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Abstract. We consider a situation when evolution of an entangled Einstein–Podolsky–Rosen (EPR) pair
takes place in a regime of quantum chaos being chaotic in the classical limit. This situation is studied
on an example of chaotic pair dynamics described by the quantum Chirikov standard map. The time
evolution is reversible even if a presence of small errors breaks time reversal of classical dynamics due to
exponential growth of errors induced by exponential chaos instability. However, the quantum evolution
remains reversible since a quantum dynamics instability exists only on a logarithmically short Ehrenfest
time scale. We show that due to EPR pair entanglement a measurement of one particle at the moment of
time reversal breaks exact time reversal of another particle which demonstrates only an approximat time
reversibility. This result is interpreted in the framework of the Schmidt decomposition and Feynman path
integral formulation of quantum mechanics. The time reversal in this system has already been realized
with cold atoms in kicked optical lattices in absence of entanglement and measurements. On the basis of
the obtained results, we argue that the experimental investigations of time reversal of chaotic EPR pairs
are within reach of present cold atom capabilities.

1 Introduction

The fundamental work of Einstein–Podolsky–Rosen
(EPR) [1] on a distant entanglement of a pair of
non-interacting distinguishable particles and its effects
on measurements is now at the foundations of long-
distance quantum communications. The entanglement
concept coined by Schrödinger [2] with a Gedankenex-
periment of a cat, dead or alive, becomes a resource
of modern quantum computations [3,4]. An impressive
modern progress of quantum information, computation
and communication is described in [5].

An overview of various experimental realizations of
EPR pairs is given in [6]. Various forms of propagating
EPR pairs have been studied experimentally but in its
main aspect the propagation of EPR pairs was rather
simple being similar to propagation on a line and always
being integrable. Here we consider theoretically a situ-
ation when two non-interacting but entangled particles
of an EPR pair propagate in a regime of quantum chaos
[7]. In the classical limit, the dynamics of these par-
ticles is chaotic characterized by an exponential local
divergence of trajectories with a positive Kolmogorov–
Sinai entropy h [8–11]. The exponential instability of
chaotic dynamics leads to an exponential growth of
round-off errors and breaking of time reversibility of
classical evolution described by reversible equations of
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motion. Thus, chaos resolves the famous Loschmidt–
Boltzmann dispute on time reversibility and emergence
of statistical laws from reversible dynamical equations
[12–14] (see also [15]). Prior to classical chaos theory,
the problem of time reversal of laws of nature was also
discussed by such leading scientists as Schrödinger [16]
(see English translation and overview in [17]) and Kol-
mogorov [18].

However, in quantum mechanics a chaotic mixing in
a phase-space cannot go down to exponentially small
scales being restricted by a quantum scale of the Planck
constant �. Thus- in the regime of quantum chaos an
exponential instability exists only during a logarith-
mically short Ehrenfest time scale τE ∼ | ln �|/h [19–
22] (here � is a dimensionless effective Planck con-
stant related to typical quantum numbers). Due to the
absence of exponential instability on times beyond τE ,
the quantum evolution remains reversible in presence of
quantum errors which is very different from the classical
dynamics as it was demonstrated in [23] for the quan-
tum Chirikov standard map, also known as the kicked
rotator [19,21,24]. This system has been experimen-
tally realized with cold atoms in kicked optical lattices
and in particular the quantum dynamical localization
of chaotic diffusion has been observed in these exper-
iments [25,26]. This dynamical localization of chaotic
diffusion appears due to quantum interference and is
analogous to Anderson localization [27] of electron dif-
fusion in disordered solids (see e.g. [28–30]).
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In [31], it was shown that the time evolution of cold
atoms in kicked optical lattices, described by the quan-
tum Chirikov standard map, can be reversed in time in
the regime of quantum chaos. This proposal was indeed
experimentally realized by the Hoogerland group [32].
Thus, this system represents an efficient experimental
platform which allows to investigate nontrivial effects of
quantum mechanics, localization, chaos and time rever-
sal.

In this work, we investigate the properties of chaotic
EPR pairs evolving in this fundamental system of quan-
tum chaos and show that a measurement of one of
the entangled particles breaks exact time reversal of
the other particle but preserves its approximate time
reversibility. We explain this unusual effect on the basis
of the Schmidt decomposition [33] (see also the review
[34] and Refs. therein) and the Feynman path integral
formulation of quantum mechanics [35].

This article is composed as follows: the model is
described in Sect. 2, the results are presented in Sect.
3 and the discussion and conclusion are given in Sect.
4; additional Figures and data are given in the Supple-
mentary Material (SupMat).

2 Model description

The classical dynamics of one particle is described by
the Chirikov standard map [10]:

p̄ = p + k sin x , x̄ = x + T p̄ . (1)

Here x represents the position of an atom in an infinite
x−axis of the kicked optical lattice, or a cyclic variable
0 ≤ x < 2π for the case of the kicked rotator; p is the
momentum of the particle. The bars denote the new
values of variables after one iteration of this symplectic
map. The physical process described by this map cor-
responds to a sharp change of momentum, generated,
e.g., by a kick of the optical lattice [25,26], followed by
a free particle propagation during a period T between
kicks. The classical dynamics depends on a single chaos
parameter K = kT with a transition from integra-
bility to unlimited chaotic diffusion in momentum for
K > Kc = 0.9715... [10,11]. The system dynamics is
reversible in time, e.g., by inverting all velocities in a
middle of free rotation between two kicks.

Inside a chaotic component the dynamics is charac-
terized by an exponential divergence of trajectories with
the positive Kolmogorov–Sinai entropy h. For K > 4,
the measure of stability islands is small and we have
h ≈ ln(K/2) [10]. For K > Kc, the dispersion of
momentum grows diffusively with time 〈(Δp)2〉 = Dt
with a diffusion coefficient D ≈ k2/2 (see more details
in [10,30]). Here and below the time t is measured in
number of map iterations. The map captures a variety
of universal features of dynamical chaos and appears in
the description of various physical systems [24].

The quantum evolution of the state |ψ〉 over a period
is given by a unitary operator Û [19,21]:

|ψ̄〉 = Û |ψ〉 = e−iT p̂2/2e−ik cos x̂|ψ〉 . (2)

Here the momentum p is measured in recoil units of
the optical lattice with p̂ = −i∂/∂x. Thus, T = � plays
the role of an effective dimensionless Planck constant
and the classical limit corresponds to T = � → 0,
k → ∞, K = kT = const. Due to the periodicity of
the optical lattice potential, the momentum operator
p̂ = −i∂/∂x has eigenvalues p = n + β where n is an
integer and β is a quasimomentum conserved by the
kick potential (0 ≤ β < 1). The value β = 0 corre-
sponds to the case of a kicked rotator with a wave func-
tion (in position representation) ψ(x) = 〈x|ψ〉 being
periodic on a circle ψ(x + 2π) = ψ(x). In this case,
the free rotation corresponds (in momentum represen-
tation) to the phase shift ψ̄n,0 = exp(−iTn2/2)ψn,0

with ψn,β = 〈p|ψ〉 being the wave function (in momen-
tum representation) at p = n + β. Irrational values
of β appear for a particle propagation on an infinite
x-axis; here β is conserved and a free propagation of
the momentum wave function ψn,β gives the phase
shift ψ̄n,β = exp(−iT (n + β)2/2)ψn,β . The effects of
quantum interference lead to dynamical localization of
chaotic diffusion on a time scale tD ≈ D/�

