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We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochromatic
driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the center
vicinity corresponding to the first experiments of condensate formation by Ketterle and co-workers in 1995.
We allow that the external driving allows us to model the regime of weak wave turbulence with the
Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak driving and
weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization that leads to
localization of energy on low energy modes. This is in a drastic contrast to the random phase approximation
leading to energy flow to high modes. A critical threshold is determined above which the turbulent flow to
high energies becomes possible. We argue that this phenomenon can be studied with ultracold atoms in
magneto-optical traps.
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The Kolmogorov turbulence [1,2] is based on a concept
of energy flow from large spacial scales, where an energy is
pumped by an external force, to small scales where it is
absorbed by dissipation. As a result a polynomial energy
distribution over wave modes has been obtained from
scaling arguments for hydrodynamics turbulence [1,2].
Later, the theory of weak turbulence, based on diagram-
matic techniques and the kinetic equation, demonstrated the
emergence of polynomial distributions for various types of
weakly interacting nonlinear waves [3–5]. However, this
theory is based on a fundamental hypothesis directly stated
in the seminal work of Zhakharov and Finonenko: “In the
theory of weak turbulence nonlinearity of waves is assumed
to be small; this enables us, using the hypothesis of the
random nature of the phase of individual waves, to obtain
the kinetic equation for the mean square of the wave
amplitudes.” Nevertheless, the dynamical equations for
waves do not involve random phase approximation
(RPA) and, hence, the whole concept of energy flow from
large to small scales remains open as we discuss below.
Indeed, it is known that in a random media with a fixed

potential landscape the phenomenon of Anderson locali-
zation [6] breaks a diffusive spreading of probability in
space due to quantum interference effects. Even if the
underline classical dynamics of particles produces an
unlimited spreading. In this respect, the Anderson locali-
zation has been observed for a large variety of linear waves
in various physical systems [7]. A similar phenomenon
appears also for quantum systems in a periodically driven
ac field with a quantum dynamical localization in energy
and number of absorbed photons [8–12]. This dynamical

localization in energy has been observed in experiments
with Rydberg atoms in a microwave field [12,13] and cold
atoms in driven optical lattices [14,15]. Thus, in the
localized phase the periodic driving is not able to pump
energy to the system even if the classical dynamics is
chaotic with a diffusive spreading in energy.
Of course, the Anderson localization takes place for

linear waves. The question about its robustness with respect
to a weak nonlinearity attracted recently a significant
interest of the nonlinear science community [16–20] with
the first experiments performed in nonlinear media and
optical lattices [21,22]. These studies show that below
a certain threshold the Anderson localization remains
robust with respect to a weak nonlinearity, while above
the threshold a subdiffusive spearing over the whole
system size takes place. However, the studies are done
for conservative systems without external energy pumping.
The numerical simulations for a simple model of the kicked
nonlinear Schrödinger equation on a ring gave indications
that an energy flow to high energies is stopped by the
Anderson localization for a weak nonlinearity [23], but
such a model is rather far from real experimental possibil-
ities with nonlinear media or cold atoms.
Here we consider an example of a finite realistic system

showing that there is a regime where RPA is not valid and
thus instead of energy flow to high energy modes (pro-
duced by noisy RPA phases), we obtain an evolution
bounded to finite energies. The system represents a
Bose-Einstein condensate (BEC) of cold atoms captured
in a Sinai-oscillator trap under a monochromatic force. It
represents a harmonic trap with a repulsive potential in a

PRL 119, 054103 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

0031-9007=17=119(5)=054103(5) 054103-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.054103
https://doi.org/10.1103/PhysRevLett.119.054103
https://doi.org/10.1103/PhysRevLett.119.054103
https://doi.org/10.1103/PhysRevLett.119.054103


vicinity of the trap center. In fact, a similar system in three
dimensions (3D) had been used for a pioneering realization
of BEC reported in Ref. [24] (see also Refs. [25,26]). In this
experiment a repulsive potential is created by tightly
focusing an intense blue-detuned laser that generates a
repulsive optical plug bunging a hole in a center of
magnetic trap where nonadiabatic spin flips lead to a loss
of atoms. This repulsive potential can be well approximated
by a rigid disk that creates scattering of atoms and
instability of their classical dynamics. In two dimensions
(2D) with a harmonic potential replaced by rigid rectan-
gular walls the system represents the well-known Sinai
billiard where the mathematical results guarantee that the
whole system phase space is chaotic with a positive
Kolmogorov entropy [27]. Recently, it was shown that
the classical phase space remains practically fully chaotic if
the rigid walls are replaced by a harmonic potential which
is much more suitable for BEC experiments [28]. The
corresponding quantum system is characterized by the level
spacing statistics of random matrix theory [29] satisfying
the Bohigas-Giannoni-Schmit conjecture [30] and thus
belonging to the systems of quantum chaos [31].
The effects of nonlinearity for BEC evolution in a Sinai-

