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LPS, Université Paris-Sud, CNRS, UMR 8502, Orsay F-91405, France.

Dima L. Shepelyansky
Laboratoire de Physique Théorique du CNRS, IRSAMC,
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We investigate the dynamics of a two-dimensional electron gas (2DEG) under circular polarized
microwave radiation in presence of dilute localized impurities. Inspired by recent developments on
Floquet topological insulators we obtain the Floquet wavefunctions of this system which allow us
to predict the microwave absorption and charge density responses of the electron gas, we demon-
strate how these properties can be understood from the underlying semiclassical dynamics even for
impurities with a size of around a magnetic length. The charge density response takes the form of
a rotating charge density vortex around the impurity that can lead to a significant renormalization
of the external microwave field which becomes strongly inhomogeneous on the scale of a cyclotron
radius around the impurity. We show that this in-homogeneity can suppress the circular polariza-
tion dependence which is theoretically expected for MIRO but which was not observed in MIRO
experiments on semiconducting 2DEGs. Our explanation, for this so far unexplained polarization
independence, has close similarities with the Azbel’-Kaner effect in metals where the interaction
length between the microwave field and conduction electrons is much smaller than the cyclotron
radius due to skin effect generating harmonics of the cyclotron resonance.

I Introduction.

The topological properties of condensed matter systems have been the focus of intense theoretical and experimental
research starting from the discovery of the quantum Hall effect [1, 2]. Recently it has been suggested that some
systems can develop new topological properties under external periodic driving, leading to the concept of Floquet
topological insulators [3–5] and to their realization in photonic systems [6–8]. In parallel an active research on the
effect of microwave irradiation of ultra-high mobility two-dimensional systems revealed a striking microwave induced
resistance oscillations (MIRO) at weak non quantizing magnetic fields [9]. These oscillations are characterized by a
periodic dependence on the ratio between the microwave and cyclotron frequencies. At sufficiently high microwave
power the oscillations grow in amplitude leading to the formation of zero-resistance states [10, 11]. This effect has
now been observed in several systems [12–16] and it has been shown that the zero-resistance regime can lead to
the onset of new thermodynamic properties like an incompressible behavior usually associated with the quantum
Hall effect [17]. The theoretical understanding of MIRO has attracted a considerable attention stimulating several
approaches. Semiclassical and quantum kinetic equation formalisms have been used to derive an analytic description
for the magnetic field dependence of microwave induced oscillations due to interactions with residual impurities in
the two-dimensional electron gas in a Born approximation limit where re-collision or memory effects were treated
perturbatively [18–22]. Classical dynamics has been used to analyze memory effects in the non-perturbative limit
and to derive in a transparent manner the results from kinetic equation calculations [23, 24]. These theories provide
a good description of the experimental magnetic field dependencies. However they are intrinsically linked to the
cyclotron-resonance and share its strong dependence on the polarization of the radiation. This simulated careful
polarisation dependent experiments [25–29], in particular it was shown that contrarily to cyclotron resonance MIRO
is not sensitive to the orientation of circularly polarized microwave irradiation [25, 28]. This disagreement stimulated
the development of extrinsic theories where the influence of edges and contacts was considered as the main mechanism
behind MIRO [30, 31]. But recent experiments with a spatially resolved THz excitation [28, 29] have confirmed the
bulk origin of MIRO leaving the circularly polarized radiation dependence unexplained.

Here we address this issue by developing a Floquet description of the interaction between a local impurity and a
two-dimensional electron gas (2DEG) under circularly polarized radiation. We show that the properties of quantum
Floquet wavefunctions can be understood from classical dynamics even in the limit where the radius of the impurity
is of the order of the magnetic length. We then use this theory to compute the absorbed microwave power using both
quantum and semiclassical formalisms and show the appearance of a rotating redistribution of electron density around
the impurity that locally enhances the external electromagnetic field. We argue that the inclusion of this screening
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correction suppresses the dependence on polarization chirality and discuss analogies with the cyclotron resonance
oscillations in metals known as the Azbel’-Kaner effect [32, 33] (see also overview of this effect in [34]).

II Model description and Dynamics - Quantum and classical Theory

We consider an isolated impurity with a rotation invariant potential Vi(r) embedded in a surrounding 2DEG under
a magnetic field B giving rise to cyclotron motion with a frequency ωc = qB/m and a cyclotron radius Rc = vF /ωc (m
and q are the carrier effective mass and charge, vF and EF = mv2

F /2 are the Fermi velocity and energy, r is the radial
distance from the impurity center). A circularly polarized irradiation induces an additional time-dependent potential
Vac(t) = −qEacr cos(θ − ωt) where ω is the microwave frequency and θ is the polar angle. The system Hamiltonian
is the sum of static and time-dependent contributions and reads:

Ĥ(t) = Ĥ0 + Vi(r)− qEacr cos(θ − ωt) (1)

where Ĥ0 is the charge kinetic energy in a magnetic field. This time dependent Hamiltonian can be analyzed using
general Floquet-states theory, however as the static part of the Hamiltonian has rotational invariance it is more
convenient to move first to the rotating frame where the Hamiltonian becomes stationary. This transformation is
analogous to the rotating frame approximation in spin-resonance or in atomic physics which becomes exact for a
circularly polarized excitation. For this purpose we introduce the rotating frame angle θR = θ − ωt and seek the
solutions of the Schrödinger equation in the form ψ = |ψR(r, θR) > e−iεt/~. The wavefunction ψR then obeys a
stationary Schrödinger equation with a modified Hamiltonian ĤR:

ĤR = Ĥ0 + Vi(r)− qEacr cos θR − ωl̂z (2)

where l̂z is the orbital momentum operator defined from the position of center of the impurity, by construction it is
conjugated to the phase θR. The eigenfunctions ψn of this Hamiltonian ĤR give the Floquet wavefunctions in the
laboratory frame ψ = ψn(r, θR = θ−ωt), they correspond to wavefunctions rotating at frequency ω. Since the rotating
frame Hamiltonian is stationary it is possible to analyze the properties of the Floquet eigenstates using the technique
of Wigner functions and associated Husimi representations [35] that allows to draw a parallel between the quantum
evolution and conceptually simpler classical dynamics. For example, we will show that the classical description leads
to a straightforward description of the periodic dependence of transport properties on the frequency ratio J = ω/ωc.
The methods of numerical solution of the Schrödinger equation and Newton dynamics of the Hamiltonian (2) are
described in Supplementary Information (SI) Sec.1, Sec.2, Sec.3, Sec.4.
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FIG. 1: Left panel (a): density of Husimi function at the disc radius r = rd shown by color (maximum for yellow/white;
minimum zero for violet/black), Poincaré section for classical Hamiltonian dynamics of (2) is drown at the moment of collision
with disc and is shown by green dots; here J = 2.7, rd/`B = 1, qEac`B/~ωc = 0.3 at energy εF /~ωc ≈ 40. Middle panel (b):
classical Poincaré section of the collision map (5) at parameters of panel (a). Right panel (c): geometry of collision.

