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Random lasing from Anderson attractors
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We introduce and study a two-dimensional dissipative nonlinear Anderson pumping model that is character-
ized by localized or delocalized eigenmodes in a linear regime and in addition includes nonlinearity, dissipation,
and pumping. We find that above a certain pumping threshold, the model has narrow spectral lasing lines
generated by isolated clusters of Anderson attractors. With the increase of the pumping, the lasing spectrum is
broadened even if narrow lasing peaks are still well present in the localized phase of linear modes. In the metallic
phase, the presence of narrow spectral peaks is significantly suppressed. We argue that the model captures the
main features observed for random lasers.
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I. INTRODUCTION

The theory of random lasing in disordered active media
was introduced by Letokhov [1]. At present, various types of
random lasers operating in different gain and scattering media,
including powder and fibers, have been experimentally real-
ized as discussed and reviewed in [2–6]. The active interest in
random lasers is stimulated not only by their technological
applications but also by a variety of interdisciplinary links
to other research fields, such as the theory of disordered and
mesoscopic systems [7], Anderson localization and transport
[8,9], nonlinear waves in disordered media [10,11], chaotic
dynamics and strange attractors [12,13], synchronization [14],
material science, spectroscopy, and laser physics (see, e.g.,
[15]).

Due to such an interdisciplinary nature and complexity
of random lasing systems, deep theoretical studies are re-
quired with applications of advanced analytical and numerical
tools and methods. Various numerical studies have been re-
ported with the main objective to explain specific features of
random lasing observed in experiments (see, e.g., [16–18]).
Thus in [16] diffusive multimode random lasers have been
analyzed theoretically in the frame of a time-independent
self-consistent approach. A statistical theory of strongly cou-
pled Anderson-localized modes has been applied within a
dyadic Green’s function formalism in a one-dimensional (1D)
approximation [17]. A semiclassical theory for multimode
random lasing has been used in the frame of Maxwell-Bloch
equations in 1D systems for the analysis of lasing from Ander-
son localized modes [18]. In a certain sense, these approaches
are based on steady-state self-consistent solutions of nonlinear
equations.

However, for random lasing it is important to study the
time-dependent complex dynamics with an interplay of non-
linearity, disorder, dissipation, and pumping which may not
be reducible to steady-state solutions, as happens to be the
case for chaotic strange attractors in generic nonlinear dis-

sipative equations with energy pumping (see, e.g., [12,13]).
The properties of such chaotic dynamics are rather difficult
to capture and investigate in studies of specific modeling of
an experimental setup. Due to these reasons, we introduce
here a simplified two-dimensional (2D) dissipative nonlinear
Anderson pumping (DINAP) model that in various limiting
regimes describes such generic phenomena as Anderson lo-
calization, transport in disordered media, nonlinear waves,
dissipation, pumping, synchronization, and chaotic dissipative
dynamics. We show that a lasing in such a model captures
the main qualitative features of random lasers. A somewhat
similar model was studied in [19] for the 1D case. However,
the 1D case is rather far from a typical experimental situation
where random lasing takes place at least in 2D systems, as in
[4,5]. Also, the spectrum of lasing and lasing clusters were not
studied in [19].

II. MODEL DESCRIPTION

The DINAP model is described by the time evolution
equations

iȦx,y = Ex,yAx,y + β|Ax,y|2Ax,y + (1 − iη)(−Ax,y+1

+ 4Ax,y − Ax,y−1 − Ax+1,y − Ax−1,y)

+ i(α − σ |Ax,y|2)Ax,y. (1)

Here, Ax,y is the radiation field amplitude on the site (x, y)
of an N × N square lattice with periodic boundary conditions,
and Ex,y are on-site unperturbed energies randomly distributed
in the [−W/2,W/2] interval.

Thus, the W parameter characterizes the strength of dis-
order in a given system, and it determines the Anderson
localization length in absence of nonlinearity, dissipation and
activation. The physical processes of linear damping, or the
dissipative coupling constant, are characterized by the param-
eter η, and the nonlinear effects of damping are characterized
by the parameter σ . In addition, the lasing generation is
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characterized by instability related to a pumping rate with a
characteristic parameter α. With these parameters, the pro-
posed DINAP model describes the average characteristics of
random lasing, including the spontaneous emission processes
as discussed in [1,3,6]. We note that this model has typical
parameter features broadly used for a description of active,
dissipative, and nonlinear media discussed in [6,14]. How-
ever, an additional element is the presence of disorder and
Anderson localization, which are usually absent in the models
discussed in [6,14].

