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a b s t r a c t

We propose a new Ising-PageRank model of opinion formation on a social network by
introducing an Ising- or spin-like structure of the corresponding Google matrix. Each
elector or node of the network has two components corresponding to a red or blue
opinion in the society. Also each elector propagates either the red or the blue opinion
on the network so that the links between electors are described by two by two matrices
favoring one or the other of the two opinions. An elector votes for red or blue depending
on the dominance of its red or blue PageRank vector components. We determine the
dependence of the final society vote on the fraction of nodes with red (or blue) influence
allowing to determine the transition for the election outcome border between the red or
blue option. We show that this transition border is significantly affected by the opinion
of society elite electors composed of the top PageRank, CheiRank or 2DRank nodes of
the network even if the elite fraction is very small. The analytical and numerical studies
are preformed for the networks of English Wikipedia 2017 and Oxford University 2006.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The understanding of opinion formation in democratic societies is an outstanding challenge for scientific research [1].
In the last decade the development of social networks like Facebook [2], Twitter [3] and VKONTAKTE [4], with hundreds
of millions of users, demonstrated the growing influence of these networks on social and political life. Their growing
influence on democratic elections is well recognized and highly debated [5,6]. This makes the scientific analysis of opinion
formation on social networks of primary importance.
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The small-world and scale-free structures of social networks (see e.g. [7,8]), combined with modern rapid communi-
cation facilities, leads to a rapid information propagation over networks of electors, consumers and citizens generating
their instantaneous active reaction on social events. This puts forward a request for new theoretical models allowing to
understand the opinion formation process in modern society.

Opinion formation was analyzed in the framework of various interesting voter models described in detail in [9–16].
This research area became known as sociophysics [9,11,13–15] for which a recent overview of various models is given
in [17].

Another type of model, called PageRank opinion formation (PROF) model, was proposed in [18–20]. In this model each
node of a directed network may have red or blue opinion and the opinion of a each node is determined by its neighboring
nodes (on one link distance) taken with the weight of PageRank probability in the global network. Thus the PROF model
takes into account the PageRank concept developed by Brin and Page [21] which is now broadly used for various types
of networks (see reviews in [22,23]). This model leads to a number of interesting properties of opinion formation for
various examples of directed networks. However, a weak point of the PROF model is that it assumes that the PageRank
probabilities are known to the electors (nodes). This may be partially true since the electors know approximately their
social positions in the society which can be assumed to be proportional to the PageRank probability. But the exact global
PageRank probabilities of neighbors are most probably not known for a given local node. Thus a new model based on
PageRank properties and keeping the locality of knowledge about the network structure is highly desirable.

With this aim we propose here a modified model, called Ising-PageRank opinion formation model (Ising-PROF), which
corrects the above weak point of the PROF model determining a more natural local process of opinion formation still being
based on the PageRank concept. In this model an elector (node) has two opinions (red or blue component) being similar
to a spin up or down state in the Ising model [24,25]. A fraction wr of red oriented nodes transfer their red influence via
links to other nodes while a fraction wb of blue oriented nodes propagates their blue influence (wr +wb = 1). In this way
the size of the Google matrix is doubled since each node has now red and blue components (up or down states of an Ising
spin). As a result the PageRank vector also has two components per node (of the original network) and its elector vote
is determined by its largest PageRank components (red or blue). We assume that the top nodes of PageRank correspond
to a political elite of the social network whose opinion influences the opinions of other members of the society [1]. Our
results show that the elite influence, related to the top PageRank electors, can significantly affect the final vote on such
a social network.

In our studies we consider as typical examples two types of real directed networks. The first one is the English
Wikipedia network of the year 2017 with N = 5 416 537 nodes and Nl = 122 232 932 links, studied recently in [26], and
the second one is the WWW network of Oxford University from the year 2006 with N = 200 823 nodes and Nl = 1 831 542
links, studied in [27]. We use these two real networks to study the opinion formation governed by the PageRank vector
of a network of double size which describes a random distribution of red and blue opinions with a fixed fraction of red
(and blue) opinion on network nodes. We use 10 random realizations to average the results for each given fraction or red
(and blue) nodes. We model the interactions of red and blue opinions by the spin-1/2-matrix as described below.

