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Abstract. We construct and study the Google matrix of Bitcoin transactions during the time period from
the very beginning in 2009 till April 2013. The Bitcoin network has up to a few millions of bitcoin users
and we present its main characteristics including the PageRank and CheiRank probability distributions,
the spectrum of eigenvalues of Google matrix and related eigenvectors. We find that the spectrum has an
unusual circle-type structure which we attribute to existing hidden communities of nodes linked between
their members. We show that the Gini coefficient of the transactions for the whole period is close to unity
showing that the main part of wealth of the network is captured by a small fraction of users.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.20.Hh World Wide Web, Internet

1 Introduction

The bitcoin crypto currency was introduced by Satoshi
Nakamoto in 2009 [1] and became at present an impor-
tant source of direct financial exchange between private
users [2]. At present this new cryptographic manner of fi-
nancial exchange attracts a significant interest of society,
computer scientists, economists and politicians (see e.g.
[3,4,5,6,7]). The amazing feature of bitcoin transactions
is that all of them are open to public at [8] that is drasti-
cally different from usual bank transactions deeply hidden
from the public eye.

Since the data of bitcoin transaction network are open
to public it is rather interesting to analyze the statistical
properties of this Bitcoin network (BCN). Among the first
studies of BTN we quote [9] and [10,11] where the statis-
tical properties of BCN have been studied including the
distribution of ingoing and outgoing transactions (links).
Thus it was shown that a distribution of links is character-
ized by a power law [10,11] which is typical for complex
scale-free networks [12]. Due to this it is clear that the
methods of complex networks, such as the World Wide
Web (WWW) and Wikipedia, should find useful applica-
tions for the BCN analysis. In particular, one can men-
tion in this context the important PageRank algorithm
[13] which is at the foundation of the Google search en-
gine [14]. Applications of this and related algorithms to
various directed networks and related Google matrix are
discussed in [15]. Previous studies of the world trade net-
work [16,17] showed that for financial transactions or re-
lated trade of commodities it is useful to consider also the
CheiRank probabilities for a network with inverted links
[18] and we will use this approach also here. In addition we

analyze the spectrum of the Google matrix of BCN using
the powerful numerical approach of the Arnoldi algorithm
as described in [19,20,21]. We note that a possibility to
use the PageRank probabilities for BCN was briefly noted
in [22].

In our studies we use the bitcoin transaction data col-
lected by Ivan Brugere from the public block chain site
[8] with all bitcoin transactions from the bitcoin birth in
January 11th 2009 till April 2013 [23].

The paper is composed as follows: In Section 2 we
describe the main properties of BCN, the Google ma-
trix is constructed in Section 3, the numerical methods
of its analysis are described in Section 4, the spectrum
and eigenvectors of G matrix are analyzed in Sections 5
and 6, the Gini coefficient of BCN is determined in Section
7 and the discussion is given in Section 8.

2 Global BCN properties

From the bitcoin transaction data [23] of the period from
the very beginning in January 11th 2009 to April 10th
2013, we construct the BCN and related Google matrix.
This weighted and directed network takes into account
the sum of all transactions, measured in units of bitcoin,
from one user to another during a given period of time.
The total number of transactions in this period is Nt =
28.140.756. The minimum transaction value is 10−8 (was
10−3) bitcoin for the period after (before) march 2010.

The global statistical characteristics of transactions
are shown in Figs. 1, 2, 3. Thus Fig.1 shows the fre-
quency histogram Nf (Na), Nf (Nb) of BCN in this pe-
riod, given the dependencies for outgoing links (or sell-
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Fig. 1. (color online) Frequency histograms of BCN Nf in
the period from January 11th 2009 to April 10th 2013. Left
panel shows the frequency distribution Nf of number of sellers
(and buyers) transactions Na (and Nb). Right panel shows the
frequency of transactions with the same given partners Na,b.

ers Na), ingoing links (or buyers Nb), and transactions
of the same partners from a to b (Na,b). The fit of the
data is in a satisfactory agreement with an algebraic de-
cay Nf ∝ 1/Na

β , Nf ∝ 1/Nb
β , Nf ∝ 1/Na.b

β with
β = 2.1± 0.1, β = 1.8± 0.1, β = 2.2± 0.1 respectively.

Top panel of Fig.2 shows the histogram of bitcoin trans-
action volume vm for the whole period (2009-2013) mea-
sured in bitcoin. It is visible that it has peaks in values of
10−8, 10−4 and 1. At the same time there are also transac-
tions with many bitcoins and vm as large as 834352.9. The
balance of each user Bu can be defined as the sum of all
ingoing transactions minus the outgoing ones measured in
bitcoins. This balance Bu is shown in the bottom panel
of Fig.2. For a majority of users the balance is close to
zero but in a few cases Bu is strongly negative or positive.
There are also visible peaks at values Bu = 30, 25, 20, 10.

In order to study BCN time evolution we divide the
whole period of time in year quarters from 2009 to 2013
(we take only half of years in 2009 since the number of
transactions is very small). Some characteristic numbers of
BCN are shown in Fig.3. There is a significant growth with
time for the number of transactions Nt, and the integrated
number of transactions Nit (from the beginning till given
quarter) and the number of nodes N (partners) for the
same period of time.

At the next step we describe the construction of the
Google matrix from the bitcoin transactions described above.

3 Construction of Google matrix of BCN

In this work we use the notation “BCYearQuarter” (e.g.
BC2010Q2) for the different bitcoin networks, eventually
with an additional “*” for the CheiRank case (e.g.
BC2010Q2*). We consider 16 (or 32 including the
CheiRank cases) networks BC2009Q2, BC2009Q4 to
BC2013Q2 with network sizes N and link numbers N`
ranging from N = 142 and N` = 117 (BC2009Q2) to N =
6297009 and N` = 16056427 (BC2013Q2) with typical

Fig. 2. (color online) Frequency histogram Nf of bitcoin trans-
action volume vm measured in bitcoins on top panel (histogram
is equidistant in log10 vm with a distance of 0.2). Bottom panel
shows the frequency histogram Nf of user balance Bu defined
as the difference between ingoing and outgoing transactions in
bitcoin units. Left and right insets show zoom in vicinity of
zero balance for negative (left) and positive (right) values.

ratios N/N` between 1 for the smallest networks and 2.5−
3 for the largest networks. For the whole period of all
quarters we have the total G matrix size N = 6297539
with N` = 16056427 links. The values of N,N` and total
volume for all quarters are given in Table 1.

