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Abstract: Myocardial fibrosis is a major pathologic disorder associated with a multitude of cardiovas-
cular diseases (CVD). The pathogenesis is complex and encompasses multiple molecular pathways.
Integration of fibrosis-associated genes into the global MetaCore network of protein-protein interac-
tions (PPI) offers opportunities to identify PPI with functional and therapeutic significance. Here,
we report the generation of a fibrosis-focused PPI network and identification of fibroblast-specific
arbitrators driving reparative and reactive myocardial fibrosis. In TGF-β-mediated fibroblast ac-
tivation, developed network analysis predicts new regulatory mechanisms for fibrosis-associated
genes. We introduce an efficient Erdös barrage approach to suppress activation of a number of
fibrosis-associated nodes in order to reverse fibrotic cascades. In the network model each protein
node is characterized by an Ising up or down spin corresponding to activated or repairing state
acting on other nodes being initially in a neutral state. An asynchronous Monte Carlo process de-
scribes fibrosis progression determined by a dominant action of linked proteins. Our results suggest
that the constructed Ising Network Fibrosis Interaction model offers network insights into fibrosis
mechanisms and can complement future experimental efforts to counteract cardiac fibrosis.

Keywords: fibrosis; Markov chains; Ising spin; Monte Carlo method; opinion formation; directed
networks; protein-protein interactions

1. Introduction

Myocardial fibrosis is a major pathologic disorder associated with a multitude of
cardiovascular diseases (CVD) [1]. In the heart, tissue fibrotic remodeling is character-
ized by abnormal fibroblast activation and excessive extracellular matrix (ECM) protein
accumulation [2]. Although a number of factors have been implicated in orchestrating the
fibrotic response, tissue fibrosis is dominated by a central mediator: transforming growth
factor-β (TGF-β) [3]. Sustained TGF-β production leads to a continuous cycle of growth
factor signaling and deregulated matrix turnover [4] . TGF-β binds a heteromeric receptor
complex composed of type I and type II serine/threonine kinase receptors that activate
smad-dependent gene transcription [5]. The converging lines of evidence suggest that
activation of the Smad 3 cascade plays an essential role in extracellular matrix protein gene
expression and regulates fibrosis tissue deposition in fibrotic remodeling of the infarcted
heart [6]. Abnormalities in TGF-β/Smad3 signaling underlie inflammatory diseases and
promote tumor emergence. TGF-β is also central to immune suppression within the tumor
microenvironments, and several studies have reported roles in tumor immune evasion and
poor responses to cancer immunotherapy [7]. In addition to activation of Smad-dependent
signaling, the TGF-β receptor complex can also modulate TGF-β-activated kinase 1 (TAK1
or MAP3K7) [8].
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However, despite intensive research, the biomolecules that orchestrate fibrosis are still
poorly understood and as a result, effective strategies for limiting fibrosis are lacking [2,4].
Considering the complex heterogeneity of fibrosis, research strategy on a system-level under-
standing of the disease using mathematical modeling approaches is a driving force to dissect
the complex processes involved in fibrotic disorders. Recently, we have reproduced the classic
hallmarks of aberrant cardiac fibroblast activation leading to fibrosis and provided a powerful
toolbox for characterization of cardiac fibroblast activation [9]. Although the pathogenesis
of fibrotic remodeling has not been well identified, accumulated evidence suggests that
multiple genes/proteins and their interactions play important roles in disease scenario [10].

Fibrotic remodeling is a complex process caused by genetic abnormalities that alter
protein-protein interactions (PPI) [9,11]. In the heart, PPI interfaces represent a highly
promising, although challenging, class of potential targets for therapeutic options. In
fibrosis, PPI form signaling nodes and hubs that transmit pathophysiological cues along
molecular networks to achieve an integrated biological output, thereby promoting fibro-
genesis and fibrosis progression. Thus, pathway perturbation, through disruption of PPI
critical for fibrosis, offers a novel and effective strategy for curtailing the transmission of
pro-fibrotic signals. Deciphering of fibrosis-specific PPI would uncover new mechanisms
of fibrotic signaling for therapeutic interrogation. Thus a mathematical analysis of the
global PPI MetaCore network [12] can provide useful deep insights in the understanding
of fibrosis progression processes.

In this work we use the PPI MetaCore network [12] to perform a mathematical model-
ing of fibrosis progression. The results reported in [9] determined the protein pro-fibrotic
responses as a feedback on TGF protein stimulation. Thus these results [9] support the
known fact that the TGF protein plays an important role in fibrosis tissue [3] and establish
proteins with most positive and most negative response in cardiac fibroblasts.

A variety of biological applications of the MetaCore network are described in [13,14].
The general statistical properties of the MetaCore network are presented in [15]. The appli-
cations of Google matrix algorithms to the fibrosis PPI based on the MetaCore network are
described in [16] using the fibrosis responses obtained in [9]. We note that the Google matrix
algorithms [17–19] find a variety of useful applications in modern complex networks [20]
including World Wide Web, Wikipedia, world trade etc.

In our opinion an important advantage of the MetaCore network is that it presents
a global network structure of PPI with about 40,000 proteins and important molecules.
This allows to perform a mathematical modeling of fibrosis progression over the whole
network. Thus in this work we present such a modeling which assumes that at an initial
stage there is a certain number of proteins which activate a fibrosis progression of other
proteins via their network links to other proteins. These initial proteins are always marked
as red network nodes and assumed to be always red permanently generating fibrosis
progression (thus being always red or with fixed Ising spin up with σi = 1). Among the
other proteins, we assume that there is an initial group of proteins which inhibit fibrosis
progression being of fixed blue color (thus being always blue or with Ising spin down with
σi = −1). The remaining other proteins (or network nodes) are assumed to be in neutral
state of white color or spin being zero (σi = 0). The fibrosis progression is modeled by the
asynchronous Monte Carlo process when at each step a spin of a given node (which is not
fixed) is determined as the total spin sign of other nodes linked to it with certain weights
of Markov chain transitions. In a certain sense this rule corresponds to a situation when a
person takes an average opinion of his network friends linked to him. After many of such
Monte Carlo steps the system converges to a steady-state when all network spins obtain a
fixed polarization being up (red or fibrosis activated) or down (blue or healthy protected)
and some of the nodes may remain at zero neutral spin state (white) being practically
disconnected from the red or blue network nodes.

We note that the above Monte Carlo steps describe a process of opinion formation and
the global vote of nodes (society members) between red and blue options. For complex
social networks [20] there are numerous studies of opinion formation, reviewed in [21].
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Various interesting features of voter models and opinion formation on networks had been
obtained and described in [21–27]. Recently it was argued that the opinion formation on
the world trade network can be linked with country preference to trade in one or another
currency (e.g., US dollar or hypothetical BRICS currency) [28]. The important new element
appeared in [28] is that opinion of certain network nodes (countries) is considered to be
fixed since it is assumed that they prefer to trade always with fixed currency of USD or
BRICS. A further development of this approach with nodes of fixed opinion is done in [29]
for Wikipedia networks when initially there are two groups of nodes of fixed red and blue
opinions but all other nodes have neutral state (white opinion or spin zero) and their fixed
opinion emerges in the result of asynchronous Monte Carlo process. This process is viewed
as the Ising Network Opinion Formation (INOF) model. In fact this INOF model is directly
suitable for the modeling of fibrosis progression in the PPI MetaCore network and we are
using it here with certain slight modifications described in the next Section. We call this
modified system as the Ising Network FIbrosis (INFI) model. It should be pointed out that
a somewhat similar asynchronous Monte Carlo process is used in models of associative
memory (see e.g., [30,31]).