For β = η = α = σ = 0, the model is reduced to the
two-dimensional Anderson model (see, e.g., [9]) with a unit
hopping amplitude on nearby sites. In the absence of disor-
der, i.e., at W = 0, the spectrum of linear waves on a lattice
of size N × N has the form λqx,qy = 4 − 2 cos(2πqx/N ) −
2 cos(2πqy/N ), where qx and qy are wave numbers of ballistic
waves [7,9]. In the presence of disorder, i.e., W > 0, all the
eigenstates are exponentially localized on an infinite size lat-
tice, but the localization length increases exponentially with a
decrease of the disorder strength W [7,9]. For a lattice of finite
size N , the localization length and the number of lattice sites
effectively contributing to an eigenstate should be compared
with the actual size N . For a lattice of finite size N ∼ 100, the
eigenstates are well localized at W = 6–8, since the number
of sites contributing to eigenstates is significantly smaller
than the total number of sites N × N [20]. In contrast, for
W = 3 this number of sites becomes comparable with N × N
and thus the eigenstates are practically delocalized over the
whole available system size [20]. We also note that the ef-
fects of multiple scattering, which are important for random
lasing (see, e.g., [1,2]), are well captured by the 2D Ander-
son model, which describes a unitary evolution for the linear
case.

For finite β and η = α = σ = 0, the DINAP model is
reduced to the 2D discrete Anderson nonlinear Schrödinger
equation (DANSE) model, which was actively studied to
investigate the effects of weak nonlinearity on Anderson lo-
calization (see, e.g., [21–23]). It was shown that a moderate
nonlinearity leads to a destruction of the localization and a
subdiffusive spreading of the field over the lattice.

The DINAP model has several new features compared to
the unitary DANSE model. Indeed, the parameter α describes
lasing instability of the nonlinear media, which is balanced by
the linear damping η-term and the more significant nonlinear
damping σ -term. As a result, the DINAP model captures var-
ious nontrivial features of the nonlinear lasing in dissipative
media with disorder. Due to nonlinearity and disorder, it is
natural to expect that the dynamics will be characterized by
the presence of chaotic attractors, which are typical for nonlin-
ear dissipative systems [12,13]. We also note that the DINAP
model describes the case of direct instantaneous interactions
leaving aside the effects of delay and feedback.

We note that a similar model in one dimension was studied
in [19]. A number of interesting results were reported there. In
our studies, we analyze a more realistic 2D case, and we con-
centrate the investigations on the lasing spectrum produced
by the nonlinear media of the DINAP model. We note the
important differences of our DINAP model studies with those
of [19]: we study the 2D case, which is much more adapted
to the reality of random lasers, and we also concentrate our

FIG. 1. Dependence of the space-averaged steady-state field
power P = 〈|Ax,y|2〉 on the active media parameter α/η. Here, the
parameters are W = 8, β = σ = 1. For η = 0.1, the steady state is
obtained at te = 104 with an averaging over time interval �t = 103.
The lattice size is 128 × 128. The values of the linear damping are
η = 0.2 (blue points), η = 0.1 (red points), and η = 0.05 (black
points).

analysis on the properties of the lasing spectrum, which was
not analyzed in [19].

The numerical integration of the coupled equations (1)
is done in the frame of the Trotter decomposition used in
[21,22]. This integration scheme is symplectic (at η = α =
σ = 0) and allows us to perform accurate numerical simula-
tions on large timescales. The physical arguments that explain
the accuracy and the advantages of such integration are de-
scribed in [24].

In the numerical simulations, we usually use the integra-
tion time step, � = 0.1, checking that the variation of this
step by several times is not affecting the obtained results.
The main part of the results is presented for the lattice size
N × N = 128 × 128. Such a size is significantly larger than
the localization length of linear eigenstates with a typical
disorder strength W = 8.

At the initial time t = 0, a field Ax,y is taken as random
with typical amplitudes |Ax,y|2 ≈ 7 × 10−11 with a standard
deviation being approximately 4 × 10−11. For a fixed random
configuration of the energies Ex,y, the initial field amplitudes
do not influence the field amplitudes at large times t ∼ 105

(steady state) since the field time evolution converges to fixed
Anderson attractors distributed on the lattice. This Anderson
attractor steady state, averaged over a moderate time interval
�t ∼ 103, is independent of the above described initial ran-
dom field realization Ax,y.

The obtained numerical results are described in the next
section.
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FIG. 2. Anderson attractor in the DINAP model for a 2D lattice
with a linear size N = 128, a disorder strength W = 8, β = σ = 1,
and η = 0.1. The different panels show the lasing power distribution
w(x, y) = |Ax,y| for the pumping strength α = 0.09 (a), (d), α = 0.11
(b), and α = 0.13 (c). The lasing power distributions are shown
after an evolution time te = 104 (a), (b), (c) and te = 105 (d). Panel
(d) shows the attractor stability for long evolution times. The color
bars give the values of w(x, y). The w(x, y) distributions are averaged
over a time interval δt = 103.