oscillator trap have been studied in Ref. [28] in the frame of
the Gross-Pitaevskii equation (GPE) [32]. Reference [28]
shows that for weak nonlinearity the dynamics of linear
modes remains quasi-integrable, while above a certain
threshold there is onset of dynamical thermalization leading
to the usual Bose-Einstein distribution [33] over energies of
linear eigenmodes. By including a monochromatic driving
force the energy grows diffusively and probability transfer
to high energy modes, typical for the Kolmogorov turbu-
lence, appears. Here we show that there is a regime where
such an energy transfer to waves with high wave vectors is
suppressed by dynamical localization, in a similar way to
the Anderson localization in disordered solids.
We note that the Kolmogorov turbulence for BEC in 2D

rectangular and 3D cubic billiards has been studied numeri-
cally in Refs. [34,35]. However, the integrable shape of these
billiards does not allow us to realize a generic case of random
matrix spectrum of linear modes typical for our billiard
belonging to the class of quantum chaos systems [31].
For our model, the classical dynamics and quantum

evolution in the absence of interactions are described by the
Hamiltonian

H ¼ p2
x þ p2

y

2m
þm

ω2
xx2 þ ω2

yy2

2
þ Vdðx; yÞ þ fx sinωt:

ð1Þ

Here, the first two terms describe the 2D oscillator with
frequencies ωx, ωy, the third term represents the potential
of rigid disk of radius rd, and the last term gives a driven
monochromatic field of amplitude f. Here we fixed the
massm¼1, frequencies ωx ¼ 1, ωy ¼

ffiffiffi
2

p
, ω ¼ ð1þ ffiffiffi

5
p Þ,

and disk radius rd ¼ 1. The disk center is placed at
ðxd; ydÞ ¼ ð−1=2;−1=2Þ so that the disk bangs a hole in
a center vicinity as was the case in the experiments [24]. In
the quantum case one has the usual commutator relations
½p̂x; x̂� ¼ ½p̂y; ŷ� ¼ −iℏ with ℏ ¼ 1 for dimensional units.
The BEC evolution in the Sinai oscillator trap is

described by the GPE, which reads,

iℏ
∂ψðx; y; tÞ

∂t ¼ Ĥψðx; y; tÞ þ βjψðx; y; tÞj2ψðx; y; tÞ; ð2Þ

where β describes nonlinear interactions for BEC. Here we
use the same Sinai oscillator parameters as in Ref. [28] with
normalization

R jψ j2dxdy ¼ 1. The numerical integration
of Eq. (2) is done in the same way as in Refs. [11,28] with a
Trotter time step (Δt ¼ 0.005) evolution for the noninter-
acting part of Ĥ followed by the nonlinear term contribu-
tion. Of course, the GPE gives only an approximate
description of many-body quantum evolution but as in
Refs. [34,35] we restrict our studies by this approximation.
The results for energy E growth with time for classical

dynamics (1) are shown in Fig. 1. The energy E and
its dispersion σ are steadily growing with time. We expect
that at large times the energy increases diffusively with a
rate ðΔEÞ2=t ¼ D ≈ Cf2ωx

2rd
ffiffiffiffi
E

p
=ω2, assuming that

ωx ∼ ωy ∼ ωx. The data of Fig. 1 give us C ≈ 0.5 at
t ¼ 103.
We note that the estimate for D comes from the fact

that an oscillating velocity component vosc ¼ f cosðωtÞ=ω
gives a velocity change at disk collision (like with

FIG. 1. Classical time evolution of average energy hEi and its
standard deviation σ for f ¼ 0.4. The data are obtained from
104 trajectories with random initial conditions at hEi ¼ 1 and
σ ¼ 0.5. Top panel: hEðtÞi and σðtÞ are shown by black and red
(gray) curves, respectively. Bottom panels show probability
distribution of trajectories ρðE; tÞ for (a) t ¼ 10, 50 [blue (black),
orange (gray) curves] and (b) t ¼ 500, 1000 [yellow (gray), violet
(black) curves]. Vertical dashed lines in main panels mark
snapshot times corresponding to bottom panels.
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oscillating wall) Δvx ¼ 2vosc and an energy change
ΔE ≈ vxΔvx, so that the diffusion is D ∼ ðΔEÞ2=tc, where
an average time between collisions tc is defined from
the ergodicity relation Δtc=tc ∼ rd2ωx