In this work, using the results reported in [9,16], we take in the INFI model an ini-
tial state of 10 fixed red nodes that produce positive activation response of fibrosis on
growth factor-β (TGF-β) considering them as fixed 10 red protein nodes. We also consider
6 (or 10, 14) fixed blue protein nodes with negative response (see details in next Section).
As a result of fibrosis progression via asynchronous Monte Carlo iterations we obtain the
steady-state of affected and healthy protein nodes with about 60–80 percents of proteins
affected by fibrosis. This corresponds to a strong fibrosis activation resolution of a large part
of the system.

To reduce this strong fibrosis activation we develop an efficient barrage approach
based on the analysis of Erdös proteins linked with fixed red nodes. We show that this
Erdös barrage constructed in a clever manner allows to obtain a striking reduction of
fibrosis activated resolution nodes by a factor of 300 so that almost all protein nodes are
transformed in the healthy phase. We hope that the barrage strategy developed in this
work will find applications in clinical experiments with fibrosis progression.

The paper constructing as follows: Section 2 describes the data sets, construction
of Markov chain transitions, Google matrix and the INFI model, Section 3 presents the
obtained results and Discussion and conclusion are given in Section 4. In the Appendix A
we provide additional data and Figures.

2. Data Sets and INFI Model Description
2.1. Network Data Sets

In this work we use the same global PPI MetaCore network as in [16]. It contains
N = 40,079 nodes with Nℓ = 292,191 links (without self connections which existed in [15]).
The number of directed activation/inhibition links is Nℓ+/Nℓ− = 65,157/49,321 ≃ 1.3 and
the number of neutral directed links is Nℓn = N − Nℓ+ − Nℓ− = 177,713. Here we do not
take into account the bi-functional activation/inhibition nature of links. Thus we simply
have a directed network with N nodes and number of directed links being Nℓ.

For convenience, we present in Table 1, taken from [16], 54 selected fibrosis pro-
teins (nodes). These nodes are composed with 4 TGF-β proteins/nodes (Kt = 1, 2, 3, 4),
20 “up-proteins” (Ku = 1, . . . , 20), 20 “down-proteins” (Kd = 1, . . . , 20), both obtained from
experiments [9] (as described above) and 10 new “X-proteins” (or “X-nodes”; Kx = 1, . . . , 10)
which have a significant influence on the other 44 nodes. The 4 TGF-β nodes correspond
to different isoforms of this protein. As in [16] we have 4 groups of proteins and we use
a specific index for each group: TGF-β proteins with index Kt = 1, 2, 3, 4; up-proteins
with a strongest positive response noted by index Ku = 1, . . . , 20 (ordered by the positive
response with the strongest response for Ku = 1); down-proteins with a strongest negative
response noted by index Kd = 1, . . . , 20 (ordered by the modulus of negative response with
the strongest response modulus for Kd = 1); external proteins noted by index Kx ordered
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by their local PageRank index (strongest PageRank probability of these 10 proteins is at
Kx = 1; see more detail below). All these 54 proteins have their global index Kg = 1, . . . , 54
used in Table 1.

Table 1. Table of the subset of Nr = 54 selected fibrosis proteins (nodes). Here Kg represents the
global index of this group, Kt,u,d,x represent the index of the four subgroups of 4 TGF-β proteins,
20 up-proteins, 20 down-proteins and 10 additional X-proteins; the K (K∗) index represents the
PageRank (CheiRank) index for the global MetaCore network of N = 40,079 nodes; the last column
gives the associated protein names.

Kg Kt,u,d,x K K∗ Protein

1 Kt = 1 10,780 26,299 TGF-β 0
2 Kt = 2 235 5690 TGF-β 1
3 Kt = 3 968 25,073 TGF-β 2
4 Kt = 4 4726 29,508 TGF-β 3
5 Ku = 1 28,737 25,928 ADAMTS16
6 Ku = 2 3478 25,137 FGF21
7 Ku = 3 40,048 28,152 TNFSF18
8 Ku = 4 2467 19,160 ACAN
9 Ku = 5 1489 24,511 RPH3A

10 Ku = 6 26,600 29,559 ADAMTS8
11 Ku = 7 34,769 39,960 MEGF6
12 Ku = 8 26,295 27,326 SV2B
13 Ku = 9 27,111 36,021 C1QTNF3
14 Ku = 10 34,616 39,841 ANO4
15 Ku = 11 12,696 16,566 IL11
16 Ku = 12 26,624 23,640 CDH10
17 Ku = 13 7263 30,243 HTR2B
18 Ku = 14 4647 6551 LAMA1-1
19 Ku = 15 8342 26,295 LAMA1-2
20 Ku = 16 4021 8252 RAPGEF4
21 Ku = 17 29,945 36,964 DNER
22 Ku = 18 22,159 8569 GALNT3
23 Ku = 19 29,145 15,531 ACSBG1
24 Ku = 20 24,786 8735 OLFM2
25 Kd = 1 19,039 28,262 CLEC3B
26 Kd = 2 26,477 28,290 SCARA5
27 Kd = 3 26,109 11,185 SLC10A6
28 Kd = 4 6360 29,204 CXCL5
29 Kd = 5 14,952 8729 MYOC
30 Kd = 6 5961 22,288 IFITM1
31 Kd = 7 5599 4483 ANGPTL4
32 Kd = 8 25,538 17,434 SELENBP1
33 Kd = 9 18,938 33,179 FMO1
34 Kd = 10 34,080 39,427 GPR88
35 Kd = 11 6276 22,141 HMGCS2
36 Kd = 12 37,060 28,328 LGI2
37 Kd = 13 9162 2485 PTN
38 Kd = 14 513 5974 ADORA2A
39 Kd = 15 7789 22,652 GFRA1
40 Kd = 16 6718 8844 IL1R2-1
41 Kd = 17 35,446 28,306 IL1R2-2
42 Kd = 18 12,148 3444 PEG10
43 Kd = 19 27,829 36,195 FMO2
44 Kd = 20 1973 24,994 COX4I2
45 Kx = 1 3 13 β-catenin
46 Kx = 2 4 6 p53
47 Kx = 3 11 10 ESR1
48 Kx = 4 13 25 STAT3
49 Kx = 5 22 11 RelA
50 Kx = 6 38 82 PPAR-γ
51 Kx = 7 111 767 IKK-β
52 Kx = 8 179 198 SNAIL1
53 Kx = 9 237 1520 MMP-14
54 Kx = 10 578 2123 Flotillin-1
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2.2. Without Formulas: Methods, Characteristics and Expected Network Results

As in [16] here we present qualitative explanations without formulas of the mathemat-
ical methods and characteristics described in the next Subsections. Our aim here is to give
a global view on our approach for a common reader.