III. RESULTS

In Fig. 1, we show the dependence of the space-averaged
steady-state field power P = 〈|Ax,y|2〉 on the rescaled active
media parameter α/η. The field growth is generated by an
effect of active media described by the parameter α growth.
The dissipative effects are produced by the η-term. The field
growth is limited by the nonlinear dissipative σ -term. Thus, at
small values of the ratio α/η, the generated field remains small
so that P � 1 for α/η < 0.7. In contrast, above the thresh-
old value α/η ≈ 0.7 the field power is growing significantly,
which corresponds to the random lasing regime. We note that
a similar behavior has been described for the 1D model [19].

We note that the experiments with random lasing [2–4,6]
are performed with rather complex media, and it is not so
easy to recover from them all the parameters of the DINAP
mathematical model (1). We think that the experimental de-
pendence similar to those of Fig. 1 allows us to estimate the
ratio of parameters α/η from the lasing threshold.

Typical distributions of the lasing power w(x, y) = |Ax,y|2
on the 2D lattice are shown in Fig. 2 for different values
of the activation strength α. The results show a significant
increase of the number of lasing attractors with the growth of
the α-parameter [see Figs. 2(a)–2(c)]. The Anderson attractor

FIG. 3. Spectrum Z (ω) of random lasing in the DINAP model
for a 2D lattice with a linear size N = 128, a disorder strength
W = 8, β = σ = 1, and η = 0.1 (same parameters as in Fig. 2). The
pumping strength is α = 0.09 (a), (d), 0.31 (b), (e), and 0.91 (c), (f).
Panels (a), (b), and (c) show the lasing power distributions w(x, y),
and panels (d), (e), and (f) show the spectrum Z (ω) of the random
lasing. The integral of the spectral lasing power is Ztot � 8.7 × 10−8

(a), (d), 6.0 × 10−5 (b), (e), and 4.5 × 10−4 (c), (f). Initial conditions
and random realizations are the same as in Figs. 2(a) and 2(d).

is the steady state of the system since once it is established,
e.g., at te = 104 [see panel (a)], it continues for longer times,
e.g., at t = 105 [the lasing power distributions are the same in
panels (a) and (d)]. The results are shown for a typical initial
field distribution with random amplitudes Ax,y described in
the previous section; we numerically check that any choice of
other random configurations Ax,y does not change the average
lasing distribution.

Using the fast Fourier transform, we determine the
spectrum of the random lasing defined as Z (ω) =
〈| ∫ dt Ax,y(t ) exp(−iωt )|2〉, where the angular brackets
denote the averaging over the whole lattice space. We also
compute the integral of the spectral power of the random
lasing Ztot = ∫

dω Z (ω). The spectrum Z (ω) of the random
lasing is shown in Fig. 3 together with the lasing power
distribution w(x, y) over the lattice. For small activation
strength α = 0.09, the lasing spectrum is composed of
well-separated strong frequency peaks [Fig. 3(d)]. The space
distribution [Fig. 3(a)] indicates that these frequency peaks
are generated by well-separated lattice cells (clusters). We
call this regime a regime of random lasing clusters. With
the increase of the pumping strength α = 0.31, the lasing
spectrum becomes rather broad even if there are still a
couple of dominant strong frequency peaks emerging from
a quasicontinuum spectral component [Fig. 3(e)]. Over the
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FIG. 4. The lasing clusters present in the red, green, and blue
squares in Fig. 3(a) are shown in panels (a), (b), and (c), respectively.
The frequencies activated by these clusters are shown by the red,
green, and blue curves in panels (d), (e), and (f), respectively. The
spectrum Z (ω) of the whole attractor [Fig. 3(d)] is drawn in the back-
ground of panels (d), (e), and (f). Here, the random lasing spectrum
Z (ω) is normalized by the integral Ztot � 8.7 × 10−8.

lattice, see Fig. 3(b), there are more and more lasing sites as
α increases. At stronger pumping strength, e.g., α = 0.91, the
lasing spectrum becomes almost continuous [Fig. 3(f)], and
over the lattice, almost all the sites are lasing [Fig. 3(c)].