Fig. 1(a) shows the Husimi representation of a typical eigenstate of ĤR for a hard disc potential with radius
rd/`B = 1 (we introduce the magnetic length `B =

√
~/mωc) under microwave irradiation at J = 2.7 and microwave

excitation amplitude qEac`B/~ωc = 0.3. It gives the semiclassical probability density in the phase space lz, θR in
the vicinity of the impurity at r ≈ rd. It is computed by numerical diagonalisation of the Hamiltonian ĤR and
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using the approach described in [36, 37] and SI Sec.2. The Husimi density highlights a resonant structure with a
significant variation of orbital momentum lz with the conjugated phase θR. The variation of orbital momentum is
due to the action of the microwave field which spoils orbital momentum conservation existing at Eac = 0. On top of
the quantum Husimi distribution we have overlaid the corresponding Poincaré section of classical orbits [38] obtained
from the classical dynamics described by HR. The results demonstrate that the resonant structure in the lz, θR plane
is accurately reproduced by classical dynamics even if the radius of the disc is comparable with the quantum magnetic
length.

The resonant structure in phase space revealed by the Husimi distribution and associated Poincaré section can be
understood by computing the change in dynamical variables after each free evolution cyclotron period and subsequent
collision with the impurity. We assume that the impurity potential Vi(r) vanishes outside a characteristic typical
radius rd � vF /ωc and note by α the polar angle of the velocity in the laboratory frame when an electron leaves
the interaction region r ≤ rd. The images of typical trajectory collisions with the disc can be found in [23] (see also
Fig. 1(c) and Fig.S1 in SI Sec.4). Without microwaves the change of α to its value ᾱ, taken after a cyclotron orbit
rotation and a re-collision event with the impurity, can be expressed as

ᾱ = α+ σ(lz) (3)

where σ is a function depending on the impurity potential and on the orbital momentum giving the impact parameter
with the impurity (the geometry of collision is shown in Fig. 1(c) ). For a hard disc impurity ᾱ = α+ 2χ− π, where
χ = α − θ is relative angle between the velocity and the impact position; χ is related to orbital momentum through
lz = mvF rd sinχ. A more general expression of σ(lz) valid for a step potential of fixed height Ui is given in SI Sec.4.

Without microwaves the orbital momentum lz and the total energy H0 are conserved. In presence of microwaves
however HR is the only integral of motion. The change of orbital momentum during the free-evolution time between
two successive collisions can thus be expressed as:

δlz =
δH0

ω
=

1

ω

∫ 2π/ωc

0

qEac(t)v(t)dt =
qvFEac
ω(ω − ωc)

[sinαR − sin(αR − 2πJ)] (4)

where we introduced αR the velocity polar angle in the rotating frame αR = α − ωt, J = ω/ωc. During the short
collision with the impurity we can neglect the microwave field so that in this approximation the orbital momentum is
conserved in the interaction region. Combining the two previous equations we find a symplectic map [38, 39] describing
the evolution of the velocity polar angle αR and conjugated orbital momentum lz from one collision to another:{

l̄z = lz + F [sinαR − sin(αR − 2πJ)] ,
ᾱR = αR + σ(l̄z)− 2πJ , F = qvFEac/[ω(ω − ωc)] . (5)

Here bars mark the dynamical values of variables after one map iteration (one collision) and σ is a function describing
the change in the angle of the velocity after collision with an impurity with an impact parameter given by lz. For
colliding trajectories, the orbital momentum is given by lz = mvF rd sinχ where χ is the angle between the impact
position on the impurity and the impact velocity (see SI Sec.4). For a hard disc potential we find σ = 2χ−π whereas
for a strong attractive potential σ is π shifted and is given by σ = 2χ. The behaviour of the map then depends on the
dimensionless force ε = qEac/[mrdω(ω − ωc)] which can be strong even for weak amplitudes of the microwave field
since rd appears in the denominator. More details on map derivation are presented in SI Sec.4.

This map gives a good description of the dynamics leading to practically the same Poincaré section as exact
Hamiltonian evolution (see Fig. 1(b)) and allows to understand the physical origin of the oscillatory dependence on
the parameter J = ω/ωc. In the frame of the free-particle moving under magnetic and microwave fields, the microwave
leads effectively to a vibration of the impurity position, the change in orbital momentum thus depends on the position
of the impurity at the moment of re-collisions. In the limit of a small impurity rd � Rc = vF /ωc the time between
recollisions will be given by the cyclotron period and the position of the impurity in the vibrating frame will depend
periodically on J . For integer values of J the position of the impurity does not change from collision to collision
leading to a vanishing kick δlz ∝ [sinαR − sin(αR − 2πJ)] as derived in Eq. (4).

This result may seem surprising from a quantum point of view, since one could expect strong effect of microwave
at integer harmonics of the cyclotron resonance as it would to correspond to resonant absorption of photons between
separated Landau levels. This issue can be elucidated through the computation of the absorbed microwave power in
both quantum and semiclassical cases using the quantum Floquet master equation and classical kinetic equation and
approximate map calculations. This calculation will also reveal the connection between the absorbed microwave power
and an effective rotating dipole that appears due to the formation of a charge density vortex around the impurity
in the rotating frame. This will then give some insight on the possible origin of the so far unexplained circular
polarization dependence in MIRO experiments.
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III Master and Kinetic equations

The Floquet eigenstates form a natural basis to write the master equation which describes excitation of the 2DEG
by microwaves and relaxation to equilibrium [40, 41]. As we would like to focus on the physical properties of the
Floquet eigenstates around an impurity, we assume a simplified master equation in a relaxation time approximation
(more sophisticated relaxation models have been studied in the limit of semiclassical quantum kinetic theory but
without computing the exact Floquet states [22]). The master equation for the density matrix ρ̂(t) in the relaxation
time approximation then reads:

∂ρ̂

∂t
= − i

~
[Ĥ(t), ρ̂]− ρ̂− ρ̂eq

τ
(6)

The equilibrium density matrix ρ̂eq is the equilibrium Fermi-Dirac distribution for the Hamiltonian without mi-
crowaves. Following general Floquet theory, we write this equation in the basis of the Floquet eigenstates. In our

problem those are the eigenfunctions |ψ(n)
R > of the rotating frame Hamiltonian ĤR. We find that the matrix elements

ρ̂nm =< ψ
(n)
R |ρ̂|ψ

(m)
R > obey the following equation:

∂

∂t
ρnm +

i

~
εnmρnm = −ρnm − ρeq,nm

τ
(7)

where εnm = εn − εm is the difference of associated quasi-energies.

The quantity ρeq,nm =< ψ
(n)
R |ρ̂eq|ψ

(m)
R > can a-priori depend on time due to the time dependence of the Floquet

states ψR. However these states are stationary in the rotating frame θR = θ − ωt and the steady state Hamiltonian
Ĥ0 is rotation invariant. Thus, as it can be shown by an explicit calculation, the matrix elements ρeq,nm are actually
independent of time.

At large times t� τ , the density matrix ρ̂ converges to a stationary solution in the rotating frame basis:

ρnm =
ρeq,nm

1 + i
~εnmτ

(8)

This steady state density matrix can be used to compute several physical properties: microwave absorption, redis-
tribution of charges around the impurity, induced rotating dipole appearing near the impurity due to the charge
redistribution in the rotating frame.

To deepen our understanding of the link between quantum and classical dynamics, we also solve the associated
kinetic Vlasov equation for the distribution function in the classical phase space:

∂f

∂t
+ {f,H(t)} = −f − feq

τ
(9)

where we introduced the Poisson-brackets defined as

{f,H} =
∂f

∂r

∂H

∂p
− ∂f

∂p

∂H

∂r
(10)

As in the quantum case, the kinetic equation becomes time independent in the rotating frame. In the rotating frame
the distribution function fR is found numerically by integrating the characteristic equation dfR

dt = − fR−feqτ along
trajectories in this frame.

The details of numerical simulations of the quantum master equation and the classical kinetic equation are given
in SI Sec.1, Sec.3, Sec.5.