We use the MetaCore directed network [12] which represents an action of a protein
A on a protein B in a form of a directed link (edge) for N = 40,079 proteins forming the
network nodes (proteins). These links are obtained on the basis of careful and detailed
analysis of scientific literature about thousands of experiments of various research groups
that allowed to collect information about PPI and thus generated a network database with
N = 40,079 nodes and Nℓ = 292,191 links. Certain medical applications of the MetaCore
network can be found in [13,14].

The universal mathematical methods to analyze such networks are generic and based
on the concept of Markov chains and Google matrix [17–19]. The validity of these methods
has been confirmed for various directed networks from various fields of science. Therefore,
since the Google matrix analysis is based on a generic mathematical foundation, we expect
that this analysis will also work efficiently for PPI networks.

The Google matrix of the global MetaCore PPI network G is constructed with specific
rules briefly described in the next Section 2.3 and in detail in [17–19]. The matrix G is
obtained from a matrix of Markov chain transition elements Sij that give weights of transi-
tions between nodes. The important property of G is that its application (multiplication) to
an arbitrary initial vector v preserves the probability and the normalization of this vector
(sum of all vector elements) remains constant (taken to be unity). As a result of multiple
multiplications by G any initial vector converges to the steady-state distribution given
by the PageRank vector P. The components of this vector represent the probabilities of
each node (protein) in this limit. The nodes with the highest probabilities are the most
influential nodes of the network (all nodes are monotonically ordered by decreasing values
of the PageRank components which provides the “PageRank index” K such K(j) = 1, 2, . . .
for nodes j with largest values P(j)). These nodes have typically many ingoing links and
it is likely that some of these ingoing links come from other nodes that also have large
PageRank values.

For the inverse network, in which all link directions are inverted, the corresponding
PageRank is called CheiRank vector P∗ [19]. The highest probabilities P∗(j) are for nodes
j with the CheiRank index K∗(j) = 1, 2, . . . being the most communicative nodes. They
typically have many outgoing links.

In the INFI model Ising spins with polarization ±1 (red or blue) or 0 (white) are placed
at each node of network. They describe fibrosis activated protein state (red or σj = +1)
which can activate other proteins, healthy protein state (blue or σj = −1) which can prepare
other proteins and neutral state proteins (white or σj = 0) that cannot affect other proteins
but can be activated or repaired by red or blue proteins. The initial spin configuration has
certain fixed red proteins with index Kg = 1, . . . , 10 (see Table 1) and fixed blue proteins
with index Kg = 25, . . . , 30 (or 34 or 38) whose colors always remain unchanged, all other
proteins are white (or σj = 0). These white proteins, and also red or blue non-fixed proteins,
can change their color depending on the majority color of nodes directly linked to it (taking
into account the weights of ingoing and outgoing links of the matrix Sij taken without
dangling nodes). This choice is similar to social relations when a member of society takes his
opinion to be imposed by opinions of other members related with him. An asynchronous
Monte Carlo process performs multiple changes of spins leading to the convergence to a
steady-state polarization of all spins. The fraction of red spins fr determines if the fibrosis
progression affected a major part of network or not. We give the mathematical definitions
of the INFI model in next Subsections.

2.3. Markov Chains, Google Matrix, PageRank and CheiRank

In this section we remind some basic mathematical definitions of Markov chains and
how the Google matrix and the related PageRank and CheiRank vectors for the MetaCore
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network are constructed. For this we use a simple version of the MetaCore network where
initial links are not weighted (see Refs. [15,16] for some details about a more refined version
with bi-functional links). First, one introduces the adjacency matrix with elements Aij = 1 if
a node j points to another node i (different from j) and Aij = 0 if there is no link from j to i or
if i = j (we use the same convention as in Ref. [16] where all diagonal elements are chosen
to be Ajj = 0 even if there is a link from a node j to itself). Then we define a matrix S̃ by
S̃ij = Aij/ ∑l Al j if ∑l Al j ̸= 0 and S̃ij = 0 otherwise (i.e., for columns j where all elements
Al j are 0). This matrix does not yet describe a Markov process since it has potentially some
zero columns j (such nodes j are also called dangling nodes). However, in this work we
will use a Monte Carlo process based on this particular matrix (see next section).

To obtain a proper stochastic matrix S one replaces Sij = 1/N for the dangling nodes j
and Sij = S̃ij for the other nodes (dangling nodes have no outgoing links so that a column of
dangling node j has only zero elements in the matrix S̃ij). Here Sij represents the transition
probability for a random surfer from node j to i and the column sum normalization
∑i Sij = 1 ensures the conservation of probability.

The Google matrix elements Gij are typically defined by

Gij = αSij + (1 − α)/N (1)

where α = 0.85 is the usual damping factor [17,18]. The Google matrix is also a proper
stochastic matrix (column sum normalized) and here the random surfer jumps with prob-
ability α on the network according to S and with a probability (1 − α) to an arbitrary
random node of the network. The damping factor modification helps to avoid possible
isolated communities and ensures that the Markov process converges for long times rather
quickly to a uniform stationary probability distribution. The latter defines the PageRank
vector P which is actually the right eigenvector of the Google matrix G corresponding to
the leading eigenvalue λ = 1, i.e., GP = P. The elements P(j) of the PageRank vector
correspond to the probability to find the random surfer on the node j in the stationary limit
of the Markov process. The PageRank index K(j) is obtained by ordering the nodes with
decreasing values of P(j), i.e., the highest (lowest) PageRank probability P(j) corresponds
to K(j) = 1 (K(j) = N). In this work we will use the K-rank of a node to characterize this
node in a unique way. The PageRank probability P(j) is typically related to the number of
ingoing links pointing to node j. However, it also takes into account the “importance” (i.e.,
PageRank probability) of the nodes having a direct link to j.

One can also consider the network obtained by the inversion of all link directions.
The same construction as described above provides a Google matrix noted as G∗ and the
corresponding PageRank vector is called the CheiRank vector P∗, defined by G∗P∗ = P∗.
The CheiRank probability P∗(j) is typically related to the number of outgoing links
weighted by the value P∗(i) of nodes i having a link from j to i. The CheiRank index
K∗(j) is obtained by ordering the CheiRank vector with decreasing values of P∗(j).

For further details about the properties of Google matrix, PageRank and CheiRank
vectors, with many different example networks (also with proteins networks), we refer
to [15,16,18,19].

2.4. Ising Spin Network, Monte Carlo Process for INFI Model

In this work, we consider an Ising type of model using the symmetrized matrix
S̃ + S̃T to model the effective spin interactions. We denote by σi the spin associated to the
node (protein) i but here we allow for three different values being σi = +1 (“red state”,
“fibrosis state”), σi = −1 (“blue state”, “healthy state”) and also σ = 0 (“white state”,
“undetermined or neutral state”). We study this model using a specific Monte Carlo process
similar to [29]. The white state will only be used in the initial condition and is supposed to
be only temporary.

First, we fix 10 specific nodes permanently to the red state, those with Kg = 1, . . . , Kg = 10
in the set of Table 1 corresponding to the four TGF proteins and the first 6 Ku-proteins with
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strongest positive response on the TGF stimulation [16]. We also fix nb nodes permanently
to the blue state being the nodes with Kg = 25, . . . , Kg = 24 + nb corresponding to the first
nb Kd-proteins with strongest negative TGF-response. Here we choose mostly nb = 6 (same
number as the 6 Ku proteins with fixed red state) but we also present some data for the
cases ng = 10 (same total number of fixed red proteins) and ng = 14. Therefore 10 + nb
nodes have already a permanently fixed spin value σi = ±1.

