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We show that the Kapitza stabilization can occur in the context of nonlinear quantum fields.
Through this phenomenon, an amplitude-modulated lattice can stabilize a Bose-Einstein condensate
with repulsive interactions and prevent the spreading for long times. We present a classical and
quantum analysis in the framework of Gross-Pitaevskii equation, specifying the parameter region
where stabilization occurs. Effects of nonlinearity lead to a significant increase of stability domain
comparing to the classical case. Our proposal can be experimentally implemented with current cold
atom settings.

Introduction. The striking example of the Kapitza
pendulum shows that an oscillating force with zero aver-
age can lead to the phenomenon of Kapitza stabilization,
with transformation of an unstable fixed point into a sta-
ble one [1, 2]. The theory of this nonlinear system is well
established in a classical context [3]. Some applications
to quantum systems have been proposed, including opti-
cal molasses [4], trapping by laser fields [5, 6], and polari-
ton Rabi oscillations [7]. However, the emergence of this
phenomenon for nonlinear quantum fields has not been
analyzed. In this Letter, we show that a similar effect
appears for a repulsive Bose-Einstein Condensate (BEC)
in an oscillating optical lattice. For this system, the os-
cillating lattice enables to localize a wave packet of re-
pulsive atoms through Kapitza stabilization: thus, while
in the absence of the lattice the atoms spread over the
system, they remain trapped in a localized wave packet
in the presence of the oscillating force with zero mean, an
effect due to the interplay between dynamical renormal-
ization of the potential and atom-atom interactions. The
evolution is described by the Gross-Pitaevskii Equation
(GPE), with the repulsive nonlinear interaction creating
the unstable fixed point in the vicinity of the maximum
of the wave packet. In contrast with the standard clas-
sical Kapitza pendulum, where the potential is fixed in
the vicinity of the unstable fixed point, this new GPE
setting creates a more complex situation where the po-
tential varies with the shape of the wave function. In
the following, we describe the physics of this remarkable
phenomenon and present realistic parameter values for
an experimental realization with a BEC in the frame of
existing cold atom technology.

Classical system dynamics. We start with the analy-
sis of a classical inverted harmonic oscillator in one di-
mension in an oscillating periodic potential. The Hamil-
tonian of the system reads

H =
p2

2m
− m

2
ω2
i x

2 + V0(x) cos(ω`t), (1)

with V0(x) = U0 cos (2πx/d) where U0 is the potential
amplitude. Here m is the particle mass, x and p are posi-
tion and momentum, ωi characterizes the unstable fixed
point and the periodic potential has a spatial period d
and an amplitude oscillation of frequency ω`. It is conve-
nient to define a characteristic momentum p0 = 4

√
mU0

and oscillation frequency ω0 = 2π
√

2U0/(md2), leading
to the dimensionless variables X = 2πx/d, P = p/p0,
T = ω`t/(2π) and the frequency ratios Ri0 = ωi/ω0,
R0` = ω0/ω`. The classical dynamics is then governed
by Hamilton’s equations in these rescaled variables.

Following the standard methods of dynamical systems
[8], we describe the dynamics through the Poincaré sec-
tion, with typical phase space structures shown in Fig-
ure 1. The bottom left panel shows the regime where
the Kapitza stabilization is too weak and the point
X = P = 0 remains unstable. The top left panel shows
the regime of Kapitza stabilization with a stability island
around X = P = 0; the island is surrounded by a chaotic
component where the trajectories can escape to infin-
ity. The bottom right panel corresponds to a very weak
value of Ri0 and relatively strong driving, with overlap-
ping resonances leading to onset of chaos determined by
the Chirikov criterion [9]. To determine numerically the
global structure of the stability diagram, we follow dy-
namical trajectories with random initial conditions for
sufficiently long time ∆T to determine if they escape
from the vicinity of X = P = 0. A trajectory of ini-
tial conditions (X(0), P (0)) = (0, P (0)) is considered un-
stable if |X(T ) − 0| > π for some T ∈ [0 : 1000]. The
top right panel shows a density plot of the largest initial
momentum P (0) giving rise to a stable trajectory as a
function of the frequency ratios Ri0 and R0`. This panel
highlights the parameter region where the Kapitza phe-
nomenon stabilizes the unstable fixed point. The specific
shape of this region is determined by two main borders.
The lower border is determined through Kapitza’s orig-
inal argument [1–3], and the upper border through the
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FIG. 1. Poincaré sections formed by a few thousand trajec-
tories with random initial conditions (X(0), P (0)) ∈ [−2ξ :
2ξ] × [−0.1 : 0.1] (ξ = 1 or π) propagated during a times-
pan ∆T = 400 for the frequency ratios Ri0 = 0.075 and
R0` = 0.45 (top left), Ri0 = 0.15 and R0` = 0.2 (bottom
left) and Ri0 = 0.02 and R0` = 0.7 (bottom right). Top right:
Stability region in the parameter space of frequency ratios.
Color shows the largest initial momentum Pmax(0) for which
a trajectory with initial conditions (X(0), P (0)) = (0, P (0))
remains stable in the time interval T ∈ [0 : 1000]. Crosses
indicate the parameters selected for the Poincaré sections;
dashed lines show theory (2).