IV Microwave power absorption by electrons interacting with an impurity

The microwave power absorbed by electrons interacting with an isolated impurity can be obtained by averaging the
operator v · qEac in the rotating frame. In the quantum case, this is done by computing the trace: P = Tr(ρ̂v · qEac),
for the Vlasov equation a similar procedure, described in supplementary information, is employed.

The dependence of the absorbed power P on J is shown in Fig. 2 for a strongly repulsive (Udisc > EF > 0)
and attractive (Udisc < −EF < 0) impurity potential, different signs of J correspond to different signs of circular
polarization. The absorbed power shows a resonance at J = 1 which corresponds to cyclotron resonance (which
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FIG. 2: Absorption power P (in arbitrary units) is shown as a function of J = ω/ωc for rd/`B = 2 at qEac`B/~ωc = 0.1 and
εF /~ωc = 60. Data are shown for two relaxation times with ωcτ = 10, 100 (different signs of J correspond to different signs
of circular polarization). Quantum results are obtained from the master equation on the density matrix, they are compared
with classical results from the kinetic equation. An excellent agreement between quantum and classical results is observed for
a repulsive potential. For an attractive potential the agreement is only qualitative the kinetic equation giving the same phase
of microwave absorption oscillations as the quantum calculation.

appears only for the active polarisation J > 0), P then decays as expected from an usual Drude model but presents
additional oscillations with a period ∆J = 1 which become more pronounced as ωcτ grows. These oscillations appear
due to the periodic structure in J in Eq. (5) and correspond to MIRO like oscillations of the absorbed microwave
power, they are related to consecutive collisions between an electron and impurity (memory effects) [23, 24, 42]. As
expected at small amplitudes of microwave field the absorbed power P(J) is proportional to Eac

2 (see Fig.S4 in SI
Sec.6 and discussion of parameter scaling dependence given there; details of numerical computations of absorption
power are given in SI Sec.5.). For the repulsive impurity the results of the quantum master equation and the classical
kinetic theory are in quantitative agreement, the agreement is less accurate for attractive impurities but the correct
peak positions are reproduced by the kinetic equation even in this case. It is likely that the quantum dynamics inside
an attractive impurity has stronger deviations from the classical behavior when its depth is comparable with the Fermi
energy EF . The good overall agreement between quantum and classical simulations holds even if the impurity radius
rd is only two times larger than the magnetic length, in supplementary information we shows that this trends continues
for even smaller rd. An interesting property that appears in Fig. 2 is that the oscillations in microwave absorption
are phase shifted between the repulsive and attractive potentials, this shift is related to the additional π contribution
that appears in Eq. (5) for the attractive potential. According to this equation the change of orbital momentum
due to the action of the microwave field over a cyclotron period vanishes for integer values of J . This leads to an
absorption dip at integer J values with different lineshapes depending on the sign of the potential of the impurity.
For a repulsive potential (at ωcτ = 100) integer J correspond to an absorption minimum with maxima occurring close
to half integer J values. For the attractive potential, the phase π shift in the map due to the interaction sign tends
to move the position of the maxima near integer values which leads to a characteristic lineshape with a double peak
structure centered around integer values. We note that earlier calculations of the absorbed power in the MIRO regime
for the case of a repulsive potential gave similar results [42] for the position of absorption peaks/dips, Eq. (5) allows
to generalize these results to the case of an arbitrary electron/impurity interaction. We also note that the results
for the absorption dependence on J obtained from the kinetic equation are also well reproduced by the symplectic
map description (5) (see Fig.S2 in SI Sec.5). The dependence P(J) is not sensitive to variation of rd/`B as long as
rd is larger than `B , in the limit rd ≤ `B additional quantum oscillations appear around the average semi-classical
absorption curve but those will probably ensemble average to zero in a macroscopic sample (see Fig.S3 in SI Sec.5).
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V Charge density distribution induced by microwave field

The absorbed power P from the external microwave field creates a charge redistribution in a around of impurity.
To see this it is convenient to present this power P(Eac) in the following form (see also SI Sec.5):

P = Tr(ρ̂v · qEac) ≈ ωTr(ρ̂r) · (ez × qEac) . (11)

This formula clearly shows that in the rotating frame there is an appearance of a stationary dipole moment of charge
induced by Eac. Thus in the laboratory frame we have a rotating dipole which creates a correction to the field acting
on electrons.

The stationary solutions of the master equation (8) and the kinetic equation (9) allow to compute the charge density
variation induced by Eac. The charge density distribution in presence of microwave field is shown as a function of x
and y coordinates in the rotating frame in Fig. 3. In the vicinity of the impurity we have strong quantum Friedel like
oscillations of density [43]. The average density lineshape from the master equation (6) calculation is well approximated
by results from the classical kinetic equation (9). We note that the amplitude of density variation increases near the
impurity in both cases reaching rather high values of 1-2 percent of the total electron density. The steady-state
relative variation of charge density δn/n0 in the whole (x, y) plane is shown in the rotating frame in Fig. 4 revealing
the formation of a charge density vortex. Since this structure is accurately reproduced from the classical dynamics,
we attribute it to a nonlinear resonance between the microwave frequency and collision frequency with the impurity
which is well described by the Poincaré section of Fig. 1.

The results of Fig. 3 show that in the laboratory frame microwave driving creates a rotating charge density vortex
that forms a rotating dipole moment. This dipole moment will create a rotating electric field that leads to a renor-
malization of the external field in the vicinity of the impurity. We now address the issue of the calculation of this
renormalized field from the rotating density profiles.
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FIG. 3: Charge density ρ(x, y) dependence on x (at y = 0) and on y (at x = 0) obtained from the quantum master equation
and the classical kinetic equation presented in the rotation frame. Here the system parameters are the same as for the repulsive
case in Fig. 2 with J = 2.7 for rd/`B = 2 at qEac`B/~ωc = 0.1 and εF /~ωc = 40 with a relaxation time ωcτ = 10.
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FIG. 4: Relative charge density variation ρ(x, y) = δn/n0 (expressed in percent) shown in (x, y) plane in the rotation frame
where a microwave field is directed alone x−axis. Left panel shows the results of quantum simulations with the master equation,
left panel show the results of the classical kinetic equation. The parameters are the same as in Fig. 3.

VI MIRO of short range field near impurity

In the absence of screening, the rotating charge density vortex δn(r) around the impurity creates an electric field
that is simply given by the Coulomb integral

Eee(r) =
q

4πε0εr

∫
δn(r′)

r− r′

|r− r′|3 d
2r′ (12)

Within a weakly-interacting electron approximation, this corresponds to a Hartree type contribution to the rescaled
external field. We developed our Floquet theory for non interacting electrons it is thus difficult to estimate the exact
form of the interaction related corrections. Qualitatively the strength of this Coulomb field may be reduced by
screening from other electrons, however the characteristic length-scale of the rotating charge density vortex is of the
order of the cyclotron radius. A full-screening scenario seems thus unlikely as it is difficult to justify how the electron
gas could provide a complete screening on this length-scale at a frequency ω which is several times larger than ωc,
we thus neglect screening effects here and we present numerical results for the unscreened Coulomb integral given by
Eq. (12).