We implement a Monte Carlo procedure that modifies the other Nv = N − 10 − nb
remaining nodes with “variable” spin values (non fixed). For this at given iteration time τ,
we update the Nv variable nodes by computing the sum over all nodes j of the network
(fixed and variable):

Zi = ∑
j( ̸=i)

(S̃ij + S̃ji)σj (2)

and choosing σi(τ + 1) = +1 if Zi > 0, σi(τ + 1) = −1 if Zi < 0 and σi(τ + 1) = σi(τ)
(unchanged) if Zi = 0. Without going into technical details, we mention that the numerical
implementation of (2) exploits of course the sparse structure of the matrix S̃ij. This update
is done for every node i in the set of Nv variable nodes in a random order using a random
permutation (thus no repetitions) which is chosen at the beginning of the iteration process.
Once a spin value for a node i has been updated, the new value σi(τ + 1) will be used for
the update of the subsequent nodes ĩ. We note that somewhat similar asynchronous Monte
Carlo process what used for bio-networks in [32,33] but there the matrix elements S̃ij + S̃ji
had values ±1 and network sizes were relatively small (about 100).

This full update procedure for one time step and the full set of Nv variable nodes is
repeated up to the iteration time τmax = 100 (with different random permutations for the
update order at each time step). We also verify if at any given value of τ there is ideal
convergence where the spins no longer change. (This happens typically at τlast ≈ 10; see
below for details).

The full iteration procedure with τmax = 100 time steps is repeated R = 100,000 times
with different random permutations and eventually also different random positions of
initial blue or white nodes (depending on the precise type of initial condition).

During this procedure, we compute the fraction of red outcome fr(i) for each node as
the number of times the node i has red state at τmax (at different realizations) divided over
R and also the overall average fr = ∑i fr(i)/Nv over the nearly full network of variable
nodes. To test the convergence, we also compute the overall average at intermediate values
of τ.

In order to test the procedure and also in the direct influence of the permanently
fixed nodes, we first choose an initial condition where all Nv variable nodes are initialized
to the white state. Figure A1 illustrates for this case the convergence of (the overall
network average) fr(τ) with iteration time τ. The convergence seems to be very good
at τ > 5 with nearly constant values on graphical precision. However, a closer look
at the data shows that | fr(τ + 1) − fr(τ)| ∼ 10−5 for τ = 10 and the value of fr(τ)
becomes constant only at τ ≥ τlast ≈ 70 with typical last non-vanishing differences
| fr(τlast − 1)− f (τlast)| ∼ 10−10 and | fr(τlast + 1)− f (τlast)| = 0. We have verified that this
behavior is due to the fact that typically at τ ≈ 10 there is exact convergence for a given
realization of the random permutations (random pathways) with no further modifications
of the spins at τ > 10. However, there are rare realizations with larger values, up to
τ = τlast ≈ 70 for exact convergence.

We stress that the approach of INFI model described above is based on physics of
interacting Ising spins placed at each node of MetaCore network so that the configuration
space of the system becomes 2N instead of size N used in the Google matrix methods.
Thus the INFI model provides a qualitatively new approach for analysis of PPI networks.
For Wikipedia networks a similar approach was used in [29]. We state that this method
previously was never used for analysis of PPI networks.

In the next section, we present the results for different quantities and also other
initial conditions.
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3. Results
3.1. Numerical Results

All results presented in this work were obtained with maximal iteration time τmax = 100
and R = 100,000 realizations for (potential) different initial conditions and random permu-
tations for the Monte Carlo procedure. Also when we describe a particular initial condition
it is implicitly understood that the permanently fixed 10 red and nb blue nodes given above
are indeed fixed to these values from the very beginning, i.e., if we say “that there are nib
initial blue values” (with nib = 0, 1, . . .) we mean that there are nib blue nodes on the set of
Nv variable (non-fixed) nodes, other variable nodes are initialized to white values and the
fixed nodes have still their 10 red and nb blue values (in particular the value of nib does not
include the number of nb fixed blue nodes).

In Figure 1, we show for the case of white or zero initial spins (for the Nv variable
nodes; i.e., nib = 0) and the three cases of nb = 6, 10, 14 initial blue fixed nodes (and
10 fixed nodes as explained above) the probability distribution (normalized by an integral)
of fraction of red outcomes fr(i) for the nodes obtained by a histogram with bin width
∆ fr = 0.01. These distributions are strongly peaked at values close to fr,peak ≈ 0.93 (nb = 6),
fr,peak ≈ 0.81 (nb = 10), fr,peak ≈ 0.65 (nb = 14) for roughly 82% of nodes. The secondary
peak at fr = 0 corresponds to the fraction (number) ≈ 0.18 (7230) of nodes (same value
for the three cases of nb) which stay white after 100 iterations for all R = 100,000 pathway
realizations. This set of stable white nodes correspond to nodes not connected to the small
number of fixed red and blue nodes. However, despite the small value of only 10 initial
fixed red notes the majority of the other nodes has a red outcome, especially for nb = 6 and
with slightly reduced values for nb = 10, 14. Note that the bin width ∆ fr = 0.01 in Figure 1
is still the rather large and histogram computations with ∆ fr = 0.001 and ∆ fr = 0.0001
show that the actual peaks of the distributions are much sharper as visible in Figure 1.
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Figure 1. Probability density p( fr) of fr for nb = 6, 10, 14 obtained from a histogram with bin
width ∆ fr = 0.01 using Nv = N − 10 − nb data points fr(i) corresponding to the number of vari-
able nodes. For each node i the value fr(i) is obtained as the fraction of red outcome (σi = +1)
of R = 100,000 pathway realizations for this node using the initial condition with no initial (vari-
able) blue nodes, i.e., nib = 0. The distributions are normalized by

∫ 1
0 p( fr) d fr and there are

strongly peaked at values close to fr,peak ≈ 0.93 (nb = 6), fr,peak ≈ 0.81 (nb = 10), fr,peak ≈ 0.65
(nb = 14) for roughly 82% of nodes. The secondary peak at fr = 0 corresponds to the fraction ≈ 0.180
of nodes (same value for the three values of nb) which stay white after 100 iterations for all
R = 100,000 pathway realizations.
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It seems that with the white initial condition (except for the fixed nodes) nearly all
nodes (except those in the stable white set) have a large probability for red outcome.
Therefore, we try to reduce this red outcome by choosing a certain number nib of initial
blue (variable) nodes and other nodes with white initial values. The question is also
where to place these blue nodes. In a first model we choose the nib blue nodes at different
random positions (for each of the R = 100,000 pathway realizations) on the full set of
variable nodes giving a set of Nr = Nv of possible blue initial nodes with possible values
nib = 0, . . . , Nr and a corresponding fraction fib = nib/Nr. Figure 2 shows for the case
nb = 6 (the results for nb = 10 and nb = 14 are very similar) the overall network average
fr at maximum iteration time as a function of fib (or nib). The initial value fr ≈ 0.75855 at
nib = 0 corresponds to the average which can also be obtained from the histogram data
shown in Figure 1 which is roughly 0× 0.18+ 0.93× 0.82 ≈ 0.76. With increasing fib (or nib)
the value of fr decreases, e.g., fr ≈ 0.1 for nib ≈ 60 and fr ≈ 10−2 for nib ≈ 100. However,
this decrease is not optimal since the initial nib blue nodes can be on arbitrary random
positions of available variable nodes. Therefore, we also try different network subsets for
the potential initial blue nodes.
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10−1