The paper is composed as follows: the Ising-PROF model is formally introduced in Section 2, numerical and analytical
results for the model without elite are given in Section 3, numerical results for the elite influence are presented in
Section 4, the polarization of opinion for individual nodes and the effect of resistance in opinion formation are studied in
Sections 5, 6. The discussion of the results is presented in Section 7.

2. Description of Ising-PageRank opinion formation model

We first remind the usual rules for the construction of the Google matrix G from a given directed network with N nodes
and Nl links described in detail in [21–23] (we use here the notations of [23]). For this one first defines the adjacency
matrix Aij with elements 1 if node (elector) j points to node (elector) i and zero otherwise. In this case, the elements of
the Google matrix take the standard form Gij = αSij + (1 − α) v(i) [21–23], where S is the matrix of Markov transitions
with elements Sij = Aij/dj, dj =

∑N
i=1 Aij ̸= 0 being the node j out-degree (number of outgoing links from node j) and

with Sij = v(i) if j has no outgoing links (dangling node). Here the vector v (with
∑

i v(i) = 1 and v(i) ≥ 0) is also called
personalization or teleportation vector [21,22]. Furthermore the parameter 0 < α < 1 is the damping factor which for
a random surfer determines the probability (1 − α) to jump (or ‘‘teleport’’) to any node i (with relative weight v(i)). The
usual standard values are v(j) = 1/N and α = 0.85. For the teleportation vector it is possible to choose a different vector
and one may also choose two different vectors for the dangling node columns of S and the columns of the contribution
proportional to (1 − α).

The PageRank is the right eigenvector of the Google matrix (GP = λP, λ = 1) of the largest eigenvalue λ = 1. It has
positive components P(j) normalized to unity (

∑
j P(j) = 1). We note that the largest unit eigenvalue is not degenerate

for α < 1 and the PageRank can be efficiently computed from the power iteration method with a convergence rate ∼ αt

(with t being the iteration time).
We now introduce the Google matrix for the Ising-PageRank opinion formation model (Ising-PROF). First, each node

of the original network is doubled into a pair of red and blue nodes giving a total network size of 2N . Furthermore, we
attribute randomly to each node (of the original network) either a vote preference for red with probability wr or blue
with probability wb = 1 − wr where 0 ≤ wr ≤ 1 is a global parameter for the overall vote preference. Therefore for
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Fig. 1. Schematic description of the construction of the Ising-network from a given directed network. Each node of the original network is doubled
in a red and blue node and gets either (with probability wr ) a preference to point to other red nodes or (with probability wb = 1−wr ) a preference
to point to other blue nodes. Each link j → i of the original network is replaced by the two links jred → ired and jblue → ired (if j has a red preference)
or the two links jred → iblue and jblue → iblue (if j has a blue preference); jred (jblue) designate the index of the red or blue node of the Ising-network
with j being the node index of the original network.

each random realization there is approximately a fraction wr of nodes with red preference and a fraction wb with blue
preference. The links are also doubled: for each link from a node j to i of the original network we will have two links from
both j nodes (blue and red) to the red node i if j has a preference for red or to the blue node of i if j has a preference for
blue. This scheme is also illustrated in Fig. 1 and mathematically it implies that in the (original) adjacency matrix each
unit entry Aij is replaced either by a certain 2 × 2 matrix σ+ if j has a red preference or by another 2 × 2 matrix σ− if j
has a blue preference where the 2 × 2 matrices σ± are given by:

σ+ =

(
1 1
0 0

)
, σ− =

(
0 0
1 1

)
. (1)

This provides a larger 2N × 2N adjacency matrix A2 from which we construct the 2N × 2N Google matrix, noted as G2
in the usual way as described above. However, we choose a particular teleportation vector vr (i) = wr/N (vb(i) = wb/N)
for the red (blue) component vr (i) (vb(i)) (instead of the uniform choice 1/(2N) for both components).

The above procedure determines our model and interactions of red and blue nodes described by the matrices in Eq. (1).
Thus all links on the network of doubled size are defined for a given initial distribution of red and blue nodes. Then by the
standard iteration algorithm we numerically determine the PageRank vector with 2N components [21–23]. From these
vector components we determine the final vote for red or blue opinions as described below.