2 	 τE and
an exponential localization of quasienergy eigenstates
with a localization length � = D/(2�

2) ≈ k2/4 [21,30].
In [31], it was pointed out that the time reversal of

the quantum evolution after tr map iterations can be
realized by using two period values between kicks being
T = 4π + ε for t ≤ tr and T ′ = 4π − ε for tr < t ≤ 2tr.
Also the time reversal is done at the middle of the free
propagation after tr kicks (it is convenient to use a sym-
metrized scheme with a half-period of free rotation then
kick and then again a half-period of free propagation).
The inversion of kick amplitude k cos x → −k cos x can
be realized by a π-translational shift of the optical lat-
tice potential. Such a time reversal is exact for β = 0
(kicked rotator case) and it also works approximately
for small β values in the case of the kicked particle [31].
The time reversal for cold atoms in a kicked optical
lattice was experimentally demonstrated in [32].

Here we consider the time reversal of two non-
interacting distinguishable particles being in an initial
entangled state. We concentrate our analysis on the case
when both particles evolve in the regime of quantum
chaos corresponding to chaotic EPR pairs. Following
(2) the evolution of the two particle state |ψ〉 (with
wave function ψ(x1, x2) = 〈x1, x2|ψ〉) of such pairs is
given by the quantum map

|ψ̄〉 = (Û1 ⊗ Û2)|ψ〉 , (3)

where Û1 and Û2 are one time period evolution oper-
ators for the first and second particle. In absence of
interactions between particles, the entropy of entangle-
ment S is preserved during this time evolution. It is
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convenient to use the Schmidt decomposition [33,34]
for an initial entangled state

|ψ〉 =
m∑

i=1

αi|ui〉 ⊗ |vi〉 (4)

where |ui〉, |vi〉 are one-particle states satisfying the
orthogonality relations: 〈ui|uj〉 = 〈vi|vj〉 = δij . The
number m of Schmidt components can be up to m = N
if N is the dimension of the one-particle Hilbert space.
However, for “less” entangled states m may be smaller
and in this work we will consider the case of m = 2.
The entropy of entanglement is then given by (see e.g.,
[3,34]):

S = −Tr(ρ1 log2 ρ1) = −
∑

i

|αi|2 log2 |αi|2 , (5)

where ρ1 is the reduced density matrix for the first par-
ticle obtained by a trace taken over the second par-
ticle states. During the time evolution (3), the wave
functions of each particle evolve independently with
|ui(t)〉 = Û t

1|ui(t = 0)〉 and |vi(t)〉 = Û t
2|vi(t = 0)〉.

Thus, the coefficients αi of the Schmidt decomposition
and the entropy of entanglement S remain unchanged.

However, since the particles are entangled a measure-
ment of the second particle after the time tr affects the
wave function of the first particle and thus the time
reversal evolution of this particle is modified so that the
exact time reversibility is broken by the measurement.
Nevertheless, we will see that there is still an approxi-
mate time reversal for the first particle. We describe in
detail this effect in the next section.

3 Time evolution of chaotic EPR pairs

The numerical simulations of the quantum map (2), (3)
are done in the usual way [19,21] by using the fact
that the free propagation and the kick are diago-
nal in the momentum and coordinate representations,
respectively. Concerning the eigenphases Tn2/2 of the
free propagation operator, we mention an important
technical detail: we compute these phases for n =
−N/2, . . . , N/2−1 (with N being the dimension of the
one-particle Hilbert space) and the values for n < 0 are
stored at the positions N −n while the values for n ≥ 0
are stored at positions n. In this way, if the initial states
are localized close to small values of n ≈ 0 (or n ≈ N
which is topologically close to n ≈ 0 due to the periodic
boundary conditions) and if during the time evolution
the states do not touch the borders at n ≈ ±N/2 the
results are independent of the exact choice N provided
N is sufficiently large. In other words, the momentum
phases exhibit a smooth transition between n ≈ 0 and
n ≈ N according the quadratic formula while at the
“system border” n ≈ N/2 this transition is not smooth.

Otherwise, if the phases were naively computed for
n = 0, . . . , N − 1 according to the quadratic formula
the results would depend in a sensitive way on N even
if the states remain localized close to n ≈ 0 since the
eigenphases for n ≈ N would be very different.

The transitions from one representation (momentum
or position) to another and back are done with the Fast
Fourier Transform (FFT). Furthermore, we chose the
quantum map to be directly symmetric in time and
therefore we present it as a half period of free prop-
agation (using the operator Ûhalf,free = e−iT p̂2/4) fol-
lowed by the kick (using Ûkick = e−ik cos x̂) and then
again a half period of free propagation (using Ûhalf,free).
Furthermore, in order to have an exact mathematical
equivalence between the two cases T = 4π+ε and T = ε
(at β = 0) we also apply for the first case to the initial
states (given below for the different cases we consider)
an initial half period of free propagation with T = 4π
(which provides an additional phase factor (−1)n1+n2 in
momentum representation). We have numerically veri-
fied that this equivalence is indeed valid.

We consider in detail three specific cases: A) kicked
rotator case with a moderate dimensionless effective
Planck constant �eff = ε = T − 4π < 1 and a wave-
function periodic on the 2π-circle (i.e., integer values of
pi = ni with βi = 0 and i = 1, 2 for both particles); B)
same case but taken in the deep semiclassical regime
with �eff � 1; C) the case of kicked particles propaga-
tion on an infinite (or quasi-infinite) line at moderate
�eff that corresponds to the case of cold atoms in a
kicked optical lattice [25,26,32] composed of L periods
such that x ∈ [0, 2πL[. The total computational basis
size for one particle, used in the numerical simulations,
was changing from N = 1024 up to N = 222, depend-
ing on the choice of A), B), C) and insuring that the
basis size does not affect the obtained results. For two
particles, the size of the Hilbert space is NH = N2. For
moderate values of N (e.g., up to N = 212 in cases A
and B) we used the whole basis with NH states using
two-dimensional (2D) FFT transitions between momen-
tum and coordinate representations in (3). For larger
N values, we used the fact that the Schmidt decom-
position (4) has coefficients αi being unchanged during
the time evolution so that we propagate independently
each particle and use the Schmidt entangled EPR wave-
function for a measurement of the second particle at
the time moment tr and backward propagating only
the first particle after measurement. We checked, for
N ≤ 212, that these two numerical methods of time evo-
lution simulation give the same results up to numerical
accuracy.