2=E of ratio of disk
area and area of chaotic motion at energy E, where
Δtc ∼ rd=E1=2; thus at large times E ∝ t2=3. The fit for E ∼
σ ∝ tα in Fig. 1 gives α ¼ 0.98� 0.06 (for E) and 0.58�
0.08 (for σ) being comparable to the theoretical value
α ¼ 2=3. We attributed a deviation from theory to not
sufficiently large amplitude of motion

ffiffiffiffiffiffi
2E

p
=ωx required

for tc expression at reached energies.
We also introduce cells of finite energy size δE and

determine the probability distribution ρk over k energy cells
counting a relative number of trajectories inside each one.
The results of Fig. 1 show that the width of probability
distribution ρðEÞ is growing in time corresponding to the
increase of E.
The situation is drastically different in the quantum case

at β ¼ 0. Here, at small f, the dynamical localization leads
to a complete suppression of energy E and average mode
number M ¼ P

kkρk growth with their restricted oscilla-
tions in time (see Fig. 2). The probability distribution ρk
over eigenstates ψk with eigenenergies Ek of Eq. (1) (for
stationary case f ¼ 0) is shown in Fig. 3. For small f < fc,
on average there is a clear exponential decay of probability
ρk ∝ expð−2Ek=ωlϕÞ with a number of absorbed photons

Nϕ ¼ Ek=ω and a photonic localization length lϕ. Such
a localization decay is similar to those discussed for
atoms [12,13] and quantum dots [11] in a microwave field.
However, above a certain fc, e.g., at f ¼ 2; 3, we obtain
delocalized probabilities ρk with a flat plateau distribution
at high energies.
According to the theory of dynamical localization

described in Refs. [11,12,36] we have lϕ ≈ 2πðD=ω2Þρc,
where ρc ¼ dk=dEk is the density of Ek states. According
to Ref. [28] we have k ≈ E2=2

ffiffiffi
2

p
and ρc ≈ E=

ffiffiffi
2

p
. With the

above expression for the classical diffusion in energy D we
obtain lϕ ≈ 2f2ωx

2E3=2=ω4. Similar to the quantum chaos
model [36] we have lϕ significantly growing with the
number of absorbed photons Nϕ so that the delocalization
of quantum chaos takes place at lϕ > Nϕ. As in Ref. [36]
this leads to a delocalization above a certain border f > fc
with a flat probability distribution on high energies as it is
seen in Fig. 3. This gives the delocalization border for
quantum states: fcrd=ℏωx ≈ 0.7ðω=ωxÞ3=2 ≈ 4 for the
initial ground state at E ≈ ℏωx ¼ 1 and ω ≈ 3.2. The data
for M in Fig. 3 give the critical value fc ≈ 1.5 being
somewhat smaller than the value given by the above
estimate. We attribute this difference to the fact that the
above estimate forD, and, hence, for lϕ, is valid in the limit
of large spacial oscillations being larger than rd. The
delocalization transition at f > fc is similar to the
Anderson transition, or metal-insulator transition, in dis-
ordered systems [6,7].
The results for β > 0 are presented in Figs. 2, 4. For

f ¼ 0.4, when the steady-state probability is well localized
at β ¼ 0, they clearly show that at β ¼ 1.5 there is no
growth of energy E and mode numberM. Thus, there is no

FIG. 2. Time evolution of M (top panel) and energy E (bottom
panel) for GPE (2) averaged over time intervals Δt ¼ 1. The
initial state is the ground state of (2) at β ¼ 0, f ¼ 0 [see Fig. 5(a)
in Ref. [28]]. Both panels show the cases of f ¼ 0.4, β ¼ 0 (black
solid lines), f ¼ 0.4, β ¼ 1.5 [red (gray) dotted lines], f ¼ 0.4,
β ¼ 5 [orange(gray) dashed lines], f ¼ 2, β ¼ 0 [blue (gray) dot-
dashed lines].

FIG. 3. Top panel shows M as a function of driven force f for
linear case (β ¼ 0). Bottom panels show probability distribution
ρk, averaged over time interval Δt ¼ 5, as a function of
eigenenergies Ek with t ¼ 10 in black solid lines, t ¼ 50 in
the red (gray) dashed lines, and t ¼ 250 in blue (gray) dotted
lines. Left, center, and right bottom panels show the cases of
f ¼ 0.4, 2, and 3, respectively [highlighted with orange (gray)
circles in top panel].
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energy flow to high energies and the Anderson localization
remains robust for weak nonlineary perturbation. This is
also well confirmed by a stable in time probability
distribution over energies Ek shown in Fig. 4 (left panel).
For larger nonlinearity β ¼ 5 and f ¼ 0.4 there appears a
growth of M, E with time (Fig. 2). At larger f ¼ 1 and
β ¼ 5 there is emergence of energy flow to high energies
and increasing probability ρk at high energies Ek (Fig. 4,
right panel).
The global dependence of average mode number M on