100

0 0.0001 0.001 0.01 0.1 1

0 1 10 100 1000 10000

f r
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Figure 2. Probabilityof red outcome fr = ∑i fr(i)/Nv averaged over all (variable) Nv network nodes
versus fraction fib of random initial blue nodes in the full set of Nr = Nv variables nodes and for the
case nb = 6. The top x-axis shows the number nib = Nr fib of initial (variable) blue nodes. For each
value of nib the initial condition corresponds to nib initial blue nodes (σi(τ = 0) = −1) with different
random positions in the set of size Nr (for the R = 100,000 pathway realizations). The representation
is logarithmic on both axis except for the first data point at nib = 0 which has artificially been placed
at a finite position below nib = 1 for practical reasons. Note that the value fr(nib = 0) ≈ 0.75855
of this data point can also be obtained from the distribution average

∫ 1
0 fr p( fr) d fr from the data of

Figure 1 for the case nb = 6.

In Figure 3, we show the dependence of fr on fib (or nib) for a reduced subset of
Nr = 38 nodes corresponding to the 38 proteins of Table 1 which are not used for fixed
red/blue values, i.e., Kg = 11, . . . , Kg = 24 and Kg = 31, . . . , Kg = 54. Now, nib represents
the number of initial blue nodes on random positions in this subset (and white initial nodes
on every other variable node). Now, the decrease of fr with nib seems somewhat stronger,
i.e., fr ≈ 0.1 for nib ≈ 8 and fr ≈ 10−2 for nib ≈ 16, and we may conclude that this subset
is more effective to reduce the red outcome (“to block fibrosis”) than the full set of available
variable nodes.
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Figure 3. As Figure 2 for nb = 6 but using a reduced set of potentially initial blue nodes with
Nr = 38 using the non-fixed nodes of the set given in Table 1 (i.e., the nodes with Kg = 11, . . . 24
and Kg = 31, . . . , 54). For each value of nib the initial condition corresponds to nib initial blue
nodes (σi(τ = 0) = −1) in this reduced set of 38 nodes (with random positions for each of the
R = 100,000 pathway realizations). All other variable nodes have initial white values (σi(τ = 0) = 0).
The first data point at nib = 0 has the same value as in Figure 2 and it has also artificially been placed
at a finite position below nib = 1 for practical reasons.

To determine a still more effective subset, we determine all nodes which have a direct
link or inverse link to one of the 10 fixed red nodes (those with Kg = 1, . . . , Kg = 10 in
Table 1). This defines a particular set, of size NE = 353, with Erdös number being unity with
respect to the 10 fixed red nodes as HUB and using the symmetrized link matrix S̃ij + S̃ji.
Figure 4 shows the dependence of fr on fib (or nib) for this Erdös set with Nr = NE. Now
the decrease is even more effective with fr ≈ 0.1 for nib ≈ 6 and fr ≈ 10−2 for nib ≈ 14.
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Figure 4. As Figure 3 for nb = 6 but using the Erdös set (all nodes with direct links in both directions
to the 10 fixed red nodes) as reduced set of potentially initial blue nodes with Nr = NE = 353. The
first data point at nib = 0 has the same value as in Figure 2 and it has also artificially been placed at a
finite position below nib = 1 for practical reasons.
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In Figure 5, we show in a color plot the dependence of fr(i) for the 54 nodes i belonging
to the set of Table 1 on the index ng which is a monotonic function of nib (essentially linear
for nib ≤ 10 and logarithmic for nib > 10; see caption of Figure 5 and Appendix Figure A1
for details). The data of Figure 5 correspond to the data of Figure 4 using the Erdös set with
NE = 353 as potential initial blue nodes (i.e., for each value of nib ∈ {0, . . . , 353} we have
nib initial blue nodes at random positions in this set). In Figure 5, we can of course identify
the 10 fixed red nodes (Kg = 1, . . . , 10) and the nb = 6 fixed blue nodes (Kg = 25, . . . , 30)
with either fr(i) = 1 or fr(i) = 0 respectively for all values of ng. The other nodes follow
quite closely the decrease of Figure 4 for the global average of fr. However, for certain
specific nodes (Kg = 17, 23, 36, 38, 41, 44) the decay of fr with ng (or nib) is less pronounced
for ng > 10. Apparently, these nodes are less likely to be blocked by a modest number of
initial blue nodes.
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Figure 5. Color plot of fr(i) for the 54 nodes of the set of Table 1 for the case of Figure 4 (i.e., nb = 6,
using the Erdös group with Nr = 353 nodes as potential initial blue nodes and nib being the number
of initial blue nodes at random positions in the Erdös group). The x-axis corresponds to the index Kg

of Table 1 and the y-axis represents to the coarse-grained index ng = 0, . . . , 31 which corresponds to
nib = ng for ng ≤ 10 (linear scale) and nib ≈ 10 × 1.2ng−10 for ng > 10 (logarithmic scale). See also
Figure A2 which shows the link between nib and ng. The values of the color bar correspond to fr(i)
(i.e., red for fr(i) = 1, green for fr(i) ≈ 0.06 and blue for fr(i) = 0). Here small fr(i) values have
been amplified to improve the visibility (non-linear scale in the Colombo).

We have also analyzed the data of Figure 2 (using all Nv variable nodes as potential
initial blue nodes) and Figure 3 (using the remaining set of 38 non-fixed nodes of Table 1
as potential initial blue nodes) with similar color plots and in both cases we observe the
same qualitative behavior as in Figure 5: identification of fixed red/blue nodes, similar
decrease of fr(i) with increasing nib for the other nodes and less pronounced decrease for
the 6 specific nodes mentioned above.

The question arises which of the nodes of the Erdös set, or more generally, which
configurations of few selected nodes of this set, are most effective to reduce the red outcome
when selected as initial blue nodes. To answer this question, we compute for each node i
of the Erdös set the red outcome frc(i) averaged over the full network when this specific
node i is selected as single initial blue node, i.e., with nib = 1 but now with different cases
of given fixed positions (instead of random positions). Note that this quantity is different
from fr(i) used in the histogram of Figure 1 which is the probability of red outcome of
node i (not averaged over the network) with full white initial condition. The nodes of the
Erdös set can be ordered with increasing values of the new quantity frc(i) which provides a
specific ranking index K fr in this set. In Table 2, we present in K fr -order the nodes (proteins)
of the Erdös set which have either K ≤ 40 or K∗ ≤ 40, either low K- or K∗-rank. It turns out
these nodes also provide the lowest values of frc and K fr (with some holes for K fr > 17).
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Table 2. Table of selected fibrosis proteins (nodes) belonging to a smaller subset of the Erdös group
such that either K ≤ 40 or K∗ ≤ 40 where the K (K∗) index represents the PageRank (CheiRank) index
for the global MetaCore network of N = 40,079 nodes. frc represents the average fraction of red nodes
obtained when using the corresponding node as single initial non-fixed blue node and the index K fr

is obtained by ordering the Erdös group of 353 elements with increasing values of frc; the last column
gives the associated protein names. The shown subset of the Erdös group corresponds essentially to
the nodes with lowest frc-value (up to K fr = 17). The four nodes marked by “∗” in the first column
are the nodes used for the subsequent example computations using 4 specific optimal nodes.