As usual we write the matrix associated to such a net-
work as [15,21]:

S = S0 +
1

N
edT (1)

where eT = (1, . . . , N) is the (transpose of the) uniform
vector with unit entries, d is the dangling vector with unit
entries dl = 1 if l corresponds to an empty column of S0

and dl = 0 for the other columns. The elements (S0)lk of
the matrix S0 correspond to the value of the bitcoin trans-
action from a node k to another node l normalized by the
total value of transactions from the node k to all nodes.
A similar construction of S0 is used for the world trade
network [16]. For the CheiRank case [18] the direction of
the transaction is inverted in this scheme, i.e. (S∗0 )lk cor-
responds to the value of the bitcoin transaction from the
node l to k normalized by the total value of transactions
from all nodes to the node k. According to our raw data
the bitcoin transactions up to 2010Q2 were done in units
of 10−3 bitcoins and afterwards in units of 10−8 bitcoins.
Therefore the raw transaction values and also the resulting
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Fig. 3. (color online) Characteristic evolution of BCN with
year quarters (halves in 2009) from 2009 to April 2013. Time
evolution is shown for number of transactions Nt in a given
quarter (black circles); number links Nit of integrated trans-
actions from the beginning till given quarter (red squares);
number of nodes given by partners N (green diamonds); and
total volume of bitcoins (blue triangles).

Network N N` total volume
(in bitcoins)

BC2009Q2 142 117 51499
BC2009Q4 220 188 269526
BC2010Q1 645 632 681867
BC2010Q2 7706 11275 2.33662× 106

BC2010Q3 37818 57437 9.0931× 106

BC2010Q4 70987 111015 1.86444× 107

BC2011Q1 204398 333268 3.44654× 107

BC2011Q2 697401 1328505 1.30747× 108

BC2011Q3 1547349 2857232 2.0177× 108

BC2011Q4 1885400 3635927 2.87714× 108

BC2012Q1 2186598 4395611 3.2546× 108

BC2012Q2 2645532 5655802 5.04581× 108

BC2012Q3 3742691 8381654 1.02381× 109

BC2012Q4 4672122 11258315 1.17078× 109

BC2013Q1 5998239 15205087 1.29944× 109

BC2013Q2 6297009 16056427 1.31479× 109

Table 1. Size (N), number of links (N`) and total volume of
used networks.

(column sum normalized) entries of the matrix S0 are ra-
tional numbers. For computations using normal precision
numbers (i.e. standard double precision with a mantissa
of 52 bits) these rational numbers can simply be replaced
by the closest floating point number. However, for high
precision computations using the library GMP [24], the
precise rational values were kept as long as possible and,
only when necessary, rounded to high precision floating
point values with their maximal precision.

For the purpose of PageRank computations we also
consider the Google matrix with damping factor α given
by:

G = αS + (1− α) 1
N
e eT (2)

Fig. 4. (color online) PageRank and CheiRank distributions
ordered by indices K and K∗ on top and bottom panel re-
spectively. The bitcoin networks are taken by quarters of years
(halves in the case of 2009) for 2009 (yellow), 2010 (red), 2011
(black), 2012 (blue) and 2013 (orange) with lines correspond-
ing to Q1 (solid line), Q2 (dotted line), Q3 (dashed line) and
Q4 (dot-dashed line).

where we use α = 0.85 corresponding to its typical choice
[13,14,15]. For the network with inverted direction of trans-
actions, corresponding to the CheiRank case, we haveG∗ =
αS∗ + (1− α) 1

N e eT .
The right eigenvectors ψm of G are determined by the

equation
∑
j′ Gjj′ψi(j

′) = λiψi(j) with eigenvalues λi.
At α < 1 the largest eigenvalue is λ = 1 and the corre-
sponding eigenvector has only positive component which
have (for WWW networks) the meaning of probabilities
P (j) (

∑
j P (j) = 1) to find a random surfer on a node

j [14]. We can order all nodes in the order of monotonic
decrease of probability P (K) with maximal probability
at the PageRank index K = 1 and then at K = 2, 3....
In a similar way for the CheiRank case of G∗ we obtain
the CheiRank vector at λ = 1 with CheiRank probability
P ∗(K∗) being maximal at the CheiRank index K∗ = 1
and then at K∗ = 2, 3.... The PageRank vector is effi-
ciently determined by the power iteration algorithm [13,
14].

The dependencies of the PageRank P (K) and CheiRank
P ∗(K∗) probabilities on their indices K,K∗ are shown in
Fig. 4 for various quarters of BCN. We see that the distri-
butions become stabilized at last quarters when the net-
work size becomes larger reaching its steady-state regime.
Thus for BC2013Q1 we find that the probability approx-
imately decays in a power law with P ∝ 1/Kν , P ∗ ∝
1/K∗ν with ν = 0.86± 0.06, ν = 0.73± 0.04 respectively
(the fit is done for the range 10 < K,K∗ < 105). The value
of ν is similar to the values found for other directed net-
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works (see e.g. [15,16,17]) but we note that this is only an
approximate description of the numerically found behav-
ior (see detailed discussion of algebraic decay for WWW
networks in [28]).

4 Numerical methods for BCN Google
matrix diagonalization

We describe here the various skillful numerical methods
used for diagonalization of G and G∗. Their use had been
required due to heavy numerical problems for accurate
computation of the eigenvalues of these matrices and re-
lated eigenvectors.

First we introduce the concept of invariant isolated
subsets (for more details we refer to [25]). These subsets
are invariant with respect to applications of S. The re-
maining nodes not belonging to an invariant subset (be-
low a certain maximum size, e.g. 10% of the network size)
form the wholly connected core space. The practical com-
putation of these subsets can be efficiently implemented
in a computer program [25], eventually merging subspaces
with common members, which provides a sequence of dis-
joint subspaces invariant by applications of S. Therefore
we obtain a subdivision of the network nodes in Nc core
space nodes and Ns subspace nodes (belonging to at least
one of the invariant subsets) corresponding to the block
triangular structure of the matrix S:

S =

(
Sss Ssc
0 Scc

)
. (3)

Here Sss is composed of many small diagonal blocks for
each invariant subspace and whose eigenvalues can be ef-
ficiently obtained by direct (“exact”) numerical diagonal-
ization.