The PageRank vector P of G2 (defined by G2P = P) has red (blue) components Pr (i) (Pb(i)) where i belongs to the set of
original nodes and the sum normalization reads

∑
i[Pr (i) + Pb(i)] = 1. In this work we study in particular two quantities

derived from this PageRank vector which is the total PageRank probability for red (or the partial PageRank norm for red
nodes) given by:

Pr =

N∑
i=1

Pr (i) (2)

and the total vote for red given by

Vr =
1
N
#
{
nodes i with Pr (i) > Pb(i)

}
(3)

+
1
2N

#
{
nodes i with Pr (i) = Pb(i)

}
which is the fraction of nodes i such that Pr (i) > Pb(i) (rare cases of Pr (i) = Pb(i) count with a relative weight of 1/2). The
complementary vote for blue is given by Vb = 1−Vr . The red opinion wins the global society vote if the sum over all red
votes of electors is larger than 50%.

We note that the convergence to the exact PageRank eigenvector is obtained by the iterative algorithm starting from a
random vector and multiplying it by G matrix iteratively. This algorithm is described in detail in [21–23]. The convergence
rate is determined by the damping factor α and it takes place in about 150 iterations. We analyze here only the final exact
PageRank vector and do not discuss the convergence process which is rather standard. In a sense it is assumed that the
time interval, from the moment when two candidate names are known to the moment of vote, is sufficiently long so that
the opinions of society members are converged and final.
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Fig. 2. Left panel: Total PageRank probability Pr for red nodes depending on wr for English Wikipedia of 2017; the straight line corresponds to the
theoretical expression Pr = wr . The data for Oxford 2006, not shown, are on graphical precision identical to the data of Wikipedia of 2017. Right
panel: The vote quantity Vr given as the fraction of nodes where Pr (i) > Pb(i) depending on wr for English Wikipedia of 2017 and Oxford 2006. The
full lines correspond to the rescaled expression V (th)

r (5/6(wr −0.5)+0.5) where V (th)
r (wr ) is the theoretical expression (10) based on the assumption

Gaussian distributed Pr (i). All discrete data points in this figure (and in all subsequent figures except Fig. 6) were obtained from an ensemble average
over 10 different realizations of different attributions of σ+ or σ− for each node i and the resulting statistical error bars are below 10−3 (below
size of data points) for both quantities Pr and Vr .

3. Analytical results and estimates

As in the above section we denote by Pr (i) and Pb(i) the PageRank components for red or blue nodes of G2. Furthermore,
we denote by P(i) the PageRank vector of the Google matrix G of the original network with N nodes. Furthermore let
P̃(i) = Pr (i) + Pb(i). We first show that for our model we have exactly P̃(i) = P(i). The PageRank equation of G2 for red
nodes reads:

Pr (i) = α
∑
j∈Li

nj

dj
P̃(j) + α

wr

N

∑
j∈D

P̃(j) + (1 − α)
wr

N

N∑
j=1

P̃(j) (4)

where Li is the set of nodes j such that there is a link j → i (this set may be empty), D is the set of dangling nodes, dj
is the outdegree of node j being the number nodes k such there is a link j → k. All these quantities refer to the original
network. Furthermore, wr is the overall vote preference for red introduced in the last section. nj is a random number
being either 1 (with probability wr ) for nodes j with red preference or 0 (with probability wb = 1 − wr ) for nodes j with
blue preference. The average and variance of nj are obviously given by:

⟨nj⟩ = wr , ⟨δn2
j ⟩ = ⟨n2

j ⟩ − ⟨nj⟩
2

= wr (1 − wr ) (5)

since n2
j = nj. We also have ⟨δnjδnk⟩ = 0 if j ̸= k. The second and third sum terms in (4) take into account our particular

choice for the teleportation vector for the Ising-PROF model introduced in the last section.
The equation for Pb(i) is similar with the replacement nj → 1 − nj and wr → 1 − wr . We note that on the right hand

side only the sum P̃(j) = Pr (j) + Pb(j) appears due to the structure of σ±. If we add the equations for Pr (i) and Pb(i) we
obtain for P̃(i) the exact PageRank equation of the original network such that exactly P̃(i) = P(i) and P̃(i) is no longer
random which gives a great simplification. We have also numerically verified that this property holds up to numerical
precision (10−13).

Using (5) we can analytically compute the ensemble average of (4) which gives ⟨Pr (i)⟩ = wrP(i) and therefore we
obtain exactly ⟨Pr⟩ =

∑
i⟨Pr (i)⟩ = wr which is numerically clearly confirmed by the left panel of Fig. 2.

