central chaotic zone radius is well

estimated by the critical curves derived using only the second
harmonic contribution W2.
Owing to the small mass, Itokawa’s zone of gravitational

influence measured by its Hill radius RHill is also pretty small: it
can be as small as 25km(Fuse et al. 2008). What is more, for a
probe with large solar panels suchas Hayabusa, due to the
effect of the solar radiation pressure, the outer limits of the zone
of Itokawa’s ability to sustain satellites diminish substantially
to about 3km (Zimmer et al. 2014).
On the other hand, numerical modeling in Zimmer et al.

(2014) showed “that orbits below 1km in semimajor axis were
more susceptible to the complex gravity of a rotating, non-
uniform body with the spacecraft either impacting or being
ejected after only a few orbits.” That is why, instead of trying to
orbit Itokawa, Hayabusa moved in a neighboring orbit around
the Sun. From Figure 7, right panel, it is clear that indeed no
stable circular orbit can be found below  q d4.6 1.3 km.

Figure 6. Poincaré section f( )E, for Dactyl’s dynamics around Ida computed from (2) with m = 1 2. Left panel: the chaotic layer in the vicinity of the separatrix
(chaotic sea) is shown by the light blue color. Ida’s parameters (d 24.9 km, w w )0.953 0 have been derived from physical parameters (Petit et al. 1997;
Vokrouhlický et al. 2003). A possible dynamical locus of Dactyl (a d14.3 ,  )q d3.20 , derived from Petit et al. (1997, black point on Figure 19), is shown by the
dash–dotted line. The dashed line shows the analytical estimation of the chaotic sea border according to Chirikov’s criterion (11) at =K KG. Top right panel: close-up
around Dactyl’s dynamical location. Bottom right panel: close-up of the chaotic sea border. The last invariant KAM curve separating the chaotic sea (above) from the
regular domain (below) is shown in red.
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Itokawa has no satellites, as reported in Fuse et al. (2008).
The formation of the extended central chaotic zone, in concert
with the smallness of the Hill sphere, explains the lack of
moons. This effect also explains why Hayabusa could not be
put in orbit around Itokawa.

6. Capture Cross-section

Particles flying by a non-spherical spinning body can be
captured. Following Lages & Shepelyansky (2013), the capture
cross-section σ characterizes the probability that a spinning body
captures a scattering particle after a passage at the pericenter.
The fact that chaotic zones increases significantly at w w  10
leads to an increase of the capture cross-section σ. Indeed,
according to Lages & Shepelyansky (2013), we have s p~ ~rst

2

w( )qd d v0 st
2,where rst and vst are the impact distance and the

mean velocity of a scattering particle at infinity. Since from (8)–(9)
the exchange of energy (7) is non-negligible for pericenters up to

w w~ ( )q d 0
2 3 the above estimate shows that the capture cross-

section of theslowly spinning body w w ( )10 can be
significantly enhanced comparedto its geometric cross-section
p~ d2. Such an effect may play an important role for dust capture

by,e.g., a spinning satellite.

7. Conclusions

We have generalized the Kepler map technique to describe
the motion of a particle in the gravitational field of a rotating
irregular body modeled by a dumb-bell. This has been achieved
by theintroduction of an additional parameter responsible for
the arbitrary rate of rotation of the “central binary.” We have
found that the chaotic zone around the dumb-bell swells
significantly if its rotation rate is decreased; in particular, the
zone swells more than twice if the rotation rate is decreased 10
times with respect to the “centrifugal breakup” threshold. We
have determined the extent of the chaotic zone both analytically
and numerically.

To connect our theoretical findings with observational data,
we have illustrated the properties of the chaotic orbital zones in
examples of the global orbital dynamics about asteroid 243Ida

(which has a moon, Dactyl, orbiting near the edge of the
chaotic zone) and asteroid 25143Itokawa.
Possible orbital regimes of Ida’s moon Dactyl have been

described by means of constructing stability diagrams of its
orbital motion. The qualitative dynamics of the Ida–Dactyl
asteroid–satellite system has been shown to be described
adequately within this approach; in particular, an agreement has
been found with previous numerical-experimental data on the
stability of orbits around Ida. It has been explained why Dactyl
is marginally chaotic, as its orbit is situated at the fractal border
of the analytically expected central chaotic zone.
For Itokawa, it has been explained why space probe

Hayabusa could not be put in orbit around it, and also why
Itokawa has no natural satellites. All this is due to the swelling
of the chaotic zone around slowly rotating Itokawa, this
enlargement being combined with the smallness of its Hill
sphere.
We highlight various important implications of emerged

chaos around rotating minor bodies. The dumb-bell map
technique might be perspectively applied to describe orbital
motions and assess the possibility and sizes of chaotic zones
around elongated minor planetary satellites, e.g., minor moons
in the Pluto–Charon system. Indeed, as outlined in Quillen
et al. (2017), in this system,only Hydra rotates rapidly (at the
rate of ∼30% of the “centrifugal breakup” threshold). There-
fore, the chaotic zones around the minor moons in the Pluto–
Charon system may engulf their Hill spheres substantially; this
issue deserves further study.
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