To characterize the strength of the field renormalization we introduce the enhancement factor η = Eee/Eac, which
is the ratio between the amplitude of the correction field from Eq. (12) to the amplitude of the external driving Eac.
The logarithm of this enhancement factor is shown on Fig. 5 on (x, y) plane using the data for the master equation
density distribution from Fig. 4. These results clearly show that the field can be enhanced by an order of magnitude in
the vicinity of impurity, while far from the impurity the enhancement factor goes to zero as expected. The strongest
enhancement is obtained at the boundary of the impurity and reaches two orders of magnitude.

Checking the parametric dependence of the rotating density vortex in the semi-classical model, we find that δn(r)
depends only weakly on rd/Rc and ωτ in a broad parameter range. This allows us to estimate the typical value of
the enhancement as η = Eee/Eac ∼ q2ne/(mωεvF ) ' 6 for typical values ω = 2π × 100GHz, ne = 3.5 × 1011 cm−2,
and dielectric constant εd = 10ε0. The obtained order of magnitude is consistent with the values of η in Fig. 4 at a
distance of around a cyclotron radius away from the impurity, an even larger enhancement enhancement occurs at
smaller distances. The estimate for η can be cast in a form that highlights its dependence on rs the usual interaction

strength parameter in 2DEG η ∼ rsEF /~ω (we remind that rs = (πnea
2
0)−1/2 where a0 = 4πεd~2

mq2 is the Bohr radius,

and q is the electron charge). A detailed discussion of scaling dependence on system parameters is given in SI Sec.6
with Fig.S4, Fig.S5, Fig.S6, Fig.S7.

The large values of the field enhancement parameter η show that a full interacting electron calculation is required
to obtain consistently the field acting on the electrons. Our results suggest however the following qualitative picture:
the external microwave field Eac generates a strong effective circular polarized microwave field in the vicinity of the
impurity which is significantly larger than the external field Eeff � Eac. This field Eeff is maximal at r = rd
and decays to the external field on a typical scale reff . Rc. It has a the same circular polarization as the driving
microwave field since it is created by a charge density vortex that rotates at the microwave frequency ω.

We are thus justified to consider a model where the driving microwave field is localized around the impurity
instead of being homogeneous in space as considered so far in most models (with the exception of work [31] which
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FIG. 5: Variation of the enhancement factor Eee/Eac of the amplitude of effective field acting on an electron due to the density
variation in (x, y) plane (see Fig. 4 left panel) induced by the external microwave field. The results, shown in the rotating
frame, are obtained from the quantum master equation and the relations given by Eq.(12).

also considered a strongly inhomogeneous field but only close to metallic contacts). We show through numerical
simulations, that taking into account the non-homogeneity of the microwave field can indeed solve the puzzle of the
polarization independence [25, 28]. For this purpose we use the approach of [24] computing the resistivity Rxx for a
sample of finite size with a fixed density of impurities using the Hamiltonian dynamics for electrons. The details of
these simulations are given in SI Sec.6. In Fig. 6 we compare the dependence of resistivity Rxx, on J for the case
of microwave field homogeneous in the whole space Eac (left panel) and for the case of a model screened microwave
field Eac exp(−r2r−2

eff ) which decays with a Gaussian profile as function of the distance from the impurity with a
characteristic range reff ≈ Rc/5 . The main result of these simulations is a qualitatively different dependence of
Rxx on positive and negative J values. For a microwave field homogeneous in space there is a strong asymmetry
between positive and negative circular polarization. In contrast, to a screened microwave field localized in a vicinity
of impurity in a range reff ∼ rd � Rc there is no dependence of the sign of polarization (sign of J) in agreement
with the experimental results reported in [25, 28].

The origin of the absence of sign dependence on J for a localized field is rather simple: the range of the field is much
smaller then the cyclotron radius (reff ∼ rd � Rc) so that the energy change takes place only near impurity and the
cyclotron resonance appearing in the kick amplitude F ∝ 1/(ω − ωc) in (5) is absent. In fact the kick amplitude is
determined only by a time interval ∆teff = reff/vF of interaction of change with the field Eeff near impurity. It
can be estimated as in (5) with F ≈ qEeffreff/vF being independent of the sign of polarization. In a certain sense
we obtain a screened field near impurity. This situation is similar to the Azbel’-Kaner effect for cyclotron resonance
absorption in metals. Due to the skin effect, the microwave field is screened in the bulk of the metal on a length scale
much smaller than the cyclotron radius. The electron energy change induced by the interaction with the microwave
field then takes place only in a vicinity of the metal surface [32, 33]. In this case cyclotron resonance occurs not only
at the cyclotron frequency but at integer harmonics (similarly to MIRO) and there is no polarization dependence
since the interaction range is much smaller than the cyclotron radius.

We have shown that the rotating charge density vortex around the impurity strongly renormalizes the external
microwave field since it rotates at the frequency of the external excitation. It is interesting to know if a renormalization
of the static potential created by the impurity is present as well. In a mean field Hartee type approximation, such
a renormalization could be created by the time averaged density profile of the rotating vortex. The time average in
the laboratory frame corresponds to an average over the polar angle in the rotating frame. For the semi-classical
calculation in Fig. 4.b) the charge redistribution δne seems antisymmetric with respect to the origin and numerical
integration over angles gives a vanishing result within numerical accuracy. The situation is different in the quantum
case where a closed form analytic expression for the angle averaged density can be derived (see supplementary
materials). The time (angle) averaged density distribution < δne(r) > obtained from the quantum calculation for the
parameters of Fig. 4.a) is shown on Fig. 7, while the time average value of < δne(r) > /ne are smaller compared to
the typical values for the charge density vortex they grow with microwave power. Compared to regular equilibrium
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FIG. 6: Dependence of resistivity Rxx (in arbitrary units a.u.) on J = ω/ωc. Left panel: the case of initial external microwave
field; right panel: the case of screened renormalized field acting on a length-scale reff/Rc = 0.3. The results are obtained
from the numerical simulation of classical Hamiltonian dynamics of electrons in presence of impurities with Gaussian potential
Uamp exp(−r2r−2

d ) with a density nir
2
d = 10−3 an amplitude Uamp/εF = 1.5 and a characteristic radius rdω/vF = 0.1.
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FIG. 7: Relative variation of the time averaged electron charge density < δne(r) > /ne induced by a microwave irradiation, as a
function of radial distance r from the impurity. The results are shown two microwave fields εac = 0.1 and 0.2 (εac = qEac`B/~ωc).
Other parameters are as in Fig. 3 (rd/`B = 2, EF /~ωc = 40). ωcτ = 100

Friedel oscillations that decay on the scale of the Fermi-wavelength, the time averaged density profile < δne(r) > /ne
induced by microwave irradiation spreads over a much larger scale given by the cyclotron radius. In principle it is
thus possible to enter a regime where the collision cross section of the impurity is mainly determined by the long
range electrostatic potential created by < δne(r) > rather that by the bare short range potential of the impurity. A
quantitative treatment of this scenario is beyond the scope of this work where electron-electron interactions are not
taken into account at the quantum level. In [23] we suggested an alternative scenario to the macroscopic domain
formation for ZRS in semiconducting hetero-structures, where the charge redistribution around an isolated sharp
impurity would create a smooth cloaking potential around the impurity allowing an adiabatic passage around the
impurity in which the momentum scattering would be strongly suppressed. An advantage of such a scenario compared
to the more conventional macroscopic domain formation is that charges do not have to overcome macroscopic distances
to create the electric field domains since the charge redistribution takes place on the scale of Rc around short range
impurities. These calculations thus show that this scenario is plausible within the non-interacting electrons quantum
model.
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VII Discussion

We preformed extensive numerical simulations of electron dynamics in a vicinity of impurity in presence of a circular
polarized microwave irradiation. Our studies demonstrate that a description based on the classical Newton dynamics
provides a good approximate description being close to the exact solution of the Schrödinger equation in the regime
when the size of impurity rd is larger than the magnetic length `B and the Fermi energy contains many quanta of
cyclotron frequency (EF � ~ωc). We also show that the classical dynamics is well described by the collision symplectic
map which allows to understand the origin of periodic dependence of MIRO on the frequency ratio J = ω/ωc and
disappearance of microwave effect at integer J values.