Furthermore, Pr (i) is a sum of random variables nj (with some coefficients). If we assume that there are many terms (if
#Li ≫ 1, i.e. many incoming links) then the central limit theorem implies that Pr (i) is approximately Gaussian distributed
(however, in realistic networks with modest numbers in the sets Li this is probably not very exact). Also the variance of
Pr (i) can be computed from (4) and (5):

⟨δPr (i)2⟩ = α2wr (1 − wr )
∑
j∈Li

P(j)2

d2j
. (6)

If the assumption of Pr (i) being a Gaussian variable is valid the known mean ⟨Pr (i)⟩ = wr P(i) and variance (6) are sufficient
to characterize the full distribution pgauss(Pr (i)). The node i contributes to a red vote if Pr (i) > Pb(i) = P(i)−Pr (i) ⇔ Pr (i) >
P(i)/2. Therefore the probability Vr (i) of a red vote of node i can be obtained as

Vr (i) =

∫
∞

P(i)/2
dPr (i) pgauss(Pr (i)) (7)

which gives with the help of (6) and the average ⟨Pr (i)⟩ = wrP(i):

Vr (i) =
1
2

(
1 − erf

(
0.5 − wr

α ai
√

wr (1 − wr )

))
(8)
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where

ai =
1

P(i)

√2
∑
j∈Li

P(j)2

d2j
(9)

is a quantity that can be efficiently computed (for all nodes i simultaneously). We remind that in (6) and (8) the parameter
α = 0.85 is the damping factor. Note that it is possible that Li is an empty set (if row i of the adjacency matrix is empty,
i.e. if node i is a dangling node for G∗). In this case ai = 0 and in (8) we obtain the Heaviside function Vr (i) = H(wr −0.5)
which is not a problem. It turns out that for English Wikipedia 2017 and Oxford 2006 the quantity ai has a maximal value
of about 1.66 and is typically between 0.2 and 1 for most nodes. The average and variance (with respect to the node
index) of ai are ⟨ai⟩ = 0.338, ⟨δ(ai)2⟩ = 0.062 (⟨ai⟩ = 0.523, ⟨δ(ai)2⟩ = 0.121) and there is also a finite fraction of nodes
with ai = 0 which is 9.68 × 10−2 (2.14 × 104) for Wikipedia 2017 (Oxford 2006).

Averaging (8) with respect to all nodes gives the theoretical expression for the total vote:

V (th)
r (wr ) =

1
N

∑
i

Vr (i) (10)

which can be computed numerically with a modest effort. The expression (8) corresponds roughly to a smoothed step
function with Vr (i) being 0 (or 1) for wr = 0 (or wr = 1) and a nonlinear shape such that the slope at wr = 0.5
is proportional to the parameter a−1

i . Even though the value of ai depends on the node index i the total vote (10) has a
similar nonlinear shape close to a smoothed step function. However, due to the small but finite fraction about 0.1 (0.0002)
for Wikipedia (Oxford) of nodes with ai = 0 (i.e. nodes with empty sets Li) there is a small vertical finite step (with infinite
slope) in the curve of Vr versus wr at wr = 0.5. The vertical size of this step corresponds exactly to this fraction.

The overall shape and also the small vertical finite step are confirmed by the numerical data visible in the right panel of
Fig. 2 for Wikipedia 2017 and the WWW-network of Oxford 2006. However there is not a perfect agreement of (10) with
the numerical data but if we apply a slight rescaling by using V (th)

r
(
5/6(wr −0.5)+0.5

)
(instead of V (th)

r (wr )) there is a very
good matching with the numerical data. It seems that the Gaussian assumption underestimates slightly the probability of
having Pr (i) values far from its average wrP(i). Most likely the number of terms in the set Li is too small for many nodes i
such that there is not a perfect justification for the use of the central limit theorem. Since the distribution of each ni has
only two values we have indeed to add very many terms to obtain a nice Gaussian. Furthermore, the coefficients (P(j)/dj)
also fluctuate with the node index j such that even less terms contribute effectively in the sum of random variables.

One can also try the expression (8) as fit expression for the numerical data of the total vote (using ai as fit parameter).
It turns out that this does not work very well. However if we add two such functions (with three fit parameters: two ai
values and the weight between both terms) there is a quite good (but not really perfect) fit.