We stress that the previous studies of time reversal
in the regime of quantum and classical chaos have been
performed only for one-particle wavefunctions (see e.g.,
[23,24,31]). Here we analyze the case of two-particle
wavefunction of a chaotic entangled EPR pair and show
that a measurement of a second particle affects the time
reversal of an entangled first particle in a nontrivial
way.
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3.1 EPR pairs in kicked rotator at moderate �eff

values

Here we present the results for a case with moderate
effective value of the Planck constant. As described
above, we use the values of parameter T = 4π+ε for for-
ward time propagation with tr quantum map iterations
and T = 4π − ε for next tr iterations corresponding to
the time reversal. We remind that since the phase shift
(4π)n2/2 is a multiple of 2π for all integer values of
the momentum p = n the evolution is determined by
an effective Planck constant �eff = ε. Thus, the effec-
tive classical chaos parameter is Keff = kε = k�eff . The
measurement is done for the second particle after tr
iterations. We consider the case of projective measure-
ment in the momentum basis n2 of the second particle
performing the projection to a certain value of n2 after
tr iterations. After the measurement, the evolution of
the first particle continues with T = 4π−ε and k → −k
for the next tr iterations. Without measurement, the
EPR wavefunction of the two particles returns exactly
to its initial state due to exact time reversibility of the
quantum evolution. Also, in absence of entanglement of
particles the measurement of the second particle does
not affect the reversibility of the first particle which
would exactly return to its initial state. However, in
presence of entanglement the measurement of the sec-
ond particle affects the time reversibility of the first
particle in a nontrivial manner.

To illustrate the nontrivial features of measurements
on time reversal of chaotic EPR pairs, we use typical
system parameters with K = kε = k�eff = 5 and k = 8
(thus �eff = 5/8). Such a value of k = 8 is not very
high being well accessible to the present experimental
facilities (see e.g., [25,26,32]).

In this first part to characterize the quantum time
evolution, we compute the one-particle probability (of
the first particle) as: w(n1, t) =

∑
n2

|ψ(n1, n2, t)|2,
(with the momentum wave function ψ(n1, n2, t) =
〈n1, n2|ψ(t)〉), and the one-particle energy (of the first
particle): E1(t) = 〈n2

1/2〉 =
∑

n1
(n2

1/2)w(n1, t).
As initial state, we take an entangled EPR pair with-

out any symmetry and with more or less arbitrary coef-
ficients at two momentum values:

|ψ(t = 0)〉 =
(
|0〉 ⊗ |0〉 + 0.7|0〉 ⊗ |1〉

+0.3|1〉 ⊗ |0〉 − 2|1〉 ⊗ |1〉
)
/
√

5.58 ,

(6)

where |n1〉 ⊗ |n2〉 represents the momentum basis
states. Thus, initially both particles are distributed over
momentum states at n1,2 being 0 or 1. We consider
this initial state as a typical example, the analysis of
this case gives a generic understanding of the process
of time reversal for a chaotic EPR pair with interme-
diate measurement of one particle. We also considered
cases with other initial states where this analysis gave
the explanation of results.
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Fig. 1 Time dependence of the average energy of the first
particle E1(t) = 〈n2

1/2〉 for the initial state (6) with time
evolution given by the quantum Chirikov standard map (2)-
(3). The measurement of the second particle and time rever-
sal are performed after tr = 40 quantum map (3) iterations.
The black curves in both panels show the forward time evo-
lution for 0 ≤ t ≤ tr; the blue curves show the backward
time evolution tr ≤ t ≤ 2tr = 80 with the exact time rever-
sal without measurement (using T = 4π − ε). In panel (a),
the curves of other colors show the backward time evolu-
tion after measurement of the second particle at momen-
tum states n2 = 8 (cyan), 12 (green), 20 (magenta), 200
(red). In panel (b), the red curve shows the backward time
evolution after the second particle measurement detection
at n2 and averaging over all possible measurement results
of n2 values (black and red curves are shifted up by 50
units for a better visibility; red and blue curves coincide
within numerical round-off errors (∼ 10−13)). The system
parameters are: N = 1024, NH = N2 and �eff = ε = 5/8,
Keff = 5, k = Keff/�eff = 8, T = 4π ± ε. We have verified
that a further increase of N to values of 2048 and 4096 pro-
vide identical results up to numerical round-off errors (pro-
vided the free propagation eigenphases are properly com-
puted as explained in the text at the beginning of this
section)

This state can be rewritten in the Schmidt decompo-
sition [33] as :

|ψ(t = 0)〉 =
∑

i=1,2

αi|ui〉 ⊗ |vi〉 (7)

123



Eur. Phys. J. D          (2021) 75:277 Page 5 of 14   277 

with

α1 = 0.8973, α2 = 0.4414,

|u1〉 = 0.3440|0〉 − 0.9390|1〉,
|u2〉 = 0.9390|0〉 + 0.3440|1〉,
|v1〉 = 0.0294|0〉 + 0.9996|1〉,
|v2〉 = 0.9996|0〉 − 0.0294|1〉, (8)

The entropy of entanglement of this initial state is:

S = −
∑

i

α2
i log2(α

2
i ) = 0.7114 . (9)

The time evolution of energy of the first particle
E1(t) = 〈n2

1/2〉 is shown in Fig. 1. At short initial
times t ≤ 12 we have an approximately diffusive energy
growth E1(t) ≈ Dt/2 ≈ 16t with the diffusion coeffi-
cient D ≈ k2/2 ≈ 32. For times 12 < t ≤ tr = 40,
the energy growth continues but its rate decreases due
to the quantum interference effects being similar to the
Anderson localization [19,21,23]). After tr = 40 iter-
ations of forward propagation in time, the projective
measurement is performed for the second particle and
the evolution of the first particle is reversed in time
with a replacement T = 4π + ε → 4π − ε and k → −k
(effective backward propagation in time).

In the top panel Fig. 1a, we show the energy E1(t)
dependence on time for forward 0 ≤ t ≤ tr and back-
ward evolution tr < t ≤ 2tr for different results of pro-
jective measurement, done after tr = 40 iterations, giv-
ing (projecting) the second particle at different momen-
tum states chosen as n2 = 8; 12; 20; 200. For each mea-
sured n2 value, we have a different curve E1(t) of the
time reversal or backward branch tr < t ≤ 2tr being
different from the forward branch 0 ≤ t ≤ tr. How-
ever, all curves at different n2 measured values have an
energy decrease with time and approximately return to
the initial energy value. Of course, in absence of mea-
surements there is exact time reversal and the energy
E1(t) is exactly symmetric with respect to the moment
of time reversal and returns exactly to the initial value
as it is shown in Fig. 1b (blue curve). In the same panel,
we also present the result of the backward evolution
of E1(t) averaged over all projective measurements of
second particle found at all possible momentum val-
ues n2 (Fig. 1b red curve). The red and blue curves
coincide up to numerical round-off errors being on a
level of 10−13. Such an exact coincidence of time rever-
sal behavior without measurements and with averaging
over all possible measurement results can be understood
from the Feynman path integral formulation of quan-
tum mechanics [35]. In this Feynman interpretation, a
specific projective measurement of the second particle
at a n2 value selects a specific entangled path of the
first particle which returns approximately to its initial
state at t = 0.