Chirikov criterion [9], yielding respectively:

R0` > 2
√

2Ri0, R0` < 0.58 (2)

The derivation of the left relation directly follows the
approach of Kapitza pendulum [3]: the effective aver-
age potential created by the oscillating force is Ueff =
〈ṗ2〉/2mω`2 = (π2U0

2/(md2ω`
2)) sin2(2πx/d), which

combined with the inverted harmonic potential, gives for
small oscillations the squared effective frequency ωeff

2 =
(ω2

0/ω`)
2/8−ωi2. Thus, x = 0 is stable if ωeff

2 > 0, lead-
ing to the first inequality of Eq. (2). The second inequal-
ity follows from the Chirikov criterion [9]: the nonlinear
resonances are located at positions p± = ±dω`/2π. In
the resonance approximation, each resonance is described
by a pendulum Hamiltonian with the frequency width of
separatrix ∆ω = 4π

√
2U0/md2, and the frequency dis-

tance between resonances is δω = 2ωeff ; the parameter of
resonance overlap is S = ∆ω/2ωeff and the chaotic tran-
sitions between resonances take place at K ≈ 2.5S2 > 1
leading to Eq. (2) (the coefficient 2.5 takes into account
the effect of secondary resonances).

These two theoretical borders of Eq. (2) are shown by
straight lines in Fig. 1, which are in a good agreement
with the numerical data. We attribute the relatively

small difference to the presence of additional secondary
stability islands in the chaotic component. For simplic-
ity, we also use the Chirikov criterion in the limit of small
Ri0 when two overlapping resonances are not significantly
modified by the inverted oscillator potential. An addi-
tional source of deviation is linked to the finite T values
used in the numerical simulations.
Quantum evolution with GPE. We now turn to the

quantum case, and set U0 = sEL/2 where s is a dimen-
sionless parameter characterizing the lattice depth and
EL = 2π2~2/(md2) is a lattice characteristic energy [10].
When the dimensionless position and momentum are
turned into operators, X̂ = X and P̂ = (~eff/i)∂X , the
canonical commutation relation [x̂, p̂] = i~ then leads to
an effective Planck’s constant ~eff = 1/(2

√
s).

We study the dynamics of a BEC with N atoms and
3D scattering length as confined in an optical waveguide
of radial angular frequency ω⊥. The BEC is subjected to
the driving potential V0(x) cos(ω`t). We take the BEC
wave function to be normalized to 1, i.e.

∫
|ψ|2dx =∫

|Ψ|2dX = 1 where Ψ ≡
√
d/2π ψ. In terms of the di-

mensionless variables, the GPE [11] governing the BEC
dynamics reads

i

4π
∂TΨ = R0`

(
−~eff∂

2
X +

cos(2πT ) cosX

8~eff
+
ḡ|Ψ|2

2

)
Ψ

(3)
where ḡ = 2πNg1D/(~ω0d) = 4πNω⊥as/(ω0d) [12].

By expanding the nonlinear potential for a Gaussian
wave packet |ψ(x)|2 = exp[−x2/(2σ2)]/(σ

√
2π) of rms

width σ around its maximum, we obtain an effective in-
verted harmonic potential with rescaled frequency

Ri0,eff ≡ ωi,eff/ω0 = 23/4π−1/4
√
~eff ḡ/σ̃3 (4)

where σ̃ = 2πσ/d. From the expression for Ueff , it follows
that all points at X = mπ with integer m become stable
for Ri0,eff < R0`/2

√
2.

