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Abstract: Myocardial fibrosis is a major pathologic disorder associated with a multitude
of cardiovascular diseases (CVD). The pathogenesis is complex and encompasses multiple
molecular pathways. Integration of fibrosis-associated genes into the global MetaCore network of
protein-protein interactions (PPI) offers opportunities to identify PPI with functional and therapeutic
significance. Here, we report the generation of a fibrosis-focused PPI network and identification
of fibroblast-specific PPI driving reparative and reactive myocardial fibrosis. In TGFb-mediated
fibroblast activation, PPI hubs predict new regulatory mechanisms for fibrosis-associated genes. We
introduce an efficient Erdös barrage approach to suppress activation of a number of fibrosis-associated
nodes in order to reverse fibrotic cascades. Our results suggest that PPI prediction model can
offer network insights into fibrosis mechanisms and can complement future experimental efforts to
counteract cardiac fibrosis.

Keywords: fibrosis; Markov chains; Ising spin, Monte Carlo method, opinion formation, directed
networks; protein-protein interactions

1. Introduction

Myocardial fibrosis is a major pathologic disorder associated with a multitude of cardiovascular
diseases (CVD) [1]. In the heart, tissue fibrotic remodeling is characterized by abnormal fibroblast
activation and excessive extracellular matrix (ECM) protein accumulation [2]. Although a number of
factors have been implicated in orchestrating the fibrotic response, tissue fibrosis is dominated by a
central mediator: transforming growth factor-β (TGF-β) [3]. Sustained TGF-β production leads to a
continuous cycle of growth factor signaling and deregulated matrix turnover [4] . However, despite
intensive research, the biomolecules that orchestrate fibrosis are still poorly understood and as a result,
effective strategies for limiting fibrosis are lacking [2,4]. Considering the complex heterogeneity of
fibrosis, research strategy on a system-level understanding of the disease using mathematical modeling
approaches is a driving force to dissect the complex processes involved in fibrotic disorders. Recently,
we have reproduced the classic hallmarks of aberrant cardiac fibroblast activation leading to fibrosis
and provided a powerful toolbox for characterization of cardiac fibroblast activation [5]. Although the
pathogenesis of fibrotic remodeling has not been well identified, accumulated evidence suggests that
multiple genes/proteins and their interactions play important roles in disease scenario [6].

Fibrotic remodeling is a complex process caused by genetic abnormalities that alter protein-protein
interactions (PPI) [5,7]. In the heart, PPI interfaces represent a highly promising, although challenging,
class of potential targets for therapeutic options. In fibrosis, PPI form signaling nodes and hubs
that transmit pathophysiological cues along molecular networks to achieve an integrated biological
output, thereby promoting fibrogenesis and fibrosis progression. Thus, pathway perturbation, through
disruption of PPI critical for fibrosis, offers a novel and effective strategy for curtailing the transmission
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of pro-fibrotic signals. Deciphering of fibrosis-specific PPI would uncover new mechanisms of fibrotic
signaling for therapeutic interrogation. Thus a mathematical analysis of the global PPI MetaCore
network [8] can provide useful deep insights in the understanding of fibrosis progression processes.

In this work we use the PPI MetaCore network [8] to perform a mathematical modeling of fibrosis
progression. The results reported in [5] determined the protein pro-fibrotic responses as a feedback
on TGF protein stimulation. Thus these results [5] support the known fact that the TGF protein plays
an important role in fibrosis tissue [3] and establish proteins with most positive and most negative
response in cardiac fibroblasts.

A variety of biological applications of the MetaCore network are described in [9,10]. The general
statistical properties of the MetaCore network are presented in [11]. The applications of Google matrix
algorithms to the fibrosis PPI based on the MetaCore network are described in [12] using the fibrosis
responses obtained in [5]. We note that the Google matrix algorithms [13–15] find a variety of useful
applications in modern complex networks [16] including World Wide Web, Wikipedia, world trade etc.

In our opinion an important advantage of the MetaCore network is that it presents a global
network structure of PPI with about 40000 proteins and important molecules. This allows to perform
a mathematical modeling of fibrosis progression over the whole network. Thus in this work we
present such a modeling which assumes that at an initial stage there is a certain number of proteins
which activate a fibrosis progression of other proteins via their network links to other proteins. These
initial proteins are always marked as red network nodes and assumed to be always red permanently
generating fibrosis progression (thus being always red or with fixed Ising spin up with σi = 1). Among
the other proteins, we assume that there is an initial group of proteins which inhibit fibrosis progression
being of fixed blue color (thus being always blue or with Ising spin down with σi = −1). The remaining
other proteins (or network nodes) are assumed to be in neutral state of white color or spin being zero
(σi = 0). The fibrosis progression is modeled by the asynchronous Monte Carlo process when at each
step a spin of a given node (which is not fixed) is determined as the total spin sign of other nodes
linked to it with certain weights of Markov chain transitions. In a certain sense this rule corresponds to
a situation when a person takes an average opinion of his network friends linked to him. After many
of such Monte Carlo steps the system converges to a steady-state when all network spins obtain a fixed
polarization being up (red or fibrosis activated) or down (blue or healthy protected) and some of the
nodes may remain at zero neutral spin state (white) being practically disconnected from the red or
blue network nodes.

We note that the above Monte Carlo steps describe a process of opinion formation and the global
vote of nodes (society members) between red and blue options. For complex social networks [16] there
are numerous studies of opinion formation, reviewed in [17]. Various interesting features of voter
models and opinion formation on networks had been obtained and described in [17,19–24]. Recently
it was argued that the opinion formation on the world trade network can be linked with country
preference to trade in one or another currency (e.g. US dollar or hypothetical BRICS currency) [25].
The important new element appeared in [25] is that opinion of certain network nodes (countries) is
considered to be fixed since it is assumed that they prefer to trade always with fixed currency of USD
or BRICS. A further development of this approach with nodes of fixed opinion is done in [26] for
Wikipedia networks when initially there are two groups of nodes of fixed red and blue opinions but
all other nodes have neutral state (white opinion or spin zero) and their fixed opinion emerges in the
result of asynchronous Monte Carlo process. This process is viewed as the Ising Network Opinion
Formation (INOF) model. In fact this INOF model is directly suitable for the modeling of fibrosis
progression in the PPI MetaCore network and we are using it here with certain slight modifications
described in the next Section. We call this modified system as the Ising Network FIbrosis (INFI) model.
It should be pointed out that a somewhat similar asynchronous Monte Carlo process is used in models
of associative memory (see e.g. [27,28]).

In this work, using the results reported in [5,12], we take in the INFI model an initial state of
10 fixed red nodes that produce positive activation response of fibrosis on growth factor-β (TGF-β)
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considering them as fixed 10 red protein nodes. We also consider 6 (or 10, 14) fixed blue protein nodes
with negative response (see details in next Section). As a result of fibrosis progression via asynchronous
Monte Carlo iterations we obtain the steady-state of affected and healthy protein nodes with about 60 -
80 percents of proteins affected by fibrosis. This corresponds to a strong fibrosis activation resolution
of a large part of the system.

To reduce this strong fibrosis activation we develop an efficient barrage approach based on the
analysis of Erdös proteins linked with fixed red nodes. We show that this Erdös barrage constructed in
a clever manner allows to obtain a striking reduction of fibrosis activated resolution nodes by a factor
of 300 so that almost all protein nodes are transformed in