Examples of the time evolution of the probability dis-
tribution of the first particle w(n1, t) are shown in Fig. 2
for a case of projective measurement of the second par-

0

0.25

0.5

0.75

1
(a)

(c)(b)

Fig. 2 Panel a shows the time evolution of probability of
the first particle w(n1, t) (color density plot) for parame-
ters of Fig. 1 and −128 ≤ n1 < 128 (y-axis), 0 ≤ t ≤ 80
(x-axis), tr = 40. The measurement and time reversal are
done after tr map (3) iterations with the second parti-
cle detected at the momentum value n2 = 12. The thin
white vertical line marks the time tr = 40 of measure-
ment and the beginning of backward iterations. The num-
bers of the color bar correspond to [w(n1, t)/wmax(t)]

1/4

with wmax(t) = maxn1 w(n1, t) being the density maximum
at a given value of t. Panels b and c provide a zoom for
−32 ≤ n1 < 32 (both panels) and 0 ≤ t < 10 (b) or
70 < t ≤ 80 (c)

ticle at momentum value n2 = 12 (see also SupMat
Figs. S.1,S.2 for a modified color representation and
measured momentum n2 = 200). The measurement is
done after tr = 40 iterations of the quantum map (3).
For 0 ≤ t ≤ tr, the values of w(n1, t) are obtained by
averaging the two-particle density over the second par-
ticle, after measurement of the second particle w(n1, t)
represents the probability distribution over momentum
states of the remaining first particle. The results of
Fig. 2 show a diffusive-type spreading of probability
w(n1, t) during the time range 0 ≤ t ≤ tr. This corre-
sponds to a diffusion produced by the underlined clas-
sical chaotic dynamics (quantum corrections give a cer-
tain reduction of the diffusion rate as discussed above
and in [19,21]). After the projective measurement of
the second particle and the time reversal of the prop-
agation, an inverse diffusion process takes place where
the probability w(n1, t) returns approximately to the
initial state of the first particle. This corresponds to a
specific Feynman path selected by the projective mea-
surement of the second particle immediately after the
time tr. Some snapshots of the probability distribution
w(n1, t) corresponding to different results of measure-
ments with different n2 values are shown for specific
time moments in SupMat Fig. S.3.
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Fig. 3 Probabilities w(n1, t) of the first particle at initial
time t = 0 (black lines) and final time t = 2tr = 80 (red
lines) for the cases when the second particle is measured
at n2 = 8 (a), n2 = 12 (b), n2 = 20 (c) and n2 = 200
(d) after the time reversal at tr = 40; system parameters
are as in Fig. 1. The blue stars provide for each case the
semi-analytical theoretical prediction for the final density
at t = 2tr = 80 obtained from the Schmidt decomposition
(see text)

The probability distribution w(n1, t = 2tr) at the
reversal time t = 2tr is shown in Fig. 3. All proba-
bility is located at momentum states n1 = 0, 1 corre-
sponding to the states populated by the first particle
in its initial entangled state (6) (probability outside of
these states is on a level of numerical round-off errors
10−13). However, the values of the two return probabil-
ities w(n1, t = 2tr) are affected by the measurement of
the second particle and they are rather different from
their values of the initial state (6).

The values of w(n1, t = 2tr) can also be computed
from a “theoretical” state |u th〉 for the first particle
obtained from the assumption that only the second
particle is following the time evolution while the first
particle remains fixed and measuring the second par-
ticle at t = tr. The theoretical state is then given by
|u th〉 = α1 C1|u1〉 + α2 C2|u2〉 where (for j = 1, 2) αj

and |uj〉 are given by Eq. (8) used for the Schmidt
decomposition of the initial state (7). The coefficients
Cj are obtained from the measurement procedure as
Cj = Cg 〈n2|vj(tr)〉 = Cg vj(n2, tr) where |vj(tr)〉 are
the second-particle states at the moment of measure-
ment (after tr iterations) and Cg is the global normal-
ization constant of the theoretical state |u th〉. The blue
stars in Fig. 3 show the values obtained from this the-
oretical state which coincide numerically (up to usual
round-off errors) with the values of w(n1, t = 2tr) (also
for the cases n1 being different from 0 or 1 where are
simple w(n1, t = 2tr) = 0).

The reason is that the Schmidt coefficients αi remain
unchanged during the forward propagation in time
till the moment t = tr while the Schmidt vectors
u1(n1, t), v1(n2, t) and u2(n1, t), v2(n2, t) evolve as one-
particle wavefunctions computed numerically from (2)
with the initial condition (7), (8). The measurement of

the second particle, detected at momentum state n2 at
t = tr, gives the above coefficients C1 and C2 and after
the measurement the wavefunction of the first parti-
cle is: ψ(n1, t) = α1C1u1(n1, t) + α2C2u2(n1, t). Dur-
ing the backward evolution, the components u1(n1, t)
and u2(n1, t) return to their initial values providing
exactly the theoretical state given above. Hence, the
probability to find the first particle at n1 = 0 is
w(n1 = 0) = (0.3440α1C1+0.9390α2C2)2 and at n1 = 1
it is w(n1 = 1) = (−0.9390α1C1 + 0.3440α2C2)2. As it
is shown in Fig. 3, the results of this semi-analytical
theory reproduce the numerically obtained probabili-
ties (up to usual round-off errors).

Above we considered the case when the one-particle
wave functions in the Schmidt decomposition extend
over two momentum values close to zero. Similar results
are expected when they extend over a larger but still
modest number of momentum values close to zero.

3.2 EPR pairs in kicked rotator at small �eff values

We also study the behavior of chaotic EPR pair in a
deep semiclassical limit. For this, we consider the quan-
tum evolution on a torus of size N with ε = �eff =
2π/N and periodic conditions for the wavefunction in
a momentum space −π ≤ p = �effn < π. Such a time
evolution of quantum maps on a quantum torus has
already been studied in detail for the one-particle case
(see e.g., [21,36]). As above, we choose the effective
chaos parameter Keff = �effk = 5 such that the phase
space of classical dynamics is mainly chaotic with only
small integrable islands embedded in the chaotic com-
ponent (the measure of these islands is approximately
2% [10]).

The initial state of the EPR pair is chosen as an
entangled state given as the Schmidt decomposition of
two pairs of coherent Gaussian states and with equal
coefficients α1 = α2 = 1/

√
2. More precisely, the initial

components of the first particle are

|uj(t = 0)〉 = |(x(j)
0 , p

(j)
0 )coh.〉

= C
∑

p

exp[−G(p − p
(j)
0 )2 − ip x

(j)
0 /�eff ]|p〉

(10)

with classical positions of the coherent wave packet at
x

(1)
0 = 0.3×(2π), p

(1)
0 = 0.1×(2π) and x

(2)
0 = 0.6×(2π),

p
(2)
0 = −0.05 × (2π). (Note that in (10) the p-sum runs

over the values p = 2πn/N with n = 0, . . . , N − 1.)
The parameter G is related to the width Δp = 〈(p̂ −
p
(j)
0 )2〉1/2 of the wave packet in momentum space by

G = 1/(4Δp2) and C is the normalization constant.
Here we choose G = 1/(2�eff) = N/(4π) such that
Δp =

√
π/N and Δx = �eff/(2Δp) =

√
π/N are iden-

tical (note that here for both variables x and p the
system size is 2π).