4. Results for elite influence in Ising-PROF model

The results presented above are rather natural and bring no surprise. However, the Ising-PROF model introduced in
Section 2 is local and thus has advantages in comparison to the PROF model proposed in [18]. In particular, it can be
generalized to study the influence of elite opinion on the final vote. We select three types of elite on our social network
based on different rankings. For the first ranking type all nodes are ordered in decreasing order of PageRank probability
(of the original network) noted by the index K (j) (1 ≤ K (j) ≤ N) with the highest probability P(j) if K (j) = 1 and smallest
probability at P(j) if K (j) = N . Thus the nodes j with K (j) = 1, 2, 3... are considered as the most influential electors (nodes)
corresponding to party leaders, government members etc. The second type of elite is determined from the CheiRank
probabilities P∗(j) (of the original network) giving the ordering index K ∗(j). The CheiRank vector is the PageRank vector
of the original network with inverted direction of all links (see detailed description in [23,28,29]). While the PageRank
probability is on average proportional to the number of ingoing links the CheiRank probability is on average proportional
to the number of outgoing links. In a certain sense we can consider the top CheiRank electors j with K ∗(j) = 1, 2, 3...
to be analogous to press and television. The third type of elite is given by the top nodes of 2DRank which represents a
combination of PageRank and CheiRank top nodes j with index K2(j) = 1, 2, . . . ,N (see description in [23,29]).

To determine the influence of elite on the society final vote we modify the model of Section 2 such that for Nel elite
notes j with 1 ≤ K (j), K ∗(j), K2(j) ≤ Nel the probability of vote preference for red is modified to wr,el which is different
from wr which applies to the remaining nodes. (We keep however, since the elite fraction is very small, the same values
vr (i) = wr/N and vb(i) = wb/N for all nodes i for the teleportation vector as in the initial uniform Ising-PROF model.)
Therefore wr,el will be the approximate fraction of red nodes in the set of elite nodes while wr is the fraction of red nodes
in the set of remaining nodes. We consider for wr,el values between 0 and 0.5 and wr values between 0 and 1 (since red
and blue can be interchanged there is no reason to consider wr,el > 0.5). Thus for wr,el = 0 all elite nodes belong to the
blue fraction (wb,el = 1 − wr,el = 1). Usually we consider Nel ≪ N so that these elite nodes should not affect the global
vote Vr if they were randomly and homogeneously distributed over the whole network of N nodes. But we show that
this small fraction distributed only over elite electors significantly affects the final Vr vote. To characterize the influence
of elite we introduce the variation of the total PageRank probability on red nodes ∆Pr = Pr,el − Pr induced by elite and
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Fig. 3. Dependence of elite induced variation of red PageRank probability ∆Pr and red vote ∆Vr on fraction wr of red nodes in the whole network.
The variations ∆Pr = Pr,el −Pr (left panels) and ∆Vr = Vr,el −Vr (right panels) are shown in dependence of wr where Pr,el and Vr,el are obtained from
a model of Nel = 1000 elite nodes with wr,el = 0 while the other nodes correspond the probability wr . Top (bottom) panels correspond to English
Wikipedia 2017 (Oxford 2006). In each panel the three different type of data points correspond to the cases where the elite nodes are obtained as
the top 1000 nodes according to K -rank (red plus symbols), K ∗-rank (green crosses) or K2-rank (blue stars).

Fig. 4. Elite induced variation of red vote ∆Vr = Vr,elite − Vr is shown by color for different values of wr (corresponding to horizontal axis with
wr ∈ [0, 1]) and of wr,el (corresponding to vertical axis with wr,el ∈ [0, 0.5]). The numerical values of the top color bar correspond to the fraction
∆Vr/Vmax with Vmax being the maximum of |∆Vr | in the range of considered wr and wr,el values. Left (right) panels correspond to elite nodes given
as the top Nel = 1000 nodes for PageRank index K (CheiRank index K ∗). Top (bottom) panels correspond to English Wikipedia 2017 (Oxford 2006).
The values of Vmax for each panel are 0.016 (top left), 0.011 (top right), 0.046 (bottom left), 0.080 (bottom right).

respectively the variation of the global red vote ∆Vr = Vr,el −Vr where Pr and Vr are obtained from the Ising-PROF model
without elite for which analytical and numerical results were given in the last section.