The absorption power of charges in an impurity vicinity is obtained from the numerical solution of quantum master
equation and the classical kinetic, or Vlasov, equation which have approximately similar average dependence on system
parameters, a part of Friedel like oscillations present in the quantum case. The results obtained from the master and
kinetic equations show the emergence of a strong charge redistribution created by a microwave irradiation taking the
form of a rotating charge density vortex. Thus the irradiation generates a rotating dipole field localized near impurity.
The strength of this induced localized field is significantly larger than the external microwave field, enhancing the
external field near the impurity. This strong inhomogeneity of the microwave field results in absence of polarization
dependence and absence of the cyclotron resonance in agreement with the experimental results reported in [25, 28].
This effect is similar to the Azbel’-Kaner effect [32, 33] for resistance magneto-oscillation induced microwave screened
in a vicinity of metal surface.

At the final stage of this work there appeared the MIRO results for electrons on a liquid helium under circularly
polarized microwave excitation [44]. These experimental results show that the resistivity changes significantly with
the sign of polarization in contrast to the results for 2DEG in GaAs [25, 28, 29] where MIRO are almost independent
on the sign of the circular polarization. Since the electrons densities for electrons on helium are several orders of
magnitude smaller than in GaAs 2DEG, the field amplification effects discussed here are expected to be negligible.
The difference in circular polarization dependence between the two systems could thus be a hint of the importance of
external field renormalisation in high density electron systems.
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Supplementary Information

1. Numerical solution of quantum master equation

Stationary Schrödinger equation without microwaves

The classical Lagrangian/Hamiltonian read :

L =
m

2

(
ṙ2 + r2θ̇2

)
− mωc

2
r2θ̇ − Uw(r) (S1)

H0 =
p2
r

2m
+

1

2mr2

(
pθ +

mωcr
2

2

)2

+ Uw(r) (S2)

=
p2
r

2m
+

p2
θ

2mr2
+
ωc
2
pθ +

mω2
cr

2

8
+ Uw(r) (S3)

where r, θ are polar coordinates, Uw(r) is the impurity potential and:

pθ = mr2θ̇ − mωcr
2

2
(S4)

In absence of disc potential, the angular momentum can be related with the geometrical parameters of the trajectory:

pθ = mωc
R2
L − L2

c

2
(S5)

where RL is the Larmor radius and Lc is the distance from the guiding center to the coordinates origin.
We note that we can not obtain the Schrödinger equation directly from quantization of this Hamiltonian, this

seems due to the ill-defined nature of the operator p̂r in two dimensions [45]. Instead the eigenvalue equation takes
the following form which comes from rewriting the Schroedinger equation in cylindrical coordinates [46]:

Ĥ0ψ = − ~2

2m

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2

]
− i~ωc

2

∂ψ

∂θ
+
mω2

cr
2

8
ψ + Uw(r)ψ (S6)

= Eψ (S7)

We introduce

ψ(r, θ) =
χ(r)√
r

eiLzθ

√
2π

(S8)

This leads to a 1D-Schrödinger equation on χ(r):

− ~2

2m

[
d2χ

dr2
+

1− 4L2
z

4r2
χ

]
+

~ωcLz
2

χ+
mω2

cr
2

8
χ+ Uw(r)χ = Eχ (S9)

We introduce dimensionless units: for length r = x`B = x
√

~
mωc

and for energy E = ε~ωc. In these units

−1

2

d2χ

dx2
+

4L2
z − 1

8x2
χ+

Lz
2
χ+

x2

8
χ+ Uw(x)χ = εχ (S10)

We want to express this equation as a function of the quasi-classical parameters, we thus use the relation:

pθ = mωc
R2
L − L2

c

2
= ~Lz (S11)

Lz = nL(1− S2) (S12)

where we used RL = `B
√

2nL and introduced the parameter:

S =
Lc
RL

(S13)
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The Schrödinger equation then becomes:

−1

2

d2χ

dx2
+

4n2
L(1− S2)2 − 1

8x2
χ+

nL(1− S2)

2
χ+

x2

8
χ+ Uw(x)χ = εχ (S14)

where nL is the Landau level and S = Lc/RL. The minimum Xm of the effective potential energy in Eq. (S10) reads
X4
m = 4L2

z − 1.
Using Eq. (S11) we find that collisions with the impurity (in a semiclassical approximation) occur only for orbital

momenta lz in the range:

lmin =
2nL − (

√
2nL + rd`

−1
B )2

2
(S15)

lmax =
2nL − (

√
2nL − rd`−1

B )2

2
(S16)

where nL = εF /~ωc, this result is useful to estimate the range of orbital momenta that have to be included in the
quantum calculation.

Schrödinger equation in the rotating frame

The time dependent potential for a linearly polarized field reads:

Vac = −Facr cos θ cosωt (S17)

In a circularly polarized field we find:

Vac = −Facr cos (θ − ωt) = −Facr cosφ (S18)

where φ = θ − ωt, since the potential then depends only on φ we first concentrate on the circularly polarized case.
We now seek solutions of the Schrödinger equation in the rotating wave form:

ψ = ψ(r, φ)e−iEt/~ (S19)

The Schrödinger equation reads:

i~
dψ

dt
= −i~ω∂ψ

∂φ
+ Eψ = Ĥψ (S20)

Ĥψ = − ~2

2m

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2

]
− i~ωc

2

∂ψ

∂φ
+
mω2

cr
2

8
ψ + Uw(r)ψ − (Facr cosφ)ψ (S21)

which has the form of a stationary Schrödinger equation.
We seek the solution in the form:

ψ =
∑
n,Lz

an,Lz

χn,Lz (r)√
r

eiLzφ

√
2π

e−iEt/~ (S22)

where χn,Lz
(r) are the Eigenfunctions of the stationary part of the Hamiltonian introduced in the first section.

This leads to the Schrödinger equation for an,Lz
:

(~ωLz + E)an,Lz
= εn,Lz

an,Lz
−
∑
n′

[F (n,Lz;n
′, Lz + 1)an′,Lz+1 + F (n,Lz;n

′, Lz − 1)an′,Lz−1] (S23)

where we introduced the coefficients:

F (n,Lz;n
′, L′z) =

F

2

∫
dr χn,Lz

(r)χn′,L′
z
(r)r (S24)

The transformation to the rotating frame can also be done in the classical Hamiltonian:

H =
p2
r

2m
+

p2
θ

2mr2
+
ωc
2
pθ +

mω2
cr

2

8
+ Uw(r)− Facr cos(θ − ωt) (S25)
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We introduce the generating function for the canonical transformation:

Φ(r, Pr, θ, Pφ; t) = rPr + (θ − ωt)Pφ (S26)

Then:

Pr = pr , φ =
∂Φ

∂Pφ
= θ − ωt , pθ =

∂Φ

∂θ
= Pφ (S27)

H ′ = H +
∂Φ

∂t
(S28)

=
P 2
r

2m
+

P 2
φ

2mr2
+
ωc
2
Pφ +

mω2
cr

2

8
+ Uw(r)− Facr cosφ− ωPφ (S29)

which is consistent with the result form quantum mechanics.