The initial Schmidt components |uj(t = 0)〉 of the
second particle are also Gaussian coherent states of the
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same type (10) with close initial positions |vj(t = 0)〉 =
|(x(j)

0 +δx, p
(j)
0 +δp)coh.〉 shifted by δx = δp = 2π/

√
N =

2
√

πΔp.
We describe the probability distribution of the first

particle components (10) in the phase space (x1, p1) by
the Husimi function defined as H(x, p) = |〈(x, p)coh.|u〉|2
where |u〉 is the first-particle state for which the Husimi
function is computed and |(x, p)coh.〉 is the coherent
state (10) with the above choice of G = 1/(2�eff) at
classical positions (x, p). The Husimi function corre-
sponds to a smoothing of the Wigner function over
the above values of Δx, Δp with ΔxΔp = �eff/2 (see
e.g., [36,37] for a description of Husimi functions). We
have numerically computed the Husimi function using
an efficient algorithm based on FFT and for a grid size
(δx/8) × (δp/8) (with the above values of δx and δp).

The Husimi functions of the first particle Schmidt
components u1, u2 are shown in Fig. 4 at different iter-
ation times t = 0, 3, 7, 20 (in columns (a) and (b))
for �eff = 2π/N and N = 1024. We see that due to
the underlying classical chaos the initial coherent state
spreads very rapidly over the whole available phase
space, except the domain of integrable islands which
can be occupied only after very long tunneling times. In
column (c) of Fig. 4, we show the backward time evolu-
tion of the first particle wave packet obtained from the
measurement of the second particle at the momentum
state n2 = 8 performed after tr = 20 quantum map (3)
iterations. We see that the backward evolution of the
first particle has different Husimi distributions at dif-
ferent return time moments. However, at t = 2tr = 40
the first particle returns to its initial coherent states
of Schmidt components at t = 0 but with different
weights. In Fig. 5, we show also a similar time evolu-
tion with measurement and time reversal for the smaller
value �eff = 2π/N , N = 1014 and the measured state
n2 = 8. As in Fig. 4, there is an exponentially rapid
spreading of initial coherent wave packets which after
measurement returns to the initial two coherent states
but with different weights.

In Fig. 6, we show the time evolution of probability
distribution w(n1, t) of the first particle over momen-
tum states n1. For 0 ≤ t ≤ tr, this probability is aver-
aged over the second particle. The projective measure-
ment is done after tr = 20 quantum map (3) iterations
with the second particle detected at n2 = 8 (panel (a))
or n2 = 200 (panel (b)). We see that the backward
probability distribution w(n1, t) at t > tr is different
from the forward one. However, at the return moment
t = 2tr we still have two coherent wave packets for first
particle which have the same shape as at the initial
state but with different coefficients.

We also show the initial t = 0 and final t = 2tr = 40
probability distributions of the first particle in Fig. 7
for different results of measurements of the second par-
ticle detected at n2 = 8, 12, 20, 200. The weights of
each coherent state at t = 2tr are determined from the
Schmidt components of a theoretical state constructed
in the same way as in the case of Fig. 3. The density of
the theoretical state coincides with the final density at

t=
0

t=
7

t=
3

t=
20

(c)(b)(a)

Fig. 4 Density plots of Husimi functions of the first par-
ticle at certain time moments t. Columns a and b show
the Husimi functions of the time-dependent Schmidt com-
ponents |u1(t)〉 (a) and |u2(t)〉 (b) of the first particle after
t = 0, 3, 7, 20 iterations with the horizontal axis corre-
sponding to x1 ∈ [0, 2π[ and the vertical axis corresponding
to p1 ∈ [−π, π[ (or n1 ∈ [−N/2, N/2[ with p1 = �effn1 for
N = 210). The initial conditions |uj(t = 0)〉 (for j = 1, 2)
are Gaussian coherent states (see (10) and text). The initial
Schmidt components |vj(t = 0)〉 of the second particle are
also Gaussian coherent states of the same type with close
positions (see text). Column c shows the Husimi functions
of the first particle after the second particle being measured
at n2 = 8 after t = tr = 20 iterations and followed by
time reversal. The iteration times for the right column are
t(c) = 40 − t with t being the time values shown in the
figure for each row, i.e., t(c) = 40, 37, 33, 20 (top to bot-
tom). The color bar is the same as in Fig. 2 where the num-

bers correspond to [H(x, p)/Hmax]
1/4 with H(x, p) being the

Husimi function of the first particle. System parameters are:
ε = �eff = 2π/N = π × 2−9, Keff = k�eff = 5, T = 4π ± ε.
The pixel resolution of each panel corresponds to P × P
pixels with P = 8

√
N = 28; axis represents variables of

coordinate 0 ≤ x ≤ 2π (x-axis) and momentum p = �effn
and −N/2 ≤ n < N/2 (y-axis)

t = 2tr up to usual numerical round-off errors (only the
maximum of each theoretical state is shown in Fig. 7
by a blue star).

Similar to the case of Fig. 6 with measured n2 = 8,
we show the time evolution w(n1, t) for other measured
values n2 = 12, 20 in SupMat Fig. S.5. For comparison,
we show in SupMat Fig. S.6. also the case of exact time
reversal without measurements (i.e., with average over
all measured n2 values): here the distribution w(n1, t)
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t=
0

t=
9

t=
4

t=
20

(c)(b)(a)

Fig. 5 Same as Fig. 4 but for N = 214 and modified iter-
ations times t = 0, 4, 9, 20 (a), (b) or t(c) = 40 − t =
40, 36, 31, 20 (c) (top to bottom); ε = �eff = 2π/N =
π × 2−13, Keff = k�eff = 5. The number of pixels per direc-
tion is P = 8

√
N = 210

0

0.25

0.5

0.75

1

Fig. 6 Panels show color density plot of w(n1, t) for the
first particle time evolution and parameters of Fig. 4 with
−512 ≤ n1 < 512 (y-axis) and 0 ≤ t ≤ 40 (x-axis). The
time values for t ≤ tr = 20 correspond to the exact forward
iteration and for backward iterations tr < t ≤ 2tr = 40, the
measurement, done after tr iterations, detects the second
particle at n2 = 8. The thin vertical white line marks the
time position of measurement tr = 20 and the beginning
of the time reversal backward iterations. The color bar has
the same meaning as in Fig. 2. The case with measured
momentum n2 = 200 is given in SupMat Fig. S.4
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(d)

Fig. 7 Densities w(n1, t) of the first particle for the case
of Fig. 4 are shown at initial t = 0 (black curves) and final
t = 2tr = 40 (red curves) time moments; the second particle
is measured at n2 = 8 (a), n2 = 12 (b), n2 = 20 (c) and
n2 = 200 (d). The blue stars provide for each case the max-
imum values of the density of the theoretical state obtained
from the Schmidt decomposition (see text) and predicting
the final density at t = 40. The theoretical density curves
are identical to the red curves within numerical precision
∼ 10−13 but only their values at the two maximum posi-
tions are shown for a better visibility

is exactly symmetric with respect to time reversal at
the moment t = tr = 20.