We have computed for the networks up to BC2011Q4
(with N = 1884918 and N` = 3635927) (a part of) the
complex eigenvalue spectrum of the matrix S (i.e. G(α)
for α = 1) with eigenvalues closest to the unit circle. For
this we employed basically the method of Refs. [25,26]
based on (3) to compute exactly the eigenvalues associ-
ated to the invariant subsets, typically a very modest num-
ber. For each invariant subspace there is at least one unit
eigenvalue λ = 1 which is therefore possibly degenerate (in
case of several invariant subspaces). The remaining eigen-
values associated to the main core space (with |λ| < 1)
are obtained by the Arnoldi method [27,19] with Arnoldi
dimensions up to nA = 16000. This requires for the net-
work BC2011Q4 a machine with 256 GB (using standard
double precision numbers).

For the larger networks (BC2012Q1 and later) it would
be necessary to increase the available memory or to reduce
the value of nA. However, it turns out that the density
of eigenvalues close to the unit circle is so high that a
significant reduction of nA does not allow to obtain (even
a small number) of reliable core space eigenvalues. This
situation is quite different from other networks such as
certain university networks [25] or Wikipedia [26] where
it was easier to access numerically a reasonable number of

the top core space spectrum of the matrix S. Furthermore
for the cases up to BC2011Q4 we also computed at least 20
eigenvectors of 20 selected (core space) eigenvalues close
to the unit circle such that roughly λj ≈ |λj | exp(i2πj/19)
for j = 0, . . . , 19 and |λj | ≈ 1.

For the smallest bitcoin networks BC2009Q2,
BC2009Q4 and BC2010Q1 with N ≤ 645 the core space
eigenvalue spectrum is actually easily accessible by direct
diagonalization or full Arnoldi diagonalization (with some
subtle effects for the small eigenvalues requiring high pre-
cision computations).

The four networks BC2010Q2 and BC2010Q2*
(BC2010Q3 and BC2010Q3*) play a somewhat special
role in our studies since on one hand they are sufficiently
small with N = 7706 (or N = 37818) to allow (at least in
theory) to compute all (or nearly all) non-zero eigenvalues
and on the other hand they are still sufficiently large to
have an interesting spectrum, comparable to the spectra
of the larger networks, especially with a strong concentra-
tion of the majority of (non-vanishing) eigenvalues close
to the unit circle.

However, it turns out that the two cases of BC2010Q2
and BC2010Q2* suffer from a serious numerical problem
similar to the citation network of Physical Review [21].
Using both direct diagonalization (i.e. using Householder
transformations to transform the initial matrix to Hessen-
berg form and final diagonalization of the latter by the QR
algorithm with implicit double shift) and full Arnoldi di-
agonalization (choosing a sufficiently large value of nA and
QR algorithm to diagonalize the Arnoldi matrix which is
also of Hessenberg form) with normal precision floating
point numbers we find that there are several “rings” of
eigenvalues close to the unit circle. The outer two rings
seem to contain reliable and correct eigenvalues but al-
ready the third ring with |λ| ≈ 0.94 and all rings be-
low are numerically completely unreliable since the corre-
sponding eigenvalues change completely between the two
methods and also different implementations of them (i.e.
applying a permutation in the network nodes but keeping
the same network structure, choosing different ordering in
the summation when computing the scalar products for
the Arnoldi method, using slightly different but mathe-
matical equivalent implementations of the QR algorithm,
using different runs with parallelization which amounts to
different rounding errors for the sums in the scalar prod-
ucts etc.). Therefore we conclude that eigenvalues with
|λ| < 0.95 are numerically incorrect as long as we use
methods based on normal precision numbers.

This situation is quite similar to the (nearly) triangu-
lar citation network of Physical review [21] where eigen-
values with |λ| < 0.4 − 0.5 are numerically wrong. The
reason of this behavior is due to large Jordan blocks for
the highly degenerate zero eigenvalue producing numeri-
cally artificial rings of incorrect eigenvalues in the complex
plane with radius r ∼ ε1/d [20,21] with ε being the ma-
chine precision (i.e. ε = 10−16 for simple double precision
numbers or ε = 2−p for high precision numbers with p bi-
nary digits) and d� 1 being the dimension of the Jordan
block. The bitcoin networks do not have the (near) trian-
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gular structure, responsible for this problem in [21], but
the low ratio of N`/N ≈ 1.5, reducing considerably the
number of non-zero matrix elements in S0, also creates
large Jordan subspaces and here the effect is even worse
as compared to Ref. [21].

To solve this problem and obtain final reliable eigen-
values with precision 10−15, we implemented all steps of
the numerical diagonalization methods: the computation
of the Arnoldi decomposition, reduction of an arbitrary
matrix to Hessenberg form using Householder transforma-
tions, final diagonalization of Hessenberg matrices by the
QR algorithm, with high precision floating point numbers
using the GMP library [24]. (In Ref. [21] only the com-
putation of the Arnoldi decomposition was implemented
with the GMP library.).

For the two networks BC2010Q2 and BC2010Q2* we
have been able to push the direct high precision diagonal-
ization (Householder transformation to Hessenberg form
and QR algorithm) with different precision up to p = 4096
binary digits confirming the scaling r ≈ 2−p/d for the
radius of incorrect eigenvalues induced by large Jordan
blocks. For p = 4096 we find a maximal radius r ≈ 0.01
corresponding to a value of d ≈ 616 for the dimension of
the corresponding Jordan block. In normal precision (with
p = 52) the same value of d corresponds to a radius ≈ 0.94
confirming exactly the observations of the initial normal
precision results.