K fr K K∗ frc Protein

* 1 17 1 0.010691 c-Myc
* 2 4 6 0.029542 p53
* 3 342 7 0.038899 c-Fos

4 14 14 0.053526 Androgen receptor
5 22 11 0.075088 RelA (p65 NF-kB subunit)
6 94 34 0.07674 HDAC1
7 188 19 0.078157 p300
8 6272 3 0.078989 IGF2BP3
9 232 9 0.081749 SP1

10 64 29 0.083725 HIF1A
* 11 3 13 0.083939 β-catenin

12 203 21 0.13861 E2F1
13 728 5 0.14694 SOX9
14 432 24 0.14808 BRG1
15 8 115 0.15027 EGFR
16 72 18 0.15149 EZH2
17 13 25 0.15649 STAT3
20 480 40 0.17501 C/EBPβ
21 38 82 0.20211 PPAR-γ
24 298 33 0.20997 ELAVL1 (HuR)
26 394 37 0.22213 CREB1
31 6370 17 0.28502 PUM2
32 17,711 8 0.29183 CUX1 (p110)

Then we choose as example four “optimal” nodes with K = 3, 4, 17, 342 (marked with
an asterix in the first column of Table 2). The nodes K = 4, 17, 342 occupy indeed the
top three places in the K fr -rank while the node K = 3 “only” corresponds to the position
K fr = 11. The reason for this choice is related to the fact that these four nodes are more
uniformly optimal if we also choose a small number of nib = 2, . . . , 10 initial blue nodes.
In this case, using the data of Figure 4 (or the code to produce these data) it is actually
possible to compute the conditional probability frc(i) of a red outcome when the node i
is by chance selected by the random initial condition for nib > 1 (as one of the initial nib
blue nodes). For example for nib = 4 with R = 100,000 different random initial conditions
of 4 blues nodes out of 353 we have typically a bit more than 1000 realizations where an
arbitrary fixed node i belongs to the random set of 4 initial nodes. This provides enough
data for a reasonable average to compute the conditional probability of red outcome of the
node i. In this way, it is possible to compute more general K fr -rankings as in Table 2, also
for modest values of nib > 1. It turns out that these rankings produce roughly the same
sets of nodes in the first places (with possible permutations between different nib-values)
and the four selected nodes K = 3, 4, 17, 342 are indeed optimal as a group for the three
values nib = 2, 3, 4 (and also some larger values).

In Figure 6, we present (for nb = 6) the dependence of fr on ni for this small opti-
mal set of 4 possible initial blue nodes (red square data points). Here the decrease of fr
with increasing ni is indeed very strong with fr ≈ 0.035 for nib = 1 and fr ≈ 0.00318 for
nib = 4. Furthermore, Figure 6 also provides the conditional probabilities of red outcome
frc([K1, . . . , Knib ] (black small circle data points) for specific configurations [K1, . . . , Knib ]
with one configuration for nib = 0, 4, four configurations for nib = 1, 3 and six configu-
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rations for nib = 2. We see that there are considerable fluctuations between the different
configurations in the red outcome for nib = 1 and nib = 2 with optimal values being
frc([17]) ≈ 0.009477 and frc([3, 17]) ≈ 0.004863. Appendix Figure A3 provides two panels
of similar figures for the other cases nb = 10 and nb = 14.
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Figure 6. As Figures 3 and 4 but with linear x-axis and using the optimal set with four K-values
[3, 4, 17, 342] for potential initial blue nodes (i.e., nb = 6, Nr = 4 and nib = 0, . . . , 4 being the number
of initial blue nodes at certain positions in this set). The red square data points, connected by red line,
represent the average fr with respect to all possible configurations of nib initial blue nodes and the
black data points represent the conditional average frc([K1, . . . , Knib ]) for particular configurations
[K1, . . . , Knib ] of initial (variable) blue nodes (with Kj being K-rank values of nodes and nib = 0, . . . , 4).
For each column the top (bottom) black data point corresponds to the top (bottom) configuration
shown above. For nib = 0 (“empty” configuration “[]” with no initial variable blue node) and nib = 4
(full configuration “[3, 4, 17, 342]” of all four nodes) there is only one configuration and therefore only
one associated black data point.

Figure 7 is a similar color plot as Figure 5 but for the specific set of 4 optimal nodes
[3, 4, 17, 342]. The conclusions are similar to Figure 5 (confirmation of fixed red/blue nodes,
strong decrease with increasing nib for other nodes and certain specific nodes with less
pronounced decrease.

In Figure 8, we show the 353 nodes of the Erdös set in the global K-K∗-plane (in a
double logarithmic representation) with colored data points such that the color provides the
value of frc(K) for each node at given K-value (obtained at nib = 1 with the corresponding
node as initial blue node). Optimal nodes with low red outcome (blue color) have typically
small values in their K- and K∗-rank and nodes with large red outcome (red color) have
typically large values in their K- and K∗-rank. Furthermore, Figure 8 also provides the
positions of the 10 fixed red and the 6 blue nodes in the global K-K∗-plane with typically
quite large values for K and K∗. Using the same data Appendix Figure A4 shows the
dependence of frc (at nib = 1) on the rank K fr . Obviously, this curve is monotonically
increasing and the range with small values of frc is rather small, i.e., frc < 0.1 corresponds
to K fr ≤ 11 (see also Table 2). Note that the average of the curve in Figure A4 corresponds
to the data point at nib = 1 in Figure 4 which is fr(nib = 1) ≈ 0.5818.
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Figure 7. Color plot of fr(i) as in Figure 5 but using the optimal set with four K-values [3, 4, 17, 342]
for potential initial blue nodes (i.e., nb = 6, Nr = 4 and nib = 0, . . . , 4 being the number of initial blue
nodes at random positions in this set). Here the y-axis corresponds directly to nib and the x-axis to Kg

of Table 1. The values of the color bar correspond to fr(i) (with amplified scale as in Figure 5).
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Figure 8. The positions of the 353 nodes of the Erös group in the K-K∗ plane in a double logarithmic
representation (colored full circles). The color of each data point corresponds to the value of frc(K)
using the initial configuration [K] (i.e., nib = 1 with initial blue node at given value of K). To be
more precise, the values of the color bar correspond to frc(K)/ frc,max with frc,max ≈ 0.77775 being
the maximum value of frc (i.e red for maximum, green for intermediate and blue for zero values and
with no amplification of small values). The red (blue) crosses indicate the positions of the fixed 10 red
(6 blue) nodes.

We have also analyzed the statistical properties of the individual fr(i) values, same
quantity as in Figure 4, but using the data of Figure 6 for nib = 4 with the initial blue node
configuration [3, 4, 17, 342] and global (network averaged) value fr ≈ 0.00318. For example
Appendix Figure A5 shows the 100 nodes with largest values of this quantity in the K-K∗

plane. Obviously, among the 26 nodes with fr(i) = 1 we have the 10 permanently fixed
red nodes (Kg = 1, . . . , 10 in Table 1) but there are also further 16 nodes with fr(i) = 1
probably with (mostly) exclusive links to the fixed 10 red nodes, i.e., no or few links to
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other nodes, therefore explaining the fixed outcome fr(i) = 1. There are about 1% (4%) of
network nodes with values fr(i) > 0.5 ( fr(i) > 0.08850).