3.3 EPR pairs of cold atoms in a kicked optical
lattice

Above we studied the properties of measurements and
time reversal of EPR pairs in the regime of the kicked
rotator when the evolution takes place on a ring of
size 2π. However, the experiments with cold atoms in a
kicked optical lattice [25,26,32] correspond to the situa-
tion when an EPR pair propagates on the infinite x axis
containing many periods of size 2π. Due to the periodic-
ity of the potential, the wavefunction of each particle is
characterized by a quasimomentum with irrational val-
ues β (with p = n+β) that reduce the probability of the
single atom time reversal as discussed in detail in [31].
Thus, to model this experimental setup we consider the
EPR propagation on an x interval of size 2πL contain-
ing L periods 2π of the optical lattice. We use periodic
boundary conditions in x but during the time evolu-
tion the wave packet is not reaching the boundaries such
that the boundary conditions are not important. In this
case, the free propagation of a particle between kicks is
given by the same unitary operator as in (2) but now
in numerical simulations the momentum takes discrete
values p = m/L with integers m = −N/2, . . . , , N/2−1
and N = LNr where L gives the number of differ-
ent quasimomentum values β and Nr gives the number
of integer values of momentum p. The integer p val-
ues correspond to the rotator case. The kick operator
remains the same as in (2) but the position operator
now takes the discrete values x = 2πmL/N (m hav-
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ing the same integer values as above) corresponding to
the interval [−πL, πL[. As in the previous sections, the
numerical simulations are done with the propagation
of the full wavefunction using its Schmidt components.
This allows to reach very high N and L values required
to eliminate boundary effects. As it was shown in previ-
ous sections, this computational method gives the same
results as the full wavefunction propagation with 2D
FFT (up to numerical precision). We use as maximal
values N = 222 with L = 214, Nr = 28.

Below we present results for time reversal for chaotic
EPR pair in a kicked optical lattice. The momentum
and energies are measured in recoil units as described
in [31] that corresponds to dimensionless units of p
used above. As in the last subsection, the initial state
is an entangled state given as the Schmidt decomposi-
tion of two pairs of coherent Gaussian states and with
equal coefficients α1 = α2 = 1/

√
2. However, now the

parameter G in (10) is given by G = 1/(4Δp)2 with
Δp = 0.01 and due to notational reasons the parame-
ter heff in (10) is replaced with unity (not to be confused
with heff = 5/8 mentioned below). The corresponding
width of the Gaussian packet in position representation
is Δx = 1/(2Δp) = 50 ≈ 8 × 2π corresponding roughly
to 8 periods of the optical lattice. The center and phase
parameters of (10) of the two Schmidt components for
the first particle are p

(1)
0 = 1, p

(2)
0 = 2, x

(1)
0 = π (in

the middle of the cell of index m = 0) and x
(2)
0 = 3π

(in the middle of the cell of index m = 1). The values
for the two corresponding Schmidt components of the
second particle are p

(1)
0 = −1, p

(2)
0 = −2, x

(1)
0 = π and

x
(2)
0 = 3π, i.e., negative p

(j)
0 values and same x

(j)
0 values

with respect to the first particle.
Concerning the Chirikov map, we use the same

parameters of the first subsection IIIA, i.e., �eff = ε =
5/8, Keff = 5, k = Keff/�eff = 8, T = 4π ± ε. The time
reversal is done after tr = 10 followed by a measure-
ment of the second particle and the observation of first
particle at the return moment t = 2tr = 20.

As in [31], we characterize the quantum evolution of
the first particle by the inverse participation ratio (IPR)
defined by

ξt =

[
∑

p1

w(p1, t)

]2

/
∑

p1

w2(p1, t) = 1/
∑

p1

w2(p1, t)

(11)

where w(p1, t) =
∑

p2
|〈p1, p2|ψ(t)〉|2 are the probabili-

ties of the first particle in the momentum space at time
t and after summing over the second particle momen-
tum p2 (the second identity in the expression of ξt

holds if the probabilities w(p1, t) are properly normal-
ized). In addition, we also compute the time variation of
the relative peak probability Wpeak(0)/Wpeak(t) where
Wpeak(t) =

∑
j=1, 2 w(p(j)

0 , t) is the sum of the proba-

bilities at the two initial peak positions p
(j)
0 = j (with

j = 1, 2) in momentum space.
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Fig. 8 Time dependence of rescaled IPR ξt/ξ0 (a) and
peak probability (b) of the first particle for a chaotic EPR
pair in a kicked optical lattice: the forward time evolution is
marked by black points; full backward evolution is marked
by blue stars (time reversal is done at t = tr = 10 without
measurement), backward evolution with measurement of the
moment p2 of the second particle done at tr is shown by dif-
ferent color symbols for different measured p2 values with
p2 = 8 (cyan full squares), p2 = 12 (green crosses), p2 = 20
(magenta open squares), p2 = 200 (red pluses). System
parameters are �eff = ε = 5/8, Keff = 5, k = Keff/�eff = 8,
T = 4π ± ε (as in Fig. 1) and N = LNr = 222, L = 214,
Nr = 28. The initial state of the EPR pair is described in
the text

The time dependence of the relative IPR value ξt/ξ0

is shown in Fig. 8(a). Up to the reversal time tr = 10,
we have an approximately diffusive growth of IPR
ξt/ξ0 ∝ √

t corresponding to the energy diffusion well
seen in Fig. 1. After the time reversal, this growth is
stopped but at the return time t = 2tr = 20 there is
no real return to the initial IPR value at t = 0. The
reason is that the time reversal is exact only for quasi-
momentum values β = 0 (integer p values) and only
approximate for rather small β close to zero or unity.
This point is discussed in detail in [31]. In fact, the
inversion of IPR is better for the case presented in [31]
(see Fig.1 there) since the kick amplitude k is signifi-
cantly smaller (k = 4.5 there vs. k = 8 here). The new
feature well seen in Fig. 8(a) is that the measurement of
the momentum of the second particle after t = tr = 10
map iterations significantly affects the return behav-
ior of IPR. Since the time reversal is not really exact
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Fig. 9 Husimi function of the first particle at return time
t = 2tr = 20 with measurement of the second particle at t =
tr = 10 with detected momentum p2 = 12. Parameters and
initial state are as in Fig. 8. The color bar is the same as in
Fig. 2 where the numbers correspond to [H(x, p)/Hmax]

1/8.
Furthermore, the contrast of the image files has been artifi-
cially enhanced to increase the visibility of the regions with
non-vanishing values of the Husimi function. x-axis shows
the coordinate interval −L/2 ≤ x1/2π < L/2 for L = 1014;
y-axis shows the momentum interval −Nr/2 ≤ p1 < Nr/2
with Nr = 28. The case of Husimi function of the first
Schmidt component |u1(t)〉 of the first particle at the return
time t = 2tr = 20 without measurement at time reversal
t = tr = 10 is shown in SupMat Fig. S.7

for non-integer momentum values (nonzero β), then the
IPR reversal is not exact as discussed already in [31].
Due to this reason, it is better to consider the time
reversal of the probability fraction in a vicinity of zero
momentum p corresponding to low energy of atoms as
proposed in [31]. In fact, this fraction returns to its
initial values with rather high accuracy as it was also
confirmed in experiments [32].