To demonstrate that indeed spectral peaks are generated by
specific isolated clusters, we select three groups of sites for the
small activation strength α = 0.09 delimited by the red, green,
and blue color squares in Fig. 3(a). In Fig. 4, we superimpose
the lasing spectrum of each of the three selected clusters
onto the lasing spectrum obtained for the whole lattice. The
results in Fig. 4 clearly show that these three selected clusters
generate well-isolated spectral peaks of lasing.

Of course, for another random realization of the on-site
energies Ex,y, and for small, moderate, and strong activation
strengths α = 0.09, 0.31, 0.91, the locations of clusters are
different, but the global picture of lasing is similar to those
shown in Figs. 2 and 3, which describe a generic situation.

In the above presented figures, we considered the case
when the linear system (i.e., the linear modes of the cor-
responding Anderson model) has well-localized eigenstates
with a localization support being significantly smaller than the
linear system size N (see the typical eigenstate characteristics
for W = 8 in [20]). This regime is characterized by narrow
peaks of the lasing spectrum generated by isolated localized
clusters. It is also interesting to consider the opposite case
when linear modes have a support that is comparable to the
linear system size, thus corresponding to the metallic regime.

FIG. 5. Same as in Fig. 3 but for a disorder strength W = 3. Here,
Ztot � 2.41 × 10−5 for α = 0.09 (a),(d), 1.9 × 10−4 for α = 0.31
(b),(e), and 7.5 × 10−4 for α = 0.91 (c),(f).

For W = 3, we have approximately such a regime according
to the results presented in [20]. The power distribution w(x, y)
over the lattice and the lasing spectrum Z (ω) for such a case
are shown in Fig. 5. In this metallic regime, even for a small
activation strength α = 0.09, we have a broad spatial power
distribution of lasing; the lasing spectrum is quasicontinuous.
For strong activation strength α = 0.91, almost all the lattice
sites are lasing. The lasing spectrum has a structure that is
similar to the one for small α = 0.09 but with a larger number
of spectral peaks. The important feature of the metallic regime
at W = 3 is that all spectral peaks visible in the localized
regime at W = 8 are replaced by a quasicontinuous broad
distribution. Thus, the localized regime is better adapted to
a narrow spectral line of lasing.

The integrated lasing power, taking the same pumping
and dissipation parameters, is globally higher for the metal-
lic phase regime [see, e.g., Figs. 5(c) and 5(f) with W = 3,
Ztot � 7.5 × 10−4] than for the localized phase regime [see,
e.g., Figs. 3(c) and 3(f) with W = 8, Ztot = 4.5 × 10−4]. We
attribute this to the fact that more sites contribute to the lasing
in the metallic phase due to delocalized eigenstates of the
linear Anderson model.

IV. DISCUSSION

We introduced a mathematical 2D DINAP model to de-
scribe specific features of the random lasers: lasing above
a certain threshold, pronounced spectral lasing peaks, and
lasing clusters. Our numerical analysis shows that these fea-
tures are well described by the DINAP model. The important
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element of the model is that in the linear regime without
nonlinearity and dissipation it is reduced to the 2D Anderson
model with localized modes at strong disorder and delocalized
ones at weak disorder when the finite system size becomes
comparable with the 2D localization length (in the infinite
system). In the localized phase, above the critical pumping
strength α, the spectrum of lasing is composed of narrow spec-
tral lines. These lines emanate from localized isolated clusters
located in a medium where nonlinear dissipative dynamics
leads to isolated Anderson attractors. With the increase of
the pumping strength, the lasing peaks are still present but a
global envelope appears corresponding to lasing from a large
number of connected or disconnected clusters. Globally, an
increase of the pumping strength leads to a broader lasing
spectrum. We find that such an effect is rather natural since
with the increase of the pumping, the nonlinear frequency
corrections become higher. In the metallic regime, the peaks
are significantly less visible even if only slightly above the
threshold pumping and at higher strength of pumping, the
lasing spectrum takes the form of a smooth envelope. We
attribute this feature to a delocalized structure of linear modes
where nonlinear frequency corrections at high pumping get a
contribution from many lattice sites on which are located the
delocalized linear modes.

In the localized phase, our preliminary results show that
a percolation transition takes place from a localized lasing
clusters regime to a delocalized regime of lasing from many
lattice sites when the strength of the pumping significantly
increases above the threshold value. However, a detailed in-
vestigation of the percolation transition is beyond the scope
of this work since a separate detailed study is required for
this interesting phenomenon. There are a number of interest-
ing questions about such a percolation: What is the critical
percolation threshold? How does it depend on the system
parameters? Is there a global synchronization of lasing, like
the Kuramoto transition [14]? Is there a superradiance in such
a synchronized phase? We think that the answers to these
questions can be obtained with further investigations of the
DINAP model.
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