The direct diagonalization in high precision is however
quite expensive in both computation time and memory
requirement. In this context the (high precision) Arnoldi
method is more efficient since it automatically breaks off
when it has explored an S-invariant subspace which is
detected by a vanishing or very small coupling matrix el-
ement in the Arnoldi matrix at some value of nA (see
Refs. [19,21] for more details on this point). If we assume
that the initial vector (which we chose either uniform or
random with two different realizations) contains contri-
butions from all eigenvectors associated to non-vanishing
core space eigenvalues the method will, at least in theory,
produce the complete spectrum of these eigenvalues us-
ing a considerably reduced subspace for the final (QR-)
diagonalization. Here we have chosen a break off limit of
ε = 2−p/2 (with p being the precision number of binary
digits) for the final coupling matrix element which scales
to zero with increasing precision but is still much larger
than the computation precision (2−p) allowing to take into
account the subtle effects due to the Jordan blocks cre-
ating numerical errors on a scale much larger than the
computation precision. In this case we obtain a reduced
dimension of about 2000-3000 (depending on the choice
of random or uniform initial vectors and on both cases
of BC2010Q2 or BC2010Q2*) instead of 7706. Here the
Arnoldi method with a precision of p = 8192 binary digits
(which is considerably less expensive than the direct diag-
onalization with p = 4096) or even only p = 3072 (for the
case of BC2010Q2* with uniform initial vector) allows to
obtain the complete spectra of non-vanishing eigenvalues
for these two networks. The remaining small rings of nu-
merical incorrect Jordan block induced eigenvalues can be

easily removed from the correct eigenvalues by comparing
the spectra obtained by different initial vectors.

We also employed (with some suitable technical mod-
ifications which we omit here) the rational interpolation
method which we developed in Ref. [21]. This method is
also based on high precision computations to determine
the zeros of a certain rational function which are the core
space eigenvalues satisfying the condition dT ψ 6= 0 for
the corresponding eigenvector ψ and the above introduced
dangling vector d. It turns out that for the two networks
BC2010Q2 and BC2010Q2* all non-vanishing core space
eigenvalues satisfy this condition but for the other two net-
works BC2010Q3 and BC2010Q3* there a few core space
eigenvalues with dT ψ = 0 which we determined separately
by a method described in Ref. [21] exploiting that they are
degenerate subspace eigenvalues of the matrix S0 (which
are different from the subspace eigenvalues of S which we
also computed).

The rational interpolation method is highly effective
with very modest memory requirements and the possi-
bility to use partial low-precision spectra to accelerate
the computation of the zeros to obtain recursively higher
precision spectra. Here we obtained for BC2010Q2 and
BC2010Q2* precise and complete spectra for p = 6144
but we also performed confirmation runs up to p = 12288.
The results of this method confirm exactly the numerical
values (with accuracy of 10−15 for all of the final eigenval-
ues) and the precise number of non-vanishing core space
eigenvalues already obtained by the high precision Arnoldi
method. We mention that the eigenvalues of the direct di-
agonalization correspond numerically with the same accu-
racy to these results (after removal of the numerically in-
correct Jordan induced eigenvalues) but for p = 4096 this
method misses a small number (about 3−4) of the smallest
non-vanishing core space eigenvalues (with |λ| ∼ 5×10−3).

5 Spectrum of BCN Google matrix

We present here the main results obtained for the spec-
trum and some eigenvectors of G and G∗ by the numerical
methods described above.

For the two networks BC2010Q2 and BC2010Q2*, with
a full network size of N = 7706, we find that there are ex-
actly Nc = 1967 (Nc = 1984) non-vanishing core space
eigenvalues and Ns = 15 (Ns = 2) non-vanishing sub-
space eigenvalues (of S) for BC2010Q2 (or BC2010Q2*)
with the complete and numerically accurate spectra shown
in Fig. 5. The main two outer rings close to the unit circle
(with |λ| > 0.97) contain 1626 (1621) core space eigen-
values which is more than 80% of the spectrum (of non-
vanishing eigenvalues). The non-vanishing subspace eigen-
values λ, also shown in the same figure, and their multi-
plicities m are m = 7 (λ = 1), m = 6 (λ = −1), m = 1
(λ = −0.723606797749979 and λ = −0.276393202250021)
for BC2010Q2 and m = 1 (λ = ±1) for BC2010Q2*. All
other eigenvalues (about ∼ 5700) are zero and correspond
to Jordan subspaces with potentially rather large dimen-
sions being responsible for the numerical problems when
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limiting the computations to normal floating point preci-
sion.
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Fig. 5. (Color online) Complex eigenvalue spectrum of
the Google matrix associated to the network BC2010Q2
(BC2010Q2*) in left (right) panels. Shown are the full spec-
trum in top panels or a zoomed representation for the re-
gion λ ≈ 1 in bottom panels. The red dots (crosses) are core
space eigenvalues obtained by high precision Arnoldi computa-
tions and also the rational interpolation method and the blue
thick dots (square boxes) are invariant subspace eigenvalues
obtained by the normal/high precision Arnoldi method or di-
rect diagonalization. The green line (if visible and not hidden
by the red dots) is the unit circle. In top panels the apparent
“red circle” corresponds in reality to a high density of indi-
vidual red dots for the complex core space eigenvalues whose
structure is better visible in the zoomed representation in bot-
tom panels. The top core space eigenvalues (red crosses) which
are very close to the top sub space eigenvalue at λ = 1 (blue
square box) are 0.99990029706715 and 0.999678494064214 (or
0.999998157039589) for BC2010Q2 (BC2010Q2*). The 3rd top
core space eigenvalue 0.995663863983884 for BC2010Q2 is al-
ready clearly outside the blue square box. More details for the
computation method and the subspace eigenvalues are given
in the main text.