In our simulations, we use the Strang-Marchuk oper-
ator splitting method [13] to approximate the evolution
operator corresponding to Eq. (3). We take Ns = 216

basis states for the wave function, a range of X values
corresponding to Qtot = 64 periods of the driven opti-
cal lattice (which leads to a numerical grid with δX =
(2πQtot)/Ns ≈ 0.006 and δP = ~eff/Qtot ≈ 5.5 × 10−4

for s = 200) and a time step δT ∈ [0.0002 : 0.001]. If
Q denotes the total number of initially populated po-
tential wells of the static potential −V0(X), then the ef-
fects of interactions in our simulations only depend on
the ratio ḡ/Q since the non-linear potential is given by
ḡ|Ψ|2. In the case of one localized packet (Q = 1),
the initial state is the ground state (without atom-atom
interactions) of the potential well centered at X = 0
of the static potential −V0(X), which for large enough
s corresponds to a Gaussian wave packet |Ψ(X)|2 =
exp[−X2/(2σ̃2)]/(σ̃

√
2π) of rms width σ̃ = 1/s1/4 and

zero average momentum. For such initial states, we have
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FIG. 2. Left panels: probability density |Ψ(X,T )|2 as a func-
tion of position X at T = 0 (single Gaussian wavepacket

of rms width σ̃ = 200−1/4 ≈ 0.27, dashed curve delimiting
the gray shaded area), T = 1 (green solid curve with trian-
gles), T = 2 (blue solid curve with circles), T = 3 (red solid
curve with squares) for R0` = 0.6 and Q = 1. Right panels:

PS(T ) =
∫ +π/2

−π/2 |Ψ(X,T )|2dX. Top: without driving (s = 0)

and with ḡ/Q = 0.4. Middle: with driving corresponding
to Ri0,eff ≈ 0.16 at s = 200 and ḡ/Q = 0.008. Bottom:
with driving corresponding to Ri0,eff ≈ 1.10 at s = 200 and
ḡ/Q = 0.4 (see left cross in Fig. 5).

Ri0,eff = (2/π)1/4s1/8√ḡ. We also consider as initial
state a chain of wave packets periodically repeated in po-
tential wells (Q = Qtot), which we describe as the ground
state (with atom-atom interactions) of GPE for the static
potential −V0(X). Such states can be easily prepared ex-
perimentally by switching a static optical lattice with a
formation of a chain of BECs in each potential minimum.
For such an initial state one should replace ḡ by ḡ/Qtot

in Eq. (4).

Kapitza stabilization of quantum states. The time
evolution of a single initial wave packet is shown in
Fig. 2, in the absence and the presence of oscillating
lattice potential. Without the oscillating potential, the
wave packet spreads over the whole lattice, leading to a
monotonic drop of the probability inside the initial po-

tential well PS(T ) =
∫ +π/2

−π/2 |Ψ(X,T )|2dX. In contrast,

in the presence of the oscillating potential, the Kapitza
stabilization leads to conservation of a large part of the
probability in the initial well. The larger the interaction
strength ḡ, the better the stabilization. It is interesting
to note that the quantum stabilization exists not only
inside the classical stability domain (see middle panels),
but also at Ri0,eff ≈ 1.09, significantly larger than the
classical stability border Ri0,eff = 0.21 from Eq. (2). We
attribute this quantum enhancement of Kapitza stabi-
lization to the presence of quantum fluctuations of the
wave packet, which we discuss below.
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FIG. 3. Left panels: probability density |Ψ(X,T )|2 as a func-
tion of position X at T = 0 (periodic ground state wave-
function of GPE with static potential −V0(X), dashed curve
delimiting the gray shaded area, here σ̃ ≈ 0.40), T = 1
(green solid curve with triangles), T = 2 (blue solid curve
with circles), T = 3 (red solid curve with squares) for
R0` = 0.6 and ḡ/Q = 0.4 with Q = 64. Right panels:
PP (T ) =

∫
{X:V0(X)>0} |Ψ(X,T )|2dX. Top: without driving

(s = 0). Bottom: with driving corresponding to Ri0,eff ≈ 0.85
and s = 200.

FIG. 4. Density plot of the probability density as a function of
position X and time T for R0` = 0.6, ḡ/Q = 0.6, and s = 200.
Top: the initial state is a single Gaussian wavepacket of rms
width σ̃ = 200−1/4 ≈ 0.27 centered on X = 0 (Q = 1), with
Ri0,eff ≈ 1.34 (see right cross in Fig. 5); bottom: the initial
state is the periodic ground state wave function of GPE with
static potential −V0(X) (Q = 64) and Ri0,eff ≈ 1.03.