Quantum master equation

We now consider the following master equation :

∂ρ̂

∂t
= − i

~
[Ĥ(t), ρ̂]− ρ̂− ρ̂eq

τ
(S30)

The solution of the Schrödinger equation takes the form:

|ψ(t) > = ψ(r, θ − ωt)e−iεt/~ (S31)

= |u(t) > e−iεt/~ (S32)

where in the last line we recognize ψ(r, θ − ωt) as the time periodic Floquet wave-function |u(t) > and ε is the
associated quasi-energy.

We now write the master equation in the basis of the Floquet functions

< un|
∂ρ̂

∂t
|um > = − i

~

(
εn < un(t)| − i~ ∂

∂t
< un(t)|

)
ρ̂|um > (S33)

+
i

~
< un(t)|ρ̂

(
εm|um(t) > +i~

∂

∂t
|um(t) >

)
− < un|

ρ̂− ρ̂eq
τ
|um >

∂

∂t
(< un|ρ̂|um >) = −i(εn − εm) < un|ρ̂|um > − < un|

ρ̂− ρ̂eq
τ
|um > (S34)

where we used:

Ĥ(t)|un(t) > = i~eiεnt/~
∂

∂t

(
|un(t) > e−iεnt/~

)
(S35)

=

(
εn|un(t) > +i~

∂

∂t
|un(t) >

)
(S36)

Introducing more compact notations ρnm =< un|ρ̂|um >, ρeq,nm(t) =< un|ρ̂eq|um > and εnm = εn−εm, the master
equation becomes:

∂

∂t
ρnm +

i

~
εnmρnm = −ρnm − ρeq,nm(t)

τ
(S37)

Writing the expression for ρeq,nm(t) :

ρeq,nm(t) =
∑

ε0(i,Lz)<εF

(∫
(drdθ r)un(r, θ − ωt)∗χi,Lz

(r)√
r

eiLzθ

√
2π

)
(S38)

×
(∫

(dr′dθ′ r′)um(r′, θ′ − ωt)χi,Lz
(r′)∗√
r′

e−iLzθ
′

√
2π

)
=

∑
ε0(i,Lz)<εF

ai,Lz
(n)∗ai,Lz

(m) (S39)
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where ai,Lz
(n) are the projections of the Floquet wave function on the eigenstates of the unperturbed Hamiltonian

which were introduced in the previous section, their expression is:

ai,Lz (m) =

∫
(dr′dθ′ r′)um(r′, θ′ − ωt)χi,Lz

(r′)∗√
r′

e−iLzθ
′

√
2π

(S40)

we find that ρeq,nm(t) is time independent, this is a consequence of the stationary nature of the problem in the rotating
frame and of the isotropic character of the equilibrium density matrix.

We thus find that in the rotating frame the density matrix converges to:

ρnm =
ρeq,nm

1 + i
~εnmτ

(S41)

The charge density distribution in the rotating frame can be expressed through the density matrix

ne(r, θR) =
∑
mn

u∗m(r, θR)ρmnun(r, θR) (S42)

Angle(time) averaged density distribution

To simplify notations we note ne(r) =< ne(r, θ) >θ (where we have omitted the index in θR).
We are interested in the mean electron density averaged over angles/time

ne(r) =
∑
nm

ρnm < un(r, θ)um(r, θ)∗ >θ (S43)

For convenience we introduce the notation:

Umn(r) =< um(r, θ)∗un(r, θ) >θ (S44)

Using the decomposition of the Floquet waves in the stationary eigenbasis we find:

Umn(r) =<
∑
i,Lz

ai,Lz (n)
χi,Lz

(r)√
r

eiLzθ

√
2π

∑
j,L′

z

aj,L′
z
(m)∗

χj,L′
z
(r)∗√
r

e−iL
′
zθ

√
2π

>θ (S45)

=
1

2π

∑
i,j;Lz

aj,Lz (m)∗ai,Lz (n)
χj,Lz

(r)∗χi,Lz
(r)

r
(S46)

With the notation

ne(r) =
∑
nm

ρnmUmn(r) (S47)

and using Eq. (S41) we find a closed form expression for the angle/time averaged density:

ne(r) =
∑
nm

Umn(r)

1 + i
~εnmτ

∑
ε0(i,Lz)<εF

ai,Lz
(n)∗ai,Lz

(m) (S48)

For a consistency check, we set τ = 0 then:

ne(r) =
∑

ε0(i,Lz)<εF

∑
nm

ai,Lz (m)Umn(r)ai,Lz (n)∗ (S49)

=
∑

ε0(i,Lz)<εF

1

2π

|χi,Lz
(r)|2
r

(S50)

due to orthogonality relations
∑
n ai,Lz

(n)∗aj,L′
z
(n) = δijδLz,L′

z
.
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Another check is that we must recover the equilibrium density if there is no microwave, in this case ai,Lz
(n) = δi,Lz ;n

which leads to: ∑
ε0(i,Lz)<εF

ai,Lz (n)∗ai,Lz (m) = δnm
∑

ε0(i,Lz)<εF

δi,Lz ;n (S51)

Unn(r) =
1

2π

∑
i,Lz

δi,Lz ;n
|χi,Lz

(r)|2
r

(S52)

We then have :

ne(r) =
∑
n

Unn(r)
∑

ε0(i,Lz)<εF

δi,Lz ;n (S53)

=
∑

ε0(i,Lz)<εF

1

2π

|χi,Lz
(r)|2
r

(S54)

The previous form is not so convenient for the efficient calculation of the dependence on r :

ne(r) =
1

2πr

∑
nm

1

1 + i
~εnmτ

∑
ε0(i′,L′

z)<εF

ai′,L′
z
(n)∗ai′,L′

z
(m)

∑
i,j;Lz

aj,Lz
(m)∗ai,Lz

(n)χj,Lz
(r)∗χi,Lz

(r) (S55)

ne(r) =
1

2πr

∑
i,j,Lz

Ni,j,Lzχj,Lz (r)∗χi,Lz (r) (S56)

where

Ni,j,Lz
=
∑
nm

aj,Lz
(m)∗ai,Lz

(n)

1 + i
~εnmτ

∑
ε0(i′,L′

z)<εF

ai′,L′
z
(n)∗ai′,L′

z
(m) (S57)

Typical numerical parameters

We provide a complete list of the numerical parameters for the charge density vortex calculation in Fig. 4.a from
the main article, physical parameters are J = 2.7, rd/`B = 2, Udisc = 90~ωc, qEac`B/~ωc = 0.1 and εF /~ωc = 40
with a relaxation time ωcτ = 10.

We select a finite set of Landau levels n ≤ NL (NL = 100) and of orbital momenta Lmin ≤ lz ≤ Lmax with
Lmin = −550 and Lmax = 650, for all lz in this range the one dimensional Schrödinger Eq. (S10) is solved using a
discretisation with a space step (in dimensionless units) 0.02 with a total of 8000 steps, this allows to find the NL
lowest eigenvalues ε

(0)
n,lz

and eigenvectors χn,lz for each lz. We then filter the states depending on their distance to

the Fermi level selecting only states with |ε(0)
n,lz
− εF | <= 8~ωc, this gives a basis with a total of 9400 states. The

Schrödinger Eq. (S23) is then expressed in this basis and diagonalised using full diagonalisation routines from the
eigen++ packages. This allows us to find the density matrix using Eq. (S41) and the charge distribution in the rotating
frame using Eq. (S42). We have checked that the numerical results are not changed when the basis is expanded to
include more states in the calculation, another independent check is the good agreement we find with semiclassical
calculations.