Furthermore, Appendix Figure A6 shows the histogram distribution p( fr) for the same
data with a rapid decay at fi < 1 and a small peak at fr = 1 corresponding to the 26 nodes
i with fr(i) = 1. We have also computed the related global probability P( fr) for a node
i to have a value fr(i) > fr. This quantity is shown in Appendix Figure A7, confirming
the rapid decay which is quite well algebraic as P( fr) ∼ f−1.5

r (for fr ≥ 5 × 10−3) and
which is similar to the Poincare recurrences decay in symplectic chaotic maps with Ulam
networks [34].

The slow algebraic decay of P( fr) has important consequences. It shows that the aver-
age values of fr shown in Figure 6 even underestimate the effect. Explicitely, the average
value of fr ≈ 0.00318 for nib = 4 in Figure 6 corresponds, according to Appendix Figure A7,
to a fraction of nodes P(0.00318) ≈ 0.22 having an fr(i) value above this average and 78%
of nodes have a smaller fr(i) value. It is well known, that for such long tail distributions one
should also focus on the median value fr,median defined by P( fr,median) = 0.5 corresponding
in our case to fr,median = 10−5 (only 1 red outcome in the R = 100,000 pathway realizations)
indicating that (slightly more than) 50% of nodes have an fr(i) value below or equal to the
median value with nearly perfect reduction of the red outcome.

3.2. Results Without Formulas

In this work we presented a mathematical model of fibrosis progression in the PPI
MetaCore network describing the global interaction structure of almost all proteins and
important molecules (nodes). We show that even with only 10 fibrosis activated proteins the
fibrosis progression can spread over a great majority of nodes (about 70%). The developed
analysis of network structure allows us to propose an efficient strategy which allows
to reduce a number of fibrosis activated nodes by a factor 300 and disease elimination.
The method is based on the Erdös barrage construction: we determine the Erdös nodes
directly linked to the fixed 10 activated red nodes; this number can be relatively large
(353 in our case); however, we show that a barrage with only 4 blue repairing Erdös nodes,
corresponding to the four proteins c-Myc, p53, c-Fos and β-catenin, gives a reduction of the
average number of fibrosis activated nodes by a factor 300; these 4 nodes belong to network
nodes with high PageRank and CheiRank indexes of global MetaCore network.

Furthermore, this average actually underestimates the effect since it is determined by
a relative small number of nodes with a modest reduction (e.g., factor of ∼100) while for
more than 50% of nodes the reduction factor is even 100,000 (only 1 infection outcome in
the 100,000 statistical realizations of our simulation). We have also identified in the group
of Table 1 six interesting proteins HTR2B, ACSBG1, LGI2, ADORA2A, IL1R2-2 and COX4I2
(corresponding to the vertical green lines in Figures 5 and 7) where the reduction effect is
somewhat less pronounced (compared to the 50% of nodes with nearly perfect reduction).
We expect that our INFI model can be tested with other PPI networks (e.g., those of [35,36]).

4. Discussion and Conclusions

Decoding fibrosis-associated proteins and fibrotic remodeling progression is a critical
issue in treating heart failure. An experimental determination of the fibrosis resolution is
extremely time consuming and dynamic process. In this work we present and describe a
mathematical model of the fibrosis progression using the global PPI MetaCore network.
The performed analysis shows that in TGFβ-mediated fibroblast activation, PPI hubs
predict new regulatory proteins for fibrosis progression. We developed an efficient method
of the Erd’́os barrage to identify the proteins driving fibrosis activation cascades in a
physiopathological scenario using MetaCore network.

In cardiac tissue, resident cardiac fibroblasts respond to stress or injury by evoluting
through phases determined by a inflammatory motifs, a proliferative capacity, and finally,
a reparative status, characterized by the deposition of ECM that culminates in fibrosis.
The molecular mechanisms orchestrating the dynamic control of the fibroblast phenotype
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remain obscure, hampering the development of therapeutic strategies to combat cardiac
fibrosis. In our study, we found that c-Myc, p53, c-Fos and Androgen receptor arbitrate
cardiac fibroblast activation in cardiac remodeling. The gene encoding the c-MYC is the
most frequently perturbed transcription factor in the majority of human cancers, with its
activation of downstream target genes in the vast majority of the cancer types [37]. Dys-
function of c-MYC can occur through elevated transcription of the gene, amplification or
protein stabilization, all of which release the otherwise tight control and altered expression
levels of the protein in the cell [38]. nhibition of c-MYC has been observed to favor apopto-
sis, growth arrest, differentiation, senescence, metabolic changes and tumour regression
in several human cancer models, clearly reflecting its potential as a target for anti-cancer
therapy [39]. In activated cardiac fibroblasts, p53 transcriptional targets are among the
most deregulated gene programs in pressure overload-induced tissue remodeling [40].
In cancerous tumors, p53 is an important component of the DNA damage and transcrip-
tional regulator of cell cycle [41]. Interestingly, p53-sensitive cellular senescence has also
been linked to myocardial remodeling in animal models ou tissue fibrosis [42]. Indeed,
over expression of the p53 target gene in transgenic mice inhibits fibroblast activation and
reduces scar formation after myocardial infarction [43]. An important factor C-fos is a
member of a family of early genes which are involved in the signal transduction cascade
coupling extracellular stimuli to intracellular events [44]. In particular, C-fos is critical
to the regulation of transcription, and may mediate long-term effects of growth factors
and membrane-depolarising signals on neural responses to stress [45]. Androgen receptor
(AR) signalling in fibroblasts is important in carcinogenesis and prostate development [46].
However, the molecular mechanisms of AR action in fibroblasts and other non-cardiacl cell
types are largely unknown.

In the past few years, the receptors and signal transduction pathways mediating
the effects of TGF-β on fibroblasts have been identified, enabling the dissection of the
specific pathways involved in pathogenic events. TGF-β type I and type II transmembrane
receptor serine/threonine kinases transduce downstream signals via novel cytoplasmic
latent transcription factors, Smad proteins [47]. Both Smad2 and Smad3 are phosphorylated
directly by the type I receptor kinase and able to translocate to the nucleus, where they act as
transcriptional regulators of target genes controlling cell apoptosis and differentiation [48].
Interestingly, deletion of Smad3 results primarily in impaired status of immunity in mice
and shortening their lifespan [49]. The Smad pathway is believed to be the major signaling
mechanism through which active TGF-β stimulates the induction of profibrotic cascades.