In principle, the analytical argument for P̃(i) = P(i) also holds for the case of elite nodes and we can also try to compute
the average and variance of Pr (i) which requires in (5) to replace wr by wj where wj now depends on the node j and takes
either the value wr,el if j is an elite node or wr otherwise. The resulting expressions are therefore more complicated and
depend more strongly on the particular network structure and also on the type of elite nodes chosen. Therefore they do
not allow a simple evaluation and in this section will we concentrate on the numerical results.

The dependence of ∆Pr and ∆Vr on wr is shown in Fig. 3 for Wikipedia 2017 and the WWW-network of Oxford 2006
for the case when all Nel = 1000 nodes of elite have a blue preference wr,el = 0 (all three types of elite are shown). Here
we have Nel ≪ N so that a random distribution of these Nel = 1000 nodes over the whole network gives a negligible
variation of ∆Pr and δVr . However, when Nel occupies the top rank positions of K , K ∗, K2 we obtain significant changes of
∆Pr and ∆Vr . The dependence of ∆Pr on wr remains approximately linear but the red component probability is reduced
in comparison to the Pr value in elite absence (see Fig. 2 left panel). The change of red vote ∆Vr has a rather nontrivial
dependence on wr with a maximum absolute value being about 0.016 for Wikipedia and 0.075 for Oxford networks. For the
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Fig. 5. The dependence of ∆Vr = Vr,el −Vr on wr for wr,elite = 0 and for various values of elite nodes Nel obtained as top Nel nodes from K rank. Top
(bottom) panels correspond to English Wikipedia 2017 (Oxford 2006). Left panels show directly ∆Vr versus wr and right panels show the rescaled
quantity ∆Vr

√
1000/Nel (top) or ∆Vr

√
125/Nel (bottom) versus wr indicating an approximate dependence ∆Vr ∼

√
Nel for sufficiently small values

of wr .

critical point with wr ≈ 0.5 the blue elite induces a vote gain for the blue party with about an 1.5% advantage for Wikipedia
PageRank or 2DRank elite and a 7.5% advantage for Oxford PageRank elite (4% for 2DRank elite). The cases of PageRank
and 2DRank elite have a smooth dependence ∆Vr (wr ) while for the CheiRank elite this dependence is significantly peaked
near wr ≈ 0.5. For the Wikipedia case the behavior of ∆Vr (wr ) is rather similar between PageRank and 2DRank elite cases
while the CheiRank elite produces a smaller change of vote. For the Oxford network the situation is a bit different: the
CheiRank elite gives a bit stronger variation of the vote being strongly peaked near wr ≈ 0.5, the 2DRank elite gives
slightly smaller changes of the vote as compared to the PageRank elite with a factor of about 0.7 between the maximal
amplitudes for both (at wr ≈ 0.6).

This shows that the network structure plays a certain role in the elite vote influence even if the difference between
the three elite types is only about 30%–40%. Of course, in the case of Oxford the fraction of elite nodes is larger than for
Wikipedia (Nel/N ≈ 1/200 and 1/5000 respectively) and due to this the change of vote ∆Vr is larger for Oxford. We
investigate the dependence on Nel/N below.

In Fig. 3 we considered the case when all elite nodes have blue vote preference, i.e. wr,el = 0. The variation of ∆Vr
with wr,el is shown in Fig. 4. We see that for the PageRank elite the variation of red vote ∆Vr being close to its maximum
value of about 1.5% can be reached also at wr,el ≈ 0.25. For larger values wr,el > 0.25 the variation ∆Vr approaches zero
at wr,el = 0.5. For the case of CheiRank elite the distribution of the variation of ∆Vr is mainly concentrated in a vicinity
of the critical probability wr ≈ 0.5 in agreement with the peaked minima visible in Fig. 3.

We note that ∆Vr may also have positive values in the region wr,el > wr (top left triangle in the panels of Fig. 4) since
in this case nodes with red preference in the elite fraction increase a bit the global red vote. However, in this region the
red vote is small and this variation does not play an important role.