For the two networks BC2010Q3 and BC2010Q3*, with
a full network size of N = 37818, the numerical prob-
lems due to Jordan blocks for the zero eigenvalue are
less severe but still present. Here the normal precision
Arnoldi method allows to compute about 7800-7900 re-
liable eigenvalues within an error of 10−6 and which are
rather strongly localized close to the boundary circle (if
one tries larger values of nA one obtains only numeri-
cal incorrect eigenvalues). Here the high precision Arnoldi
method is strongly limited due to memory requirements
and it is not possible to go beyond a precision of p = 512
which produces about 500-700 additional reliable eigenval-
ues and the resulting spectra are still quite concentrated

close to the boundary circle. However, the rational inter-
polation method still works very well due to its high effi-
ciency. It turns that at a binary precision of p = 30720
using about 18400 support points (for the rational in-
terpolation scheme) this method produces Nc = 9192
(Nc = 9145) non-vanishing core space eigenvalues (includ-
ing 4 pairs of doubly degenerate eigenvalues in both cases).
However, without going into technical details, our results
indicate that these numbers may still increase very slightly
when increasing the precision and also the number of sup-
port points but we are confident that for both networks
BC2010Q3 and BC2010Q3* there are about Nc ≈ 9200
non-vanishing core space eigenvalues which is about 25%
of the full network size (a similar ratio we already found for
BC2010Q2 and BC2010Q2*). The additional 1300-1400
eigenvalues with respect to the spectra obtained by the
normal precision Arnoldi method fill out rather uniformly
the inner part of the complex unit circle as can be seen in
Fig. 6.

Furthermore for BC2010Q3 (BC2010Q3*) there also
Ns = 56 (Ns = 2) subspace eigenvalues for S (blue
dots/squares in Fig. 6). Here some eigenvalues are on the
unit circle with |λ| = 1 and degeneracy m = 23 (m = 1)
for λ = 1, m = 17 (m = 1) for λ = −1 and m = 2 (m = 0)
for λ = (−1± i

√
3)/2. In both cases there also a few core

space eigenvalues (given as degenerate subspace eigenval-
ues of S0, green dots) which were determined by another
method [21] since they are not necessarily found by the
rational interpolation method. About 8000 reliable eigen-
values are found by the normal precision Arnoldi method
correspond to the 4-5 rings of eigenvalues close to the unit
circle and visible in the center panels of Fig. 6.

We mention that the high precision variants of the
three methods are also useful to compute the full spec-
tra for the three smaller networks (up to BC2010Q1 with
N = 645) and also for the invariant subspace spectra (for
nearly all bitcoin networks) since they allow to remove
in a reliable way a certain number of numerical incorrect
eigenvalues below 10−3 obtained by the normal precision
computations. For these cases the computation times are
negligible and the required precision is rather modest (typ-
ically between p = 256 and p = 1024). Here the number
of non-vanishing core space eigenvalues Nc and subspace
eigenvalues Ns are given by Nc = 4 (6) and Ns = 2 (0)
for BC2009Q2 (or BC2009Q2*) with N = 142, Nc = 13
(15) and Ns = 4 (2) for BC2009Q4 (or BC2009Q4*) with
N = 220 and Nc = 26 (30) and Ns = 6 (2) for BC2010Q1
(or BC2010Q1*) with N = 645. The subspace eigenvalues
are always ±1 (except for BC2009Q2* where Ns = 0 and
there are no subspace eigenvalues) eventually with dou-
ble (or triple) degeneracy if Ns = 4 (or Ns = 6). Clearly
in all these cases the number of the non-vanishing core
space and subspace eigenvalues constitutes only a small
fraction of the spectrum with all other eigenvalues being
zero corresponding to certain Jordan subspaces.

For the larger networks (between BC2010Q4 with N =
70987 and BC2011Q4 with N = 1884918) we applied
the normal precision Arnoldi method with nA = 16000.
However, in view of the numerical problems visible for
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Fig. 6. (Color online) Complex eigenvalue spectrum of
the Google matrix associated to the network BC2010Q3
(BC2010Q3*) in left (right) panels. Shown are the full spectra
in top panels and two zoomed representations for the region
λ ≈ 1 in center and bottom panels. The red dots (crosses)
are core space eigenvalues obtained by the rational interpo-
lation method in high precision, the blue thick dots (square
boxes) are invariant subspace eigenvalues obtained by the nor-
mal/high precision Arnoldi method or direct diagonalization
and the thick green dots in top panels correspond to degenerate
subspace eigenvalues of S0 which are also core space eigenval-
ues of S and not necessarily found by the rational interpolation
method (see Ref. [21] for explanations). There are 2 (is 1) top
core space eigenvalue(s) (red cross(es)) very close to the top
sub space eigenvalue at λ = 1 i.e. nearly or completely inside
the blue square box (in bottom panels) and the 1st top core
space eigenvalue is 0.999968720409915 (0.99999983940032) for
BC2010Q3 (BC2010Q3*).

BC2010Q2/3, we performed different runs with slightly
different implementations (e.g. different summation or-
der for the scalar product in the Arnoldi method) lead-
ing to different rounding errors and verified how many
eigenvalues were numerically identical with an error be-
low 10−6. For the two cases BC2011Q4 and BC2011Q4*
with N = 1884918 and nA = 16000 we obtain about
12000 numerically reliable core space eigenvalues shown
in Fig. 7 and which are all very close to the unit circle
with |λ| > 0.99. Fig. 7 also shows the subspace eigenval-
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Fig. 7. (Color online) Complex eigenvalue spectrum of
the Google matrix associated to the network BC2011Q4
(BC2011Q4*) in left (right) panels. Shown are about 12000
“reliable” top eigenvalues obtained by the Arnoldi method in
normal precision with nA = 16000 in top panels (red dots/red
circle) or a zoomed representation (red crosses) for the region
λ ≈ 1 in bottom panels. The blue thick dots (square boxes) are
invariant subspace eigenvalues obtained by the normal/high
precision Arnoldi method or direct diagonalization. The green
line (if visible and not hidden by the red dots) is the unit circle.
In top panels the apparent “red circle” corresponds in reality to
a high density of individual red dots for the complex core space
eigenvalues whose structure is better visible in the zoomed rep-
resentation. There are 8 (is 1) top core space eigenvalue(s) (red
cross(es)) very close to the top sub space eigenvalue at λ = 1
i.e. nearly or completely inside the blue square box and the 1st
top core space eigenvalue is 0.99999999417 (0.99999996048) for
BC2011Q4 (BC2011Q4*).

ues with Ns = 332 (2) for BC2011Q4 (BC2011Q4*). The
subspace spectrum of BC2011Q4 contains 242 eigenvalues
on the unit circle with |λ| = 1 which are λ = 1 (degeneracy
m = 127), λ = ±i (both with m = 1), λ = (−1 ± i

√
3)/2

(both with m = 3) and λ = −1 (m = 107). The remaining
90 subspace eigenvalues with 0 < |λ| < 1 are also visible in
Fig. 7. Here only one eigenvalue at λ = −1/2 has a double
degeneracy. The subspace spectrum of BC2011Q4* con-
tains only the two (non-vanishing) eigenvalues λ = ±1
(both with m = 1).