2. Husimi distribution

The Husimi function is defined via

H(lz, θ) =
∑
n

∫ π

−π
dθ′e−(θ−θ′−2πn)2/2eilzθ

′
ψrd(θ′) (S58)

where ψrd(θ′) describes the orbital harmonics of the wavefunction near the disc (with radius rd).
For a hard disc potential the wavefunction ψ(r, θ) tends to vanish for r → rd, we have thus followed the approach

of [47, 48] where ψrd is given (up to normalization) by:

ψrd(θ) = ∂rψ(r = rd, θ) (S59)
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This expression does not separate incoming and outcoming plane waves incident on the disc, an approximate
separation can be achieved by defining ψrd as:

ψrd(θ) =
∑
nl,lz

anl,lz

1

klz,nl

dRlZ ,nl
(r = rd)

dr
eilzθ (S60)

where the coefficients anl,lz give the components of the wavefunction in the eigenbasis RlZ ,nl
(r)eilzθ of the system

without microwave field:

ψ(r, θ) =
∑
nl,lz

anl,lzRlZ ,nl
(r)eilzθ (S61)

and gives the semiclassical momentum at the collision

klz,nl
=
√

2(Elz,nl
− U(lz, rd))/m (S62)

with Elz,nl
the laboratory frame energy (without microwaves) corresponding to eigenfunction RlZ ,nl

(r)eilzθ.
We have checked that the two approaches give similar results in the limit rd � rc. In Fig. 1(a) we use the represen-

tation (S60) which capture the separate contribution of the in-going wave. This can be seen from the representation
of two in-going/out-going waves ψ(r) ∝ Ak(exp(ik(r− rd))− exp(−ik(r− rd))) with a certain amplitude Ak and the
condition ψ(r = rd) = 0.

3. Solution of the kinetic equations

The kinetic equation in the laboratory frame reads:

∂f

∂t
+ v · ∂f

∂r
+

[
ωc × v − 1

m
∂rUw +

1

m
F(t)

]
· ∂f
∂v

= −f − f0

τ
(S63)

∂f

∂t
+ {f,H(t)} =

df

dt
= −f − feq

τ
(S64)

where d/dt is the derivative along a trajectory in phase space.
By moving to the rotating frame, the kinetic equation becomes stationary in the same way as the quantum master

equation, this can be seen for example by making the canonic transform Eq. (S29) on Eq. (S64). The distribution
function f thus converges to a steady state value f(r̃, ṽ) in the rotating frame coordinates r̃ = re−iωt and ṽ = ve−iωt

(r and v are the position coordinates/velocity in the laboratory frame in the complex notation r = x + iy and
v = vx + ivy). We find the distribution function by integrating the equation df

dt = − f−f0τ along trajectories in the
rotating frame.

Trajectories outside the impurity are found by exact integration of the free equations motion in magnetic and
microwave fields, they give the following expression for the change of charge velocity from ṽi at time ti to ṽf at time
tf after a time interval ∆t = tf − ti.

ṽf =
iFac
ωc − ω

+

(
ṽi −

iFac
ωc − ω

)
ei(ωc−ω)∆t (S65)

r̃f = r̃ie
−iω∆t +

iṽi
ωc
e−iω∆t

(
1− eiωc∆t

)
+ Fac

(
e−i(ω−ωc)∆t

ωc(ω − ωc)
− e−iω∆t

ωωc
− 1

ω(ω − ωc)

)
(S66)

The time step in the stepping algorithm is adapted as function of the distance to the impurity and collision times are
found with a Newton method. For repulsive impurities a specular reflection occur at the interface, for an attractive
potential the particle is propagated inside the impurity using Eq. (S66) hold inside the impurity for a box potential.

This procedure allows us to find the distribution function for energies close to the Fermi energy on a four dimensional
grid of size Nr×Nθ×Nχ×NE where Nr = 160 is the number of entries for the discretization along the polar distance
r, Nθ = 100 the number of entries for the polar angle θ, Nχ = 30 the number of entries for the angle χ between
position and velocity vectors and NE = 30 the number of entries for energy dicretization centered around the Fermi
energy (parameters are given for calculation of Fig. 4b in the main text).
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Supplementary Figure S1: Geometry of reflection during collision with a disc in case of attractive and repulsive potentials.

4. Derivation of the collision map

The geometry of elastic collision with a hard disc is shown in Fig. 1(a) and Fig. S1. The collision angles shown in
these Figs. are defined as

{
θc = 2α− θ − 2β + π
αc = α+ 2π − 2β

(S67)

where

β = arg

(
1 + i

rd
rc
e−i(θ−α)

)
(S68)

After the collision r = |r|eiθ , v = |v|eiα , χ = α − θ. Without microwaves: conservation of angular momentum
and energy implies that χ is conserved during a collision: χ̄ = χ. New values for α can be found from geometrical
arguments

ᾱ = α+ σ(lz) (S69)

lz = rdvF sinχ (S70)

σ = 2χ− 2 arctan

 tanχ√
1− 2U

mv2F cos2 χ

 (S71)

with U the amplitude of the impurity potential (σ, χ ∈ (−π/2, π/2)).
In the special case of a collision with a hard disc repulsive potential (U →∞) :

σ = 2χ− π (S72)

for an attractive disc potential with a large amplitude (amplitude U → −∞) this gives instead.

σ = 2χ (S73)

The change in kinetic energy during a period due to microwaves is :

Ē − E =

∫ 2π/ωc

0

FacRe
(
vF e

iαRei(ωc−ω)t
)
dt = vFFac

sinαR − sin(αR − 2πJ)

ω − ωc
(S74)

however

E ' H + ωrd
√

2mH sinχ (S75)
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where H ' εF is conserved during the time evolution we thus find

sin χ̄− sinχ =
Fac

rdω(ω − ωc)
[sinαR − sin(αR − 2πJ)] (S76)

This leads to the following map:{
sin χ̄ = sinχ+ Fac

rdω(ω−ωc) [sinαR − sin(αR − 2πJ)]

ᾱR = αR + 2χ̄− 2σ(χ̄)− 2πJ
(S77)

Under the approximation sinχ ' χ, σ(χ) = π/2 (hard disc) we recover the previous (approximate map) for J > 0
(check J < 0)

We now determine the kinetic energy from the standard map using the energy conservation in the rotating frame:

H =
mv2

2
− FacRd cosφ− ωPφ (S78)

where mv2/2 is the kinetic energy, φ the angle in the rotating frame and Pφ its conjugate momentum.
We need to express the rotating frame variables from the standard map variables, we find :

φ = αR − χ (S79)

Pφ = mvRd sinχ− mR2
dωc

2
(S80)

We thus find an equation on v:

H =
mv2

2
− (mωRd)v sinχ− FacRd cosφ+

mR2
dωωc
2

(S81)

To zero order in Rd, E = mv2/2 = H, going to first order in Rd we find:

E = H + ωRd
√

2mH sinχ+ FacRd cosφ (S82)

at the Fermi energy Fac/(mωvF )� 1 so we can approximate:

E ' H + ωRd
√

2mH sinχ (S83)

The exact solution is:

v = mωRd sinχ+
√

2H + 2FacRd cos(αR − χ) +m2R2
dω

2 sin2 χ−R2
dωωc (S84)

We can also determine the trajectory parameters RL, Lc :

RL =
1

|ωc|

√
P 2
r

m2
+

(
Pφ
mr

+
ωcr

2

)2

(S85)

Lc =
1

|ωc|

√
P 2
r

m2
+

(
Pφ
mr
− ωcr

2

)2

(S86)

where K is the kinetic energy.