To demonstrate that certain characteristics have an
exact return to the initial value (up to numerical pre-
cision), we show in Fig. 8(b) the time dependence of
the probability ratio Wpeak(0)/Wpeak(t). Due to conser-
vation of quasimomentum β, the probability Wpeak(t)
is influenced only by the components of the wavefunc-
tion with β = 0 which have an exact time reversal and
the final value Wpeak(t = 2tr) is identical to its initial
value Wpeak(0) (up to numerical precision). However,
the measurement of the second particle at t = tr = 10
affects the time evolution of Wpeak(0)/Wpeak(t) at inter-
mediate times 11 ≤ t ≤ 18 as it is well seen in Fig. 8(b).
Note that Wpeak(t) is given by the sum of probabili-
ties over the two initial peak probabilities of the first
particle at integer values of p. Due to that we have
the exact return of Wpeak(t). However, at the return
moment t = 2tr = 20 the relative distribution of the
return probability over the two initial peak positions

t=
0

t=
20
,b
ac
k.

t=
10

t=
20
,m

ea
s.

(c)(b)(a)

Fig. 10 Zoom of Husimi functions shown in the range
−3.5/256 ≤ x1,2/(2πL) ≤ 3.5/256 (corresponding to 448
periods of the optical lattice), −3.5 ≤ p1.2 ≤ 3.5; the top
three rows show the Husimi functions of the Schmidt com-
ponents |u1(t)〉 (a), |u2(t)〉 (b), |v1(t)〉 (c) at t = 0 (1st row),
t = 10 (2nd row) and the return time t = 20 for the case with
no measurement (3rd row). The last row “t = 20,meas.”
shows the Husimi functions of the first particle at the return
time t = 20 with the measured momentum of the second
particle at t = 10 being p2 = 8 (a), p2 = 12 (b), p2 = 20 (c).
The color bar is the same as in Fig. 2 where the numbers cor-
respond to [H(x, p)/Hmax]

1/4. The dashed white horizontal
lines in top row mark integer momentum values

is strongly affected by the measurement of the second
particle as we show below.

We illustrate the global spreading of the initial wave-
function by showing the Husimi function in (x, p) plane
in Fig. 9. The top panel shows the Husimi function
of the first Schmidt component v1(p1) at the return
moment t = 2tr = 20 (time reversal is done at tr = 10
without measurement of the second particle). In the
bottom panel, we show the Husimi function of the first
particle at t = 2tr = 20 for the case when a measure-
ment detected the second particle at p2 = 12 at tr = 10.
This figure shows that the main part of probability is
not affected by time reversal and continues to spread
in the phase space. Due to conservation of quasimo-
mentum β, the Husimi function is composed of nar-
row distributions (some kind of parallel lines) located
at integer momentum values. This is a result of quasi-
momentum conservation and the narrow initial width
Δp = 0.01 of the initial distribution in β at t = 0.

This line-type structure is better visible in the zoom
of Fig. 9 shown in Fig. 10. Here we show time snapshots
of the Husimi function of Schmidt components |u1(t)〉,
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Fig. 11 Probability distribution w(p1 +β) of the first par-
ticle over quasimomentum β for two integer offsets p1 = 1 or
p1 = 2; the initial Gaussian probability (of width Δp = 0.01)
t = 0 is shown by the black dashed curve representing the
first initial peak at p1 = 1 (curve for the second initial peak
at p1 = 2 is identical). All shown distributions are rescaled
by the maximum amplitude of the initial Gaussian distri-
bution at β = 0. The rescaled probabilities at return the
time t = 2tr = 20 are shown by red and blue curves for the
initial peaks at p1 = 1 and p1 = 2, respectively; the different
panels correspond to: (a) time reversal at tr = 10 without
measurement; measurement at tr = 10 detecting the second
particle at p2 = 8 (b), p2 = 12 (c), p2 = 20 (d). System
parameters are as in Fig. 8

|u2(t)〉 of the first particle and also |v1(t)〉 of the sec-
ond particle at t = 0, 10, 20 (from left to right columns
and top to down rows). In the bottom row, we show
the Husimi function of the first particle at return time
t = 20 with measured momentum of the second parti-
cle being p2 = 8, 12, 20 (left to right) at reversal time
t = tr = 10. Here we see a part of probability which
returns to the initial distribution.

However, in global we see that the main fraction of
the wave packet is not affected by time reversal. Indeed,
as it was shown in [31] only a relatively small fraction of
the wave packet returns to the initial distribution (that
was associated with the Loschmidt cooling). The reason
is that the described procedure of time reversal is exact
only for the quasimomentum value β = 0 and works
approximately for other values |β| � 1 and |β−1| � 1.

To see in a better way the fraction of the wave packet
returning to the initial distribution, we show in Fig. 11
the probability distribution in quasimomentum β of the
first particle at t = 0 and return time t = 2tr = 20.
In panel Fig. 11(a), the time reversal is done without
measurement of the second particle. The initial distri-
bution has two peaks at p1 = 1, 2 and the return prob-
ability exactly returns to its initial values at β = 0.
However, the width of return distribution in β is signif-
icantly narrowed since the time reversal is only approx-
imate for β different from (but close) zero. This effect,
called Loschmidt cooling, is discussed in detail in [31].
The new feature present in Fig. 11 is that a measure-
ment of the second particle at t = tr = 10 significantly

affects the peak probabilities at two initial positions
p1 = 1, 2 due to the entanglement of the EPR pair. At
the same time, the sum of probabilities of the two peaks
at p1 = 1, 2 remains exactly equal to the initial peak
probability sum at t = 0 since the time reversal is exact
for β = 0 (see also Fig. 8(b)). As for the above case of
the kicked rotator, we interpret the fact that a measure-
ment of the second particle drastically affects the return
path of the first particle with a specific Feynman path
[35] selected by measurement of the entangled second
particle at the moment of time reversal.

The distribution of probabilities of the first parti-
cle at times t = tr = 10 and t = 2tr = 20 is also
shown in Fig. 12 on a larger scale of momentum p1. We
see that there is a broad background of probability of
the first particle which diffusively spreads in momen-
tum due to quantum chaos and which is not signifi-
cantly affected by the time reversal. However, we also
see that at the return time t = 2tr = 20 there appear
two very high peaks near momentum positions of the
initial distribution. The amplitudes of these two peaks
are strongly affected by a measurement of the second
particle at time reversal tr = 10. Even if the total prob-
ability in these two peaks at t = 20 is small compared
to the total probability, their very high peak ampli-
tudes allow to detect them in a very robust way. In
fact, as it was shown in [38,39] for reversal of acoustic
waves, the chaotic dynamics allows to enhance the time
reversal signal making it much more visible in presence
of chaotic background. Here we have a similar situa-
tion that potentially allows to realize and detect the
time reversal of entangled quantum cold atoms. The
time reversal of cold atoms without measurement at
the moment of time reversal has been realized in [32].