The convergence with the increase of the Arnoldi di-
mension nA is illustrated in the top panels of Fig. 8 for
BC2011Q4 showing the dependence j(γj) where γj =
−2 ln |λj | with λj being the core space eigenvalue. For S
and S∗ the comparison between the two maximal val-
ues nA = 16000 and nA = 12000 indicates that about
j ≈ 5000 − 6000 eigenvalues up to γ ≈ 0.01 are reliable.
However, we remind that the comparison of different com-
putations for nA = 16000 shows that the number of reli-
able eigenvalues is actually higher ≈ 12000 corresponding
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Fig. 8. (Color online) Level number j versus the decay width
γj = −2 ln(|λj |) with λj being the j-th core space eigen-
value computed by the normal precision Arnoldi method with
uniform initial vector and Arnoldi dimension nA. The top
left (right) panel corresponds to the network BC2011Q4 (or
BC2011Q4*) for different values of nA with 2000 ≤ nA ≤
16000. The bottom left (right) panel corresponds to the four
networks BC2011Qk, (or BC2011Qk*) for k = 1, 2, 3, 4 and
nA = 16000.

to γ ≈ 0.015. The circle structure well visible in Fig. 7
is responsible for appearance of large steps in the depen-
dence j(γ) well seen in Fig. 8. A similar dependence γj
is also present for other quarters BC2011Q1, BC2011Q2,
BC2011Q3 shown in bottom panels of Fig. 8.

6 Eigenstates of BCN Google matrix

The decay of PageRank and CheiRank probabilities at dif-
ferent quarters is presented in Fig. 4. Here we describe the
properties of several eigenstates. As soon as the eigenval-
ues are determined the eigenstates corresponding to the
selected eigenvalues can be efficiently computed numeri-
cally as described in [15,19,26].

The results for 6 eigenvectors of BC2010Q2 are shown
in Fig. 9 and for BC2011Q4 in Fig. 10. The selected eigen-
vectors ψ0, ψ1, ψ6, ψ10, ψ19 (additional to PageRank and
CheiRank vectors) are marked by an index j correspond-
ing to 20 core eigenvalues closest to the unit circle with
uniformly distributed eigenphases between 0 and π. In the
top panels of Fig. 9 we order all amplitudes |ψj | in mono-
tonically descending order with their own local-Rank in-
dex Kj with maximum at Kj = 1 (Kj is different from
PageRank indexK). The interesting feature ofs these eigen-
states is the presence of large plateaus where for hundreds
of nodes the amplitude |ψj | remains practically indepen-
dent of Kj . This indicates a presence of relatively large
communities of users coupled by certain links. The bot-
tom panels of Fig. 9 show the amplitudes |ψj | as a func-
tion of the global PageRank index K. For the BC2010Q2
network the nodes with largest amplitudes |ψj | are located
at relatively large K values with K < 100. It is possible

10
-15

10
-10

10
-5

10
0

10
0

10
1

10
2

10
3

10
4

P
,|

ψ
j| 

K, Kj

BC2010Q2

P
ψ0
ψ1
ψ6

ψ10
ψ19

10
-15

10
-10

10
-5

10
0

10
0

10
1

10
2

10
3

10
4

P
,|

ψ
j| 

K

BC2010Q2

10
-10

10
-5

10
0

10
0

10
1

10
2

10
3

10
4

P
* ,|

ψ
j| 

K
*
, Kj

BC2010Q2*

P
*

ψ0
ψ1
ψ6

ψ10
ψ19

10
-10

10
-5

10
0

10
0

10
1

10
2

10
3

10
4

P
* ,|

ψ
j| 

K
*

BC2010Q2*

Fig. 9. (Color online) Top panels: PageRank P (or CheiRank
P ∗) at damping factor α = 0.85 and modulus |ψj | of 5
selected eigenvectors of S for the network BC2010Q2 (or
BC2010Q2*) versus the index K for PageRank P (K∗ for
CheiRank P ∗) or the individual ordering index Kj for each
eigenvector ψj . Bottom panels: The same as top panels but
only using the PageRank (CheiRank) index K (K∗) on the
x-axis for all shown vectors. Note that the given vector index
values 0, 1, 6, 10, 19 do not correspond to the level number of
Fig. 8 but they correspond to an index of a selected set of
20 core space eigenvalues closest to the unit circle and with
uniformly distributed eigenphases between 0 and π, i.e. the
selected eigenvalues are roughly λj ≈ |λj | exp(−i2πj/19) for
j = 0, . . . , 19 and with |λj | ≈ 1. In particular: λ0 = 0.99990030
(0.99999816), λ1 = 0.99967849 (0.99612525 + i0.00704040),
λ6 = 0.63708435 + i0.75027164 (0.63887779 + i0.75813987),
λ10 = 0.00130422 + i0.98315766 (−0.00043259 + i0.99066741),
and λ19 = −0.99053491 (−0.99014386) for BC2010Q2 (or
BC2010Q2*).

that these nodes correspond to bitcoin miners. However,
a significant number of nodes with relatively large am-
plitudes are located at very high values K ∼ 2000. For
the Google matrix G∗ all large amplitudes are located at
large values of the CheiRank index K∗ > 500. For the
larger BC2011Q4 network, shown in Fig. 10 we find the
presence of similar plateau structure for eigenstate ampli-
tudes.