In a profibrotic scanario, TGF-β-activated kinase 1 (TAK1) is one of the best charac-
terized non-Smad signal transducers critical for TGF-β functions in EMT and apoptosis
through activating the c-Jun N-terminal kinase (JNK) and p38 MAPK cascade [50]. TAK1
also plays an essential role in mediating TGF-β activation of I-kappa B kinase (IKK) and
the master transcription factor nuclear factor kappa B (NF-kB) that is required for cell
survival [51]. In analogy to the mechanism defined in interleukin-1/Toll-like receptor
pathways, TGF-β-induced activation of TAK1 requires TRAF6, a RING domain ubiquitin
ligase that itself is modified by a K63-linked polyubiquitin chain, which acts as a scaffold to
recruit TAK1 to the TGF-β receptor complex and triggers TAK1 activation [50]. Activity of
TAK1 is also regulated by its binding proteins, including TAK1-binding protein 1 (TAB1)
that binds constitutively the kinase domain and TAB2 or TAB3 that binds the C-terminal
domain and functions as an adaptor linking TRAF6 to TAK1 [52]. However, how TGF-β
coordinates TAK1 kinase to dictate the opposing responses of cell survival and apoptosis
in different cellular scenarios.

Thus the PPI network leads to a very complex system properties. In view of that we
hope that the proposed INFI model may lead to better understading of PPI systems.

The presented method of INFI model is based on mathematical properties of PPI
networks and thus it is generic and universal. It can be applied to any other disease
progression on PPI network and construction of Erdös barrage for disease propagation.
As initial income for the application of this method a medical researcher should provide
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positive and negative responses on certain protein stimulation similar to those of Table 1
with TGF-β stimulation of fibrosis.

Thus we developed an efficient method of the Erdös barrage when a small group of
e.g., 4 repairing protein can reduce the number of fibrosis activated proteins (nodes) by a
factor 300 leading to a healthy state of the global system described here by the MetaCore
network. We expect that similar results can be obtained for other disease progression. We
think that it would be very interesting to test this INFI approach with other global PPI
networks like [35,36]. We hope that the described INFI method will lead to new efficient
medical treatments of fibrosis and other various diseases.
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Appendix A. Additional Figures

Here we present additional Appendix Figures A1–A7 for the main part of this article.
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Figure A1. Illustration of the convergence of spin-configurations for nb = 6, 10, 14 and nib = 0.
Shown is average fr(τ) versus iteration time τ. For practical reasons the convergence seems to be
quite good at τ ≈ 5. However, the value of fr(τ) becomes constant only at τ ≥ τlast ≈ 70 with typical
last non-vanishing differences | fr(τlast − 1)− f (τlast)| ∼ 10−10 and | fr(τlast + 1)− f (τlast)| = 0. All
data in this work have been computed with values up to τ = 100 to verify that exact convergence
is achieved.

Appendix Figure A1 illustrates the convergence of the time evolution of spin configurations.
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Appendix Figure A2 illustrates the link between nib and the coarse-grained index ng
used in Figure 5.
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Figure A2. Dependence of nib on the coarse-grained index ng used in Figure 5 (blue/star data points).
The green line shows for comparison the linear behavior nib = ng (exactly identical to blue line for
ng ≤ 10) and the red line shows the exponential behavior nib = 10 × 1.2ng−10 (good approximation
for ng > 10).

10−3

10−2

10−1

100

0 1 2 3 4

f r

nib

nb = 10
[]

[17]

[4]

[342]

[3]

[4, 17]

[3, 17]

[17, 342]

[3, 4]

[4, 342]

[3, 342]

[3, 4, 17]

[3, 17, 342]

[4, 17, 342]

[3, 4, 342]

[3, 4, 17, 342]

10−3

10−2

10−1

100

0 1 2 3 4

f r

nib

nb = 14
[]

[17]

[4]

[342]

[3]

[3, 17]

[4, 17]

[17, 342]

[4, 342]

[3, 4]

[3, 342]

[3, 4, 17]

[3, 17, 342]

[4, 17, 342]

[3, 4, 342]

[3, 4, 17, 342]

Figure A3. As Figure 6 but for nb = 10 (top panel) and nb = 14 (bottom panel).
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Appendix Figure A3 shows fr for optimal configurations at nb = 10 and nb = 14 (as
Figure 6).

Appendix Figure A4 shows the values of frc(K) (for nb = 6) computed from one initial
(variable) blue node K belonging to the Erdös group ordered by increasing values of frc(K)
inside this group.
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Figure A4. frc(K) versus K fr (K) using the data of Figure 8 (i.e., nb = 6, frc(K) being computed for
nib = 1 with one single initial blue node at node K belonging to the Erdös group.) The index K fr (K) is
the index obtained by ordering the NE = 353 nodes of the Erdös set with increasing values of frc(K).
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Figure A5. The positions of the 100 nodes with top 100 fr(i) values of the (non network averaged)
red outcome for individual nodes i in the K-K∗ plane in a zoomed double logarithmic representation
(colored full circles) using the data for nib = 4 of Figure 6 with the configuration [3, 4, 17, 342] for the
initial blue nodes. The color of each data point corresponds to the value of fr(i) according to the
color bar. There are 26 nodes i with fr(i) = 1 including the 10 permanently fixed red nodes (black
cross symbols; Kg = 1, . . . , 10 in Table 1) and 16 additional nodes and there are 36 (100) nodes i with
fr(i) > 0.5 ( fr(i) ≥ 0.08850).
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Appendix Figure A5 shows for the data for nib = 4 of Figure 6 with the initial blue
node configuration [3, 4, 7, 342] the 100 nodes with top individual fr(i) values of the red
outcome in the K-K∗ plane.

Appendix Figure A6 shows the distribution p( fr) for the data of Figure A5. The peak
at fr = 1 corresponds to the 26 nodes i with fr(i) = 1. The large peak at fr = 0 corresponds
to 95% of probability for 0 ≤ fr ≤ 0.01.
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Figure A6. Histogram distribution p( fr) for the data of Figure A5 using the values fr(i) for all nodes
with bin width ∆ fr = 0.01. The normalization is as in Figure 1 by an integral.
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Figure A7. Fraction P( fr) of nodes i with fr(i) ≥ fr versus fr (red curve) for the data of
Figures A5 and A6. The presentation is double logarithmic except for the data points at fr = 0
which have artificially been added at a finite value below 10−5 and the 26 nodes i with fr(i) = 1
have been excluded in the computation of P( fr). The steps/vertical lines at fi = 0 ( fi = 10−5)
correspond to 7539 (13,696) network nodes i having 0 (1) case(s) of red outcome out of the
R = 100,000 random pathway realizations (note that there are 7230 nodes who have always
white outcome). The green straight line corresponds to the power law fit P( fr) ≈ a f b

r with
a = (6.07 ± 0.03)× 10−5 and b = −1.457 ± 0.001 obtained for the interval fi ∈ [5 × 10−3, 4 × 10−2].
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Appendix Figure A7 shows the probability P( fr) for a node i to have a value fr(r) ≥ fr
for the data of Figures A5 and A6. The decay of P( fr) is rather well algebraic as
P( fr) ≈ 6.07 × 10−5 f−1.46

r for fr ≥ 5 × 10−3 if the 26 nodes i with fr(i) = 1 are ex-
cluded in the computation of P( fr). (If these nodes are included the decay is still al-
gebraic in the fit interval fi ∈ [5 × 10−3, 4 × 10−2] but P( fr) is significantly above the
power law for fi > 4 × 10−2.) Note that P( fr) corresponds to the integrated probability
P( fr) =

∫ 1
fr

p( f̃r) d f̃r using the probability density p( fr) visible in Appendix Figure A6
(apart from the numerical approximation due to the histogram with finite bin width).
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