Here we presented results for measurements which
detect a specific momentum value of the second par-
ticle. Additional results for a measurement projection
on a broader distribution of momentum p2 with a cer-
tain width Δp2 are presented in SupMat Figs. S.8,S.9.
In this case, the time reversal also reproduces the the
peaks of probability of first particle near their ini-
tial positions. These results show that a measurement
device, which is modeled by a width Δp2, affects the
probability distribution of first particle at the return
moment t = 2tr.

Above we considered an initial entangled state with
a narrow probability distribution near two integer
momentum values of the EPR pair. We suppose that
in an experimental setup initially ultra-cold atoms can
be trapped at very low temperatures corresponding to
p values close to zero. Then a field pulse can move the
momentum to higher p values being close to their inte-
ger values (in recoil units). The entanglement between
the atoms can be created due to their initial interactions
which is later switched off, e.g., with the help of the
Feshbach resonance. It is also possible that both atoms
have an initial momentum close to zero but being entan-
gled they may have a certain spacial separation. Here
we consider the case of distinguishable atoms that can
be realized by taking two identical atoms but at differ-
ent hyperfine states. Such a difference of internal atomic
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Fig. 12 Similar as in Fig. 11 but the results are shown on a
larger momentum range of the first particle −20 ≤ p1 ≤ 20;
blue curves show the probability at the moment of time
reversal t = tr = 10, red curves show the probability at
return time t = 2tr = 20; the different panels correspond
to the same cases of Fig. 11 (without or with measurement
and detected p2 values) and all densities are rescaled as in
Fig. 11. The shown curves also integrate the data for non-
integer values of p1 but the density values at non-integer p1

are essentially zero (in graphical precision)

structure allows to measure one atom without affecting
the other one. Of course, such type of experiments are
very challenging but the technological progress allows
now to perform operations with two entangled atoms
(see e.g., [40]) and we expect that the experimental
investigation of chaotic EPR pairs can be realized soon
in cold atom experiments.

4 Discussion

In this work, we analyzed the case when the evolution
of an EPR pair is chaotic in the classical limit of small
Planck constant. At the same time, the system dynam-
ics is reversible in time both in classical and quantum
cases. In the classical case, the errors grow exponen-
tially with time due to dynamical chaos that breaks
the time reversal of evolution in presence of, even very
small, errors. In contrast to this, the quantum evolu-
tion remains relatively stable to quantum errors due to
the existence of instability only during a logarithmically
short Ehrenfest time scale. Our main objective was to
analyze how measurements of one particle of a chaotic
and entangled EPR pair affect the time reversal of the
remaining particle. We find that this particle retains
an approximate time reversal returning to one of all
configurations representing the initial entangled EPR
state. We explain such an approximate time reversal
on the basis of the Feynman path integral formulation
of quantum mechanics according to which a measure-
ment selects a specific configuration which returns to
its initial state via time inverted specific pathway. We
show that the Schmidt decomposition of the initially

entangled EPR state allows to identify the final quan-
tum state at the return time.

Here we considered the chaotic EPR pairs in the
case of the quantum Chirikov standard map. This sys-
tem has been already realized in experiments with cold
atoms in kicked optical lattices [25,26]. Moreover, the
time reversal, proposed in [31], has been realized exper-
imentally by the Hoogerland group [32]. However, in
this experiment the interplay aspects of entanglement
and measurement for time reversal were not studied. At
present, advanced cold atoms techniques allow to inves-
tigate various quantum correlations of entangled pairs
of atoms (see e.g., [40]) and we expect that experimen-
tal investigations of the time reversal of chaotic EPR
pairs, discussed here, are possible. It may also be inter-
esting to consider the time reversal for two entangled
Bose–Einstein condensates (BECs) with their chaotic
evolution in a kicked optical lattice following the pro-
posal of time reversal for a single BEC described in [41].

For chaotic EPR pairs, the main feature of quan-
tum chaos is that it leads to a diffusive energy growth
and that a measurement of a particle of chaotic EPR
pair perturbs the time reversal but still allows to obtain
anti-diffusion by which another particle returns approx-
imately to an initial state (case of moderate values
of the Planck constant). At very small values of the
Planck constant, there is also an exponential instabil-
ity of entangled coherent states of EPR pairs during the
Ehrenfest time scale; however, in spite of this instabil-
ity, still after a measurement of one particle, there is an
approximate time reversal of the other particle to the
initial state. For the case of atoms in a kicked optical
lattice, chaos allows to increase visibility of the return-
ing fraction. A similar effect was discussed by the Fink
group [38,39] for one-particle wavefunction evolution in
chaotic billiards but in absence of entanglement.

The nonlocal properties of EPR pairs [1] became
the foundations of secret quantum communications
between two parties of Alice and Bob (see e.g., [3–5]).
We expect that the additional complexity of chaotic
EPR pairs can even more increase the confidentiality
level of such communications.
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Supplementary Material for
“Chaotic Einstein-Podolsky-Rosen pairs,
measurements and time reversal”
by K.M.Frahm and D.L.Shepelyansky

Here we present supplementary material for the main
part of the article with figures Figs. S.1 - S.9 referred in
the main text.
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Fig. S.1. Panels are as in Fig. 2 but with densities renor-
malized by a global maximum such that the numbers of the
color bar correspond to [w(n1, t)/wmax,tot]

1/4 with wmax,tot =
max(n1,t) w(n1, t) being the global maximum with respect to
all n1 and t values; panel (a) is for momentum measurement
n2 = 12 and panel (b) for n2 = 200 as in Fig. S.2 for other
color attribution.
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Fig. S.2. Same as Fig. S.1(b) but with color attrinution as in
Fig. 2.
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Fig. S.3. Densities w(n1, t) of first particle shown at t = 20
(a) (case of forward iteration) and three cases of backward
iteration at t = 60 with the second particle being measured at
n2 = 12 (b), n2 = 20 (c) or n2 = 200 (d); system parameters
are as in Fig. 1.
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Fig. S.4. Same as Fig. 6 for measured momentum n2 = 200.
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Fig. S.5. Same as Fig. 6 but for the measured momentum
n2 = 12 (a) and n2 = 20 (b).
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Fig. S.6. Same as Fig. 6 but with the exact backward iteration
for t > tr = 20 without measurement (or averaged over all
measured values of the second particle momentum n2).

Fig. S.7. Same as Fig. 9 but for Husimi function of the first
Schmidt component |u1(t)� of the first particle at the return
time t = 2tr = 20 without measurement at time reversal t =
tr = 10.
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Fig. S.8. Same as in Fig. 11 but the measurement projects the
second particle on a Gaussian packet of width Δp2 centered at
p2 = 12 (panel (a) with Δp2 = 0.5 and panel (b) with Δp2 = 1)
and at p2 = 20 (panel (c) with Δp2 = 0.5 and panel (d) with
Δp2 = 1). The phase parameter of the Gaussian packet is
x0 = 0 for all cases.
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Fig. S.9. Same as in Fig. 12 for the cases of Fig. S.8 with
a measurement projecting the second particle on a Gaussian
packet (for different values of center and width).