Similarly to Wikipedia and other networks [15] it is
convenient to present the distribution of network nodes on
the CheiRank-PageRank plane (K,K∗) shown in Fig. 11
for the cases of BC2010Q2 of Fig. 9 and BC2011Q4 of
Fig. 10. We see that for BC2010Q2 the density distribu-
tion of N nodes on (K,K∗)-plane is still strongly fluctuat-
ing, but for BC2011Q4 it starts to stabilize and becomes
close to the density of our largest network of BC2013Q2
shown in Fig. 12. The important feature of the stabilized
density distributions of BC2011Q4 and BC2013Q2 is the
fact that the maximum of distribution is located at the
diagonal K = K∗. This is similar to the situation of the
world trade network [16,17] where each country (node) or
user for BCN tries to keep trade balance between outgoing
(export) and ingoing (import) flows.
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Fig. 10. (Color online) PageRank P (or CheiRank P ∗)
at damping factor α = 0.85 and modulus |ψj | of 5 se-
lected eigenvectors of S for the network BC2011Q4 (or
BC2011Q4*) versus the index K for PageRank P (K∗

for CheiRank P ∗) or the individual ordering index Kj for
each eigenvector ψj . The given vector index is similar to
Fig. 9. The eigenvalues of the shown eigenvectors are: λ0 =
0.99999999 (0.99999996), λ1 = 0.99999322 (0.99907654),
λ6 = 0.64270357 + i0.76431760 (0.64271106 + i0.76429326),
λ10 = −0.00116375+i0.99865094 (−0.00117162+i0.99862722),
and λ19 = −0.99999317 (−0.99934321) for BC2011Q4 (or
BC2010Q4*).

In Fig. 11 we show by red crosses the location of top
largest amplitudes |ψj | at j = 10 for Google matrices G
(left column) and G∗ (right column). We see that only
a few large amplitudes are located at leading (smallest)
values of K and K∗. This shows that the vector ψ10 cor-
responds to a certain rather isolated community.

The proximity of the density distribution to the di-
agonal K = K∗ leads to a significant correlation between
PageRank and CheiRank vectors P (K(i)) and P ∗(K∗(i)).
This correlation is convenient to characterized by the cor-
relator [15,18,26] κ = N

∑N
i=1 P (K(i))P ∗(K∗(i))−1. The

large values of κ corresponds to a strong correlation of
PageRank and CheiRank probabilities, while κ close to
zero or even slightly negative appears to uncorrelated vec-
tors P and P ∗. The dependence of κ on the network size
N is shown in Fig. 13 (right panel) where the correlator
is becoming very large up to κ ≈ 104 for the last quarters
of BCN. The frequency distribution of correlator compo-
nents κi = NP (K(i))P ∗(K∗(i)) for three cases at differ-
ent quarters is shown in the left panel of Fig. 13. These
distribution show the presence of very active users with
large κi values corresponding to their expected high ac-
tivity of bitcoin outgoing and ingoing transactions. It may
be rather interesting to determine the hidden identity of
users with largest κi values.

7 Gini coefficient of BCN

In economy the distribution of wealth of a certain pop-
ulation is often characterized by the Gini coefficient pro-
posed in 1912 (see e.g. [29,30,31]). The Gini coefficient is
typically defined using the Lorenz curve which plots the
fraction y of the total income of a fraction x of the popu-
lation with the lowest income versus x. The line at y = x
thus represents perfect equality of incomes. The Gini coef-
ficient is the ratio of the area that lies between the line of
equality and the Lorenz curve normalized by the total area

Fig. 11. (Color online) Density of nodes W (K,K∗) on
PageRank-CheiRank plane (K,K∗) averaged over 100 × 100
logarithmically equidistant grids for 0 ≤ lnK, lnK∗ ≤ lnN ,
the density is averaged over all nodes inside each cell of the grid,
the normalization condition is

∑
K,K∗W (K,K∗) = 1. Color

varies from blue at zero value to red at maximal density value.
In order to increase the visibility large density values have been
reduced to (saturated at) 1/16 of the actual maximum density.
At each panel the x-axis corresponds to lnK and the y-axis to
lnK∗. Both top panels correspond to BC2010Q2 for K and
to BC2010Q2* for K∗ and both bottom panels to BC2011Q4
for K and to BC2011Q4* for K∗. The red crosses show the
top 1000 nodes of the eigenvector ψ10 used in Figs. 9 and 10
of BC2010Q2 (top left), BC2010Q2* (top right), BC2011Q4
(bottom left) and BC2011Q4* (bottom right).

under the line of equality. Therefore the Gini coefficient is
0 for perfect equality and 1 for complete inequality.

We can generalize this definition to PageRank and
CheiRank distributions. For this let P (K) be the usual
PageRank vector with K = 1 for the maximum value cor-
responding to the top PageRank node. Then we define
the inverted PageRank as Pinv(K

′) = P (N −K ′−1) such
that for Pinv the maximum value corresponds to K ′ = N .
In this way Pinv(K

′) represents in a certain way the “in-
come” and its argument K ′ corresponds to the network
nodes ordered in increasing order by their income (with
lowest “income” for K ′ = 1 and maximum “income” for
K ′ = N). Then the cumulative income up to node K ′ is
given by :

σ(P )K′ =

K′∑
K̃=1

Pinv(K̃) =

N∑
K̃=N−K′+1

P (K̃). (4)

The notation σ(P ) reminds that σ is defined with respect
to a given PageRank vector (or CheiRank vector P ∗ by
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Fig. 12. (Color online) Density of nodes W (K,K∗) on
PageRank-CheiRank plane (K,K∗) for BC2013Q2 averaged
over 200 × 200 logarithmically equidistant grids for 0 ≤
lnK, lnK∗ ≤ lnN , the density is averaged over all nodes
inside each cell of the grid, the normalization condition is∑

K,K∗W (K,K∗) = 1. Color varies from blue at zero value
to red at maximal density value. In order to increase the visi-
bility large density values have been reduced to (saturated at)
1/16 of the actual maximum density. At each panel the x-axis
corresponds to lnK and the y-axis to lnK∗.

replacing P → P ∗ in (4)). The quantity σ(x) = σ(P )K′
with x = K ′/N corresponds to the standard Lorenz curve
[30,31]. Therefore the Gini coefficient, defined as the area
between σ(P ) and the line of equality normalized by the
area below the line of equality [30], is given by:

g = 1− 2

N∑
K′=1

σ(P )K′/N = 1− 2

N∑
K=1

KP (K)/N. (5)

The Gini coefficient for the CheiRank P ∗ is obtained in a
similar way by using σ(P ∗) and replacing P → P ∗ in (5).