The dependence of ∆Vr on Nel is shown in Fig. 5 for wr = 0. The are well described by a square-root dependence
∆Vr ∝

√
Nel/N for sufficiently small values of wr . To be more precise, from our numerical data in the vicinity of wr ≈ 0.5

we obtain the dependence

∆Vr = −B(1 − 2wr,el)
√
Nel/N (11)

with a numerical constant B ≈ 1.114 ± 0.003 for Wikipedia and B ≈ 0.611 ± 0.003 for Oxford in the case of PageRank
elite. For 2DRank (CheiRank) elite we have approximately B ≈ 1.116 ± 0.003 (B ≈ 0.773 ± 0.002) for Wikipedia and
B ≈ 0.960 ± 0.002 (B ≈ 1.145 ± 0.003) for Oxford. The numerical values of B were obtained from a fit at Nel = 1000.
For Wikipedia it also applies to other values of Nel as can be seen in the top right panel of Fig. 5 confirming the above
square-root dependence of ∆Vr also at wr = 0.5. For Oxford there are at wr = 0.5 already visible modest deviations (see
bottom right panel of Fig. 5). However, here the square-root dependence is still rather correct for wr < 0.2.

We explain the square-root dependence by the fact of diffusive accumulation of fluctuations, like in the central limit
theorem, as discussed in Eqs. (7)–(9). However, an exact analytic derivation of the dependence (11) still needs to be
obtained.
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Fig. 6. Dependence of M(j) = (Pr (j) − Pb(j))/(Pr (j) + Pb(j)) on rank K index of node j for wr,el = 0 of top 1000 rank nodes for English Wikipedia
2017 (all panels) and for one individual random realization of attribution of σ± matrices to nodes. Top (bottom) panels correspond to wr = 0.5
(wr = 1). Left (right) panels correspond to elite nodes as top 1000 nodes from PageRank K index (CheiRank K ∗ index). The green line shows zero
polarization; the horizontal axis shows the PageRank index K (of the original network) in log scale for all panels.

5. Polarization of opinion for individual nodes

It is interesting to analyze the polarization of individual nodes in presence of elite influence. For this we determine
the polarization of a node j defined as

M(j) =
Pr (j) − Pb(j)
Pr (j) + Pb(j)

. (12)

The influence of elite (with parameters wr,el = 0, Nel = 1000) for Wikipedia on this polarization is shown in Fig. 6 for
wr = 0.5 (top panels) and wr = 1 (bottom panels) with PageRank elite (left panels) or CheiRank elite (right panels).

In all four cases the typical value of the polarization M for the first top PageRank nodes (with K (j) below 102 for
PageRank elite or below 103 for CheiRank elite) are rather close to the ideal values M ≈ 0 for wr = 0.5 or M ≈ 1 for
wr = 1 with only weak fluctuations. For larger values of K (j) the value of M strongly fluctuates between −1 and 1.

However, for wr = 0.5 and PageRank elite the top PageRank nodes still remain mostly blue but only with a weak
polarization M ≈ −0.1 (there are only 8 PageRank elite nodes which change the polarization from blue to red) while the
value wr,el = 0 should suggest M ≈ −1 for these elite nodes. Apparently the influence of the bulk value wr = 0.5 from
the other nodes reduces strongly the polarization of the top PageRank (or elite) nodes but is not sufficient to change the
sign.

For the case of CheiRank elite the elite nodes do not coincide with the top PageRank nodes and their positions are quasi-
randomly distributed on the full horizontal axis (which shows for all elite cases the K rank in logarithmic representation).
Directly inspecting the numerical data we find that there are (for the case wr = 0.5) 305 nodes out of the 1000 CheiRank
elite nodes which change polarization from blue to red (i.e. the sign of M from negative to blue) but otherwise their values
of M strongly fluctuate between −1 and 1.

For wr = 1 and both elite cases we have more or less M ≈ 1 for the top PageRank nodes and also strongly fluctuating
values −1 ≤ M ≤ M for larger values of K (j) with a preference for positive polarization M > 0 in the crossover regime
(and also very large K rank values). The crossover regimes start roughly at K (j) ≈ 102 for PageRank elite or K (j) ≈ 103

for CheiRank elite.
We note that there are nodes which were considered as initially blue ones and that some of them change their

polarization within the network of doubled size from blue to red. In such cases it may be argued that their influence matrix
of (1) should also be updated from blue to red preference. However, this corresponds to some kind of time dependent
model which is more complicated for analytical and numerical analysis. Therefore, we assume in this work that the
memory of the original blue (or red) preference is preserved and such a node continues to propagate its blue (or red)
influence with the matrix transitions as described in Fig. 1. The dynamical variation of influence, depending on the actual
polarization of nodes, will be considered in further studies.
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Fig. 7. Same as Fig. 2 for the modified Ising-PROF model based on (13); here in the right panel the full curves correspond directly to the theoretical
expression V (th)

r (wr ) given in (10) without any rescaling.