Another possible initial state is given by a chain of
BEC wave packets corresponding to the ground state
of GPE at each potential minimum of the lattice in
the presence of interaction. This state is obtained nu-
merically by the standard method of imaginary time
propagation of GPE. The time evolution is shown in
Fig. 3. Without the oscillating potential, the periodic
peak structure becomes less pronounced, decreasing with
time. Thus the probability escapes from the vicinity
of the unstable fixed points as measured by PP (T ) =∫
{X:V0(X)>0} |Ψ(X,T )|2dX which oscillates in time be-
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FIG. 5. Top left: Classical stability map as in Fig. 1. Top

right and bottom: Density plot of PS = 1
10

∫ 3Tsp+10

3Tsp
PS(T )dT ,

with PS(T ) =
∫ +π/2

−π/2 |Ψ(X,T )|2dX and where Tsp is a char-

acteristic spreading time of the initial wave packet in the ab-
sence of driving (s = 0) determined by P s=0

S (Tsp) = 0.75, as
a function of the frequency ratio R0` and the effective fre-
quency ratio Ri0,eff of Eq. (4) (multiplied by a scaling coef-
ficient α = 0.2) for s = 200 (top right), s = 100 (bottom
left) and s = 50 (bottom right). The initial state is a sin-

gle Gaussian wave packet of rms width σ̃ = 1/s1/4 centered
around X = 0 (Q = 1). The two crosses correspond to the
parameters ḡ/Q = 0.4 (left cross) and ḡ/Q = 0.6 (right cross)
for R0` = 0.6.

tween 0 and 1. In contrast, in the presence of the os-
cillating potential, the probability remains in the vicin-
ity of the unstable fixed points, even if the parameter
Ri0,eff ≈ 0.85 is significantly beyond the classical stabil-
ity border of Eq. (2).

The origin of the quantum enhancement of the Kapitza
stabilization seen in Figs. 2-3 can be understood from the
typical evolution of the wave function shown in Fig. 4.
Indeed, the width σ̃ of the wave packet oscillates in
time by a factor f ≈ 2, which renormalizes σ̃. Since
Ri0,eff ∝ σ̃−3/2 ∝ f−3/2, this gives a reduction of the val-
ues of Ri0,eff in Fig. 2 from Ri0,eff = 1.09 to Ri0,eff = 0.39
significantly closer to the theoretical classical border of
Eq. (2) at Ri0,eff = 0.21. In addition, the time oscillation
of |Ψ(X,T )|2 creates a supplementary oscillating poten-
tial which by the Kapitza mechanism can generate an

additional stabilization.

The region of quantum Kapitza stabilization in this
GPE system is shown in Fig. 5, where we display the
time-averaged probability to stay in the vicinity of the
unstable fixed point X = 0 as a function of the two pa-
rameters Ri0,eff and R0` together with the classical sta-
bility diagram of Fig. 1. In the regime of small effective
Planck’s constant corresponding to large s values, a large
stability region is well visible, with a shape similar to the
classical stability domain. In Fig. 5, the values of Ri0,eff

are rescaled by a multiplicative factor α = 0.2 corre-
sponding to the fact that quantum stabilization exists
at Ri0,eff values significantly larger than in the classical
case, given by Eq. (2). We attribute the presence of this
factor to the quantum fluctuations as discussed above.
For decreasing values of s, the quantum stability region
becomes less pronounced. We explain this by the fact
that the effective ~ becomes comparable to the phase
space area of the classical Kapitza stability island (see
Fig. 1, top left panel). In this case, the quantum tun-
nelling from the island becomes important and leads to
the destruction of the Kapitza phenomenon.

Proposed experimental realization. The experimental
implementation of those ideas can be carried out by load-
ing adiabatically a BEC into a deep static horizontal
1D optical lattice (s ∼ 50) realized with far off-resonant
lasers. As a result, we obtain a chain of small BEC at
the bottom of the potential wells. To place them at the
top of the potential hills of the lattice, we have to shift
suddenly by half the spatial period the optical lattice
as in Ref. [10]. The amplitude of the lattice shall be
subsequently modulated to ensure the Kapitza stabiliza-
tion. In practice, the control of the lattice parameters
(phase, amplitude) can be performed using phase-locked
synthesizers that imprint their signals on light through
acousto-optic modulators (AOM) placed on each lattice
beam before they interfere to produce the lattice. The
range of interaction strengths that we propose is readily
achievable with a standard rubidium-87 BEC placed in
an optical lattice made of two counter propagation lasers
at 1064 nm. With ω⊥ ≈ 2π × 200 Hz and a lattice spac-
ing d ≈ 532 nm, ḡ ≈ 0.002N/

√
s, we have ḡ ≈ 14 for

N = 105 and a depth s = 200, and ḡ/Q ' 35 for a BEC
of typical size 20 µm. Interestingly, the enhancement of
interactions through Feshbach resonances is not neces-
sary to observe the dynamical stabilization phenomenon.

Discussion. We have shown that the Kapitza phe-
nomenon can stabilize a BEC with repulsive interaction
by means of an oscillating force with zero average. This
represents a new application of the Kapitza effect in the
context of nonlinear quantum fields. Our theoretical pro-
posal can be experimentally realized with current cold
atom technology. Besides its fundamental interest, it
should provide new tools for the long-time manipulation
of BEC.
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