driving amplitude f and nonlinearity β is shown in Fig. 5.We
see that there is a stability regionof smallf,β valueswhere the
values M remain small even at large times. This region
corresponds to the localized insulator phase (I), from the view
point of Anderson localization, of quasi-integrable KAM (or
laminar) phase from the view point of nonlinear dynamics (or
turbulence). Outside of this region we have large values of
number of populated statesM so that this regime corresponds
to the delocalized metallic or turbulence phase (M TB).
According to the obtained results we conclude that this
quasistable (or insulator) regime (f < fc, β < βc) (see
Fig. 5) is approximately described by the relation

fcrd=ℏωx ≈ 1.5½1 − βc=ð6ℏωxrd2Þ� ð3Þ

assuming that ωx ∼ ωy ∼ ω. Inside the I region the turbulent
Kolmogorov flow of energy to high modes is suppressed by
theAnderson localization.At small nonliniarity βwe expect a
validity of the Kolmogorov-Arnold-Moser theory (KAM)
[37,38] leading to a quasi-integrable dynamics and trapping
of energy on large length modes. At the same timewe should
note that the mathematical proof of KAM for nonlinear
perturbation of pure-point spectrum of Anderson localization
and the GPE (2) still remains an open challenge [18,39,40].
Since our numerical results for the localized KAMphase (see
Fig. 5) are obtained at finite times the mathematical prove of
existence of finite critical β represents an important problem.
Outside of the stability region (3) a microwave driving

transfers the energy flow from low to high energy modes
generating the Kolmogorov energy flow. We expect that the
energy dissipation and high modes leads to the Kolmogorov
spectrum of energy distribution [4,5] over modes. Our results
show that the RPA is definitely not valid since its random
noisy phases always lead to energy flow to high modes [41].
In contrast, we show that at small amplitudes of a mono-
chromatic driving and small nonlinearity, the Kolmogorov
turbulent flow to high modes is defeated by the Anderson
localization and the KAM integrability. The transition from
the KAM phase to turbulence phase corresponds to the
insulator-metal transition in disordered systems with the
energy axis corresponding to the spatial distance respec-
tively. The KAM or insulator phase corresponds to a usual
observation that a small wind (small f amplitude) is not able
to generate turbulent waves. Of course, the original concept
of Kolmogorov turbulence had been developed for infinite
systems [4,5] but all laboratory experiments are done with
finite size systems (e.g., finite size flume in Ref. [42]) as well
as numerical simulations [34,35]. Our results for finite
systems show that there is a stability domain (see Fig. 5)
where the Kolmogorov flow from large to small scales is
stopped by the Anderson localization and KAM-integrability
effects. The investigations with ultracold atoms will lead to a
deeper understanding of this nontrivial phenomenon.
The experimental realization of our system with BEC in

a magneto-optical trap corresponds to the experimental
conditions described in Ref. [24]. A monochromatic
perturbation can be created by oscillations of the center
of harmonic potential or effectively by oscillations of the
disk position created by the laser beam. We note that the
experimental investigations of turbulent cascades in
quantum gases become now possible [43] as well as a
thermometry of energy distribution in ultracold atom
ensembles [44]. The effects of system parameter modula-
tion are now at the beginning of experimental studies [45].
Thus, we hope that the interesting fundamental aspects of
nonlinear dynamics and weak turbulence will be tested with
cold atom experiments.
Our analysis is done in the frame of GPE, which gives a

good approximate description of real many-body quantum
system of atoms [32]. Further improvements can be reached

FIG. 4. Same as in bottom panels of Fig. 3 for f ¼ 0.3,
β ¼ 1.5 (left panel); f ¼ 0.5, β ¼ 5 (center panel); f ¼ 1, β ¼ 5
(right panel).

FIG. 5. Number of modes M shown by color (grayness) in the
plane of parameters f and β (average is done in the time intervals
100 ≤ t ≤ 150 and 250 ≤ t ≤ 300 in left and right panels,
respectively). The approximate separation of KAM or insulator
phase (KAM) and delocalized turbulent or metallic phase (TB) is
shown by the white line (3).
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with the multiconfigurational time-dependent Hartree
method [46]. However, the experiments with BEC in the
described driven Sinai-oscillator trap will allow us to test the
validity of these approximate methods for the description of
real many-body quantum evolution in the nontrivial regime.

This work was supported in part by the Pogramme
Investissements d’AvenirANR-11-IDEX-0002-02, reference
ANR-10-LABX-0037-NEXT (Project THETRACOM).
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