6. Effect of resistance in opinion formation

Above we considered the influence matrix described by Fig. 1 and (1). In these relations it is assumed that a node
with red preference propagates 100% red influence on red and blue components of other nodes. However, we can also
consider the situation in which for the blue component there is not a 100% red influence but e.g. only a 80% influence.
This means that a blue component realizes a certain resistance to red influence and vise verse a red component has a
similar resistance to blue influence. This is modeled by a modified form of the transition matrices which instead of (1)
take the form

σ+ =

(
1 0.8
0 0.2

)
, σ− =

(
0.2 0
0.8 1

)
. (13)

This modification corresponds to a 20% resistance to influence another color. We construct the Google matrix G2 in the
same way as described in Section 2 but using the matrices σ± of (13) to replace the unit elements of the adjacency matrix
(of the original network). (The teleportation vector is the same as in Section 2.) We call this model the modified Ising-PROF
model. Due to the modification of the σ± matrices we obtain in (4) additional contributions proportional to the difference
Pr (j) − Pb(j) and the analytical argument that provided the relation Pr (j) + Pb(j) = P(j) is no longer valid for the modified
Ising-PROF model.

The dependence of total red PageRank probability Pr and vote Vr on wr are shown in Fig. 7. They are very similar to
those of Fig. 2. For Vr the theoretical expression for V (th)

r (wr ) given in (10) directly fits the numerical data without rescaling
even though this theoretical expression was derived on the assumption of Pr (j)+Pb(j) = P(j) which is no longer valid. We
believe that this is due to statistical fluctuations of the quantity P̃(j) = Pr (j)+Pb(j), which qualitatively replaces P(j) in (6)
and (9), such that the conditions to apply the central limit theorem are better fulfilled (for the sum of a modest number of
random variables). Of course, this argument is not rigorous since especially in (6) the fluctuations of P̃(j) should produce
additional contributions which are very complicated to determine analytically.

The elite influence for the modified Ising-PROF model is shown in Fig. 8. We see that in this case the variation of vote
induced by elite is rather similar to the initial Ising-PROF model. Only for Wikipedia 2017 (and PageRank and 2DRank
elite) the maximal variation is increased from 1.6% for the Ising-PROF model to 2.2% for the modified Ising-PROF model.
On the basis of these results we conclude that the particular form of the influence matrices of (1) or (13) does not affect
the general nature of the obtained results.

7. Discussion

In this work we proposed the Ising-PageRank model of opinion formation which generates the opinion formation of a
directed social network using only the local information about the neighbors of a given elector (node).

For the homogeneous model without elite we obtain for the vote quantity a smooth step function as a function of the
parameter wr and the finite effective width of the transition around wr ≈ 0.5 from Vr = 0 (for wr < 0.5) to Vr = 1 (for
wr > 0.5) is roughly the typical value of the parameter ai given in (9) :

ai =
1

P(i)

√2
∑
j∈Li

P(j)2

d2j
(14)

which takes an average value of about 0.3 (0.5) for Wikipedia 2017 (Oxford 2006). The right panels of Figs. 2 and 7 clearly
confirm the ratio of this effective width between the two networks and its overall size.

The most interesting feature of our results in this model is the existence of the strong influence of elite, which is
given as a small number of top nodes of PageRank, CheiRank or 2DRank. Even a small fraction of elite electors produces
a significant influence on the final vote on a society which is close to a 50–50 distribution of opinions between red and
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Fig. 8. Same as Fig. 3 for the modified Ising network model based on (13).

blue options. Thus a small insignificant fraction of elite nodes can push the outcome of the final vote to either a blue or
a red majority. The variation of vote induced by elite nodes is expressed through the analytical relation (11).

In the last years the opinion formation process has become a hot topic and attracts a significant interest of researchers
from various areas of science (see e.g. [14,15,17,30,31]). The development of mathematical concepts which allow to take
into account positive and negative interactions on complex networks is very important and interesting (see e.g. [31] and
Refs. therein on signed networks). Our Ising-PageRank approach allows to perform the mathematical analysis of formation
of two opinions on complex directed networks. We believe that the proposed Ising-PROF model can describe important
features of opinion formation in social networks.
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