5. Calculations of absorbed microwave power

We first provide the derivation of the approximate relation between absorbed microwave power and the rotating
dipole moment around the impurity.

P = Tr(ρ̂v · qEac) (S87)

= − i
~

Tr(ρ̂[r, Ĥ0] · qEac) (S88)

= − i
~

Tr(ρ̂[r, ĤR + ωl̂z] · qEac) (S89)

= − i
~

Tr(ρ̂[r, ωl̂z] · qEac) +
i

~
Tr(r[ρ̂, ĤR] · qEac) (S90)

= ωTr(ρ̂r) · (ez × qEac) +O(1/τ) . (S91)
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In numerical quantum master equation calculations the power was estimated using:

P = −qEac ·
i

~
Tr(ρ̂[r, Ĥ0]) (S92)

for high values of ωcτ we found a good agreement between exact calculations using Eq. S92 and estimations from the
dipole moment Eq. S91.

For the semiclassical kinetic equation we can compute the average absorbed power using the relation:

P =

〈∫
d2v

∫
d2r [H0(v, r)− EF ]

f(r,v, t)− f0(r,v)

τ

〉
t

(S93)

=

〈∫
d2v

∫
d2r

[
mv2

2
+ Uw(r)

]
f(r,v, t)− f0(r,v)

τ

〉
t

(S94)

= −
〈∫

d2v

∫
d2r

[
mv2

2
+ Uw(r)

]
df

dt

〉
t

(S95)

=

〈∫
d2v

∫
d2r

d

dt

[
mv2

2
+ Uw(r)

]
f

〉
t

(S96)

=

〈∫
d2v

∫
d2r[v · F(t)]f

〉
t

(S97)

where H0 is the Hamiltonian without microwaves.
The advantage of equation Eq. (S93) is that the function that is integrated is always positive as opposed to Eq. (S97)

which has cancellations between positive and negative terms, Eq. (S93) is thus more suited to Monte-Carlo type of
evaluation.
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Supplementary Figure S2: Dependence of the average absorbed microwave power Pabs for electrons colliding with an impurity
for parameters: qEac/(mωvF ) = 0.013, rd/Rc = 0.13, ωcτ = 100, Udisc = ±2εF , a good agreement is observed between results
from the kinetic equation and from the collision map S77.

Finally it is possible to estimate the absorbed power from the standard map Eq. (S77), in this case the exact dy-
namics over one period is replaced by the approximate map; the distribution function is then computed by integrating
df
dt = − f−feqτ for free evolution with the map parameters during time 2π/ωc which separates successive collision events
(in the approximation rd � Rc). The absorbed power is then also computed from Eq. (S92). The results presented
in Fig. S2 show that the absorbed power obtained from the kinetic equation is in a good agreement with the results
based on the approximate collision map Eq. (S77). This shows how physically relevant quantities can be computed
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from the simplified map dynamics. We note the significant difference between the case of attractive and repulsive
impurity potentials.

The dependence P(J ) at various sizes of repulsive impurity potential rd is shown in Fig. S3. These data show a
good agreement between the quantum and classical simulations until the impurity diameter 2rd remains larger than
the magnetic length `B .
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Supplementary Figure S3: Dependence of the microwave absorption Pabs on J (arbitrary units) for different values of impurity
radius rd obtained from the quantum master equation Eq. (S92) (full curves) and the classical kinetic equation Eq. (S93)
(dashed curves). Here Udisc = 2εF , qEac`B/~ωc = 0.1 and ωcτ = 100. The semiclassical curves reproduce correctly the
results from the quantum master equation. For rd/`B = 0.5 additional fluctuations appear in the quantum calculation around
an average lineshape which is still well describe by the semiclassical calculation. We attribute those to interference effects
which become more pronounced when the size of the impurity becomes closer to the Fermi wavelength. In a real sample such
fluctuations would probably be suppressed by ensemble average leaving only an average average value which would correspond
to the semiclassical result.

The results obtained from the quantum master equation (6) show that at small microwave driving the absorption
power scales as P ∝ Eac

2 (see Fig. S4). The results of numerical simulations of classical kinetic equation give the
same scaling.



22

-50

 0

 50

 100

 150

 200

 3  4  5  6  7  8  9  10  11

P
a
b
s
 /
 E

a
c
2
 [
a
.u

.]

J = ω/ωc

Eac = 0.1
Eac = 0.05
Eac = 0.02
Eac = 0.01

Supplementary Figure S4: Scaling dependence of the microwave absorption Pabs rescaled by incident microwave power ∝ E2
ac

on J (arbitrary units) for different amplitudes of microwave field Eac. The results are obtained from the quantum master
equation Eq. (S92) for a repulsive impurity potential (Ud = 90~ωc) at ωcτ = 100 and 0.01 ≤ Eac ≤ 0.1. The data show that
the scaling Pabs ∝ E2

ac is highly accurate. At the lowest microwave powers the data become more noisy and start to shows
individual resonances, we think that the sharp peaks comes from contributions of individual levels trapped around the impurity
that lead to sharp resonances due to the high ωcτ = 100 value. At higher microwave power the individual resonances are
broadened giving the semiclassical absorption curve.
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6. Estimates for charge density variation

In general we can write the following scaling form for the charge density vortex :

δne
ne

= f7(xR−1
c , yR−1

c , rdR
−1
c ,

qEac
mωcvF

,
ω

ωc
, ωcτ,

εF
~ωc

) (S98)

where f7 is a dimensionless function of its seven dimensionless arguments.
In the semiclassical limit the parameter εF

~ωc
is not relevant, this parameter describes the amplitude of microwave

induced Friedel oscillations. Also in the linear response regime δne

ne
∝ qEac

mωcvF
(due to the connection between the

rotating dipole and microwave power absorption this scaling is related to the ∝ E2
ac scaling for the absorbed power,

its accuracy is shown on Fig. S4).
This leads to the following scaling form:

δne
ne

=
qEac
mωcvF

f5(xR−1
c , yR−1

c , rdR
−1
c ,

ω

ωc
, ωcτ) (S99)

where f5 is a dimensionless function of the remaining five arguments.
Figs. S5,S6,S7 show the scaling dependence on the remaining parameters rdR

−1
c , ω

ωc
and ωcτ .

Fig. S5 shows that δne only weakly depends on rdR
−1
c , this is perhaps the most surprising result since the number of

electrons colliding with a given impurity during a cyclotron period is ∼ neRcrd, this would suggest that δne ∝ neRcrd.
Our simulations show that at least in the semiclassical limit, this argument does not hold when the map parameter
is small ε = qEac

rdω(ω−ωc) � 1 (see Eq. (S77)), in this case it seems that the ∝ r−1
d dependence from the kick amplitude

in the standard map equations partially cancels the ∝ rd dependence from the collision cross section. Of course in
the limit rd → 0 the map parameter ε diverges so that this cancellation holds only for sufficiently small excitation
field Eac. Other figures show an approximate 1/J dependence (for a fixed value of mod1J) in Fig. S6 and a weak
dependence on ωcτ in Fig. S7. Combining these results together we find the following scaling relation:

δne
ne

=
qEac
mωvF

f2(xR−1
c , yR−1

c ) (S100)

which is the result given in the main text.
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