The above definition of g is done via the PageRank and
CheiRank probabilities, i.e. where “income” corresponds
to the PageRank or CheiRank values. We will compare
the corresponding g values also with the standard defi-
nition considering ingoing and outgoing amount of bit-
coins (volume transfer) for BCN nodes (users) during a
given quarter. The dependence of the different Gini coef-
ficients, defined via bitcoin volume transfer or PageRank
and CheiRank probabilities, on time is shown in Fig. 14.

For the BCN the evolution of Gini coefficient g, de-
fined by (5), is shown in the bottom panel of Fig. 14. We
find that the Gini coefficient defined via volume (top panel
of Fig. 14) is stabilized from 2010 and takes a very high
value g ≈ 0.9. Such a large value of g for bitcoin flows
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Fig. 13. (Color online) Left panel: Histogram of frequency ap-
pearance of correlator components κi = NP (K(i))P ∗(K∗(i))
for the three networks BC2013Q2 (red), BC2011Q4 (green)
and BC2010Q2 (blue). For the histogram the whole interval
10−9 ≤ κi ≤ 104 is divided in 260 cells of equal size in log-
arithmic scale. Right panel: The dependence of the correlator
κ = N

∑N
i=1 P (K(i))P ∗(K∗(i))− 1 on the network size N for

all bitcoin networks between BC2009Q4 and BC2013Q2. The
three data points surrounded by a colored square box corre-
spond to the three networks of the left panel with the same
colors.

Fig. 14. (Color online) Top panel:Gini coefficient g time evolu-
tion for ingoing and outgoing bitcoin volume transfer for quar-
ter of years (halves for 2009). Bottom panel: Gini coefficient g
time evolution for PageRank and CheiRank of BCN for quarter
of years (halves for 2009).

corresponds to an enormously unequal wealth distribu-
tion between users [30,31]: a small group of users controls
almost all wealth.

We obtain smaller values of g ≈ 0.5 for PageRank and
CheiRank probabilities. We see that after 2010 the values
of g from PageRank and CheiRank probabilities become
comparable. This corresponds to the stabilization of the
node distribution in the PageRank - CheiRank plane (see
Fig. 11, Fig. 12 discussed in the previous Section). After
2010 we find g ≈ 0.5 corresponding to a rather usual value
of g with an exponential wealth distribution in a society
(see e.g. [31]). Also the Lorenz curve in 2013 (see Fig. 15)
becomes similar to USA income distribution (see e.g. Fig.8
in [31]).

However, the above values are obtained with the PageR-
ank and CheiRank probabilities which are smoothing the
row bitcoin flows due to the damping factor α in (2). For
the row bitcoin flows for the whole available period 2009-
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Fig. 15. (Color online) The Lorenz curve of the bitcoin users
(nodes) showing σ(P )K′ (and σ(P ∗)K∗′) vs. K′/N (K∗′/N)
for PageRank and CheiRank of Q1 of 2010 and Q1 of 2013
(solid and dashed lines respectively). The Lorenz curves for
cumulative volume transfer are also shown for the full period
2009-2013 for out-going and in-going flow, taking into account
users with a minimum amount of 0 and 1 bitcoins (dotted
and dot-dashed lines respectively). The Gini coefficient values
for volume transfer are g = 0.948 (in-going larger than 0),
g = 0.939 (out-going larger than 0), g = 0.927 (in-going larger
than 1), g = 0.925 (out-going larger than 1). The blue solid
line represents the curve of perfect equality.

2013 we find g ≈ 0.92 (ingoing and outgoing g values are
rather close). Such high g values correspond to very un-
balanced wealth distribution in the bitcoin community.

8 Discussion

We presented the results of Google matrix analysis of bit-
coin transaction network from the initial start in 2009 till
April 2013. From the period after 2010 the PageRank and
CheiRank probability distributions are stabilized show-
ing an approximate algebraic decay with the exponent
β ≈ 0.9. We find that the spectrum of complex eigenvalues
of matrix G has a very unusual form of circles being rather
close to the unitary circle. Such a structure has never ap-
peared for other real networks reported previously [15].
The only example with a similar spectral structure ap-
pears for the Ulam networks generated by intermittency
maps [32]. Such a circular structure corresponds to certain
hidden communities coupled by a long series of transac-
tions. A manifestation of such communities with about
hundreds of users is also visible as a plateau structure in
the eigenvectors of the Google matrix whose eigenvalues
are close to the unit circle. The distribution of users in the
PageRank-CheiRank plain is maximal along the diagonal
corresponding to the the fact that each user tries to keep
financial balance of his/her transactions. A similar situa-
tion was also observed for the world trade networks [16,
17].

We also characterized the wealth distribution for BCN
users using the Gini coefficient g. The definition of g via
PageRank and CheiRank probabilities leads to usual value
g ≈ 0.5 for the time period after 2010 when the BCN is
well stabilized. However, the analysis of row bitcoin flows
gives g ≈ 0.92 corresponding to the situation when almost
all wealth is concentrated in hands of small group of users.
We argue that the damping factor of the Google matrix is
responsible to a significant reduction of g value.

Finally we note that the public access to all bitcoin
transactions makes this system rather attractive for anal-
ysis of statistical features of financial flows. However, there
is also a hidden problem of this network. In fact it often
happens that a user performing a transaction to another
user changes him/her bitcoin code after the transaction
thus effectively creating a new user even if the person be-
hind the code remains the same. This feature is responsible
to the fact that the BCN is characterized by a rather low
ratio of number of links to number of nodes being about 2-
3 while in other networks like WWW and Wikipedia this
ratio is about 10-20. This low ratio value is at the origin
of the strong sensitivity of eigenvalues of G to numerical
computational errors as we discussed in the paper. Thus
even if the bitcoin transactions are open to public it re-
mains rather difficult to establish the transactions between
real persons. In this sense the situation becomes similar to
the transactions between bank units: in this case the data
are not public and are hard to be accessed for scientific
analysis.

We note that all data used in our statistical analysis
of BCN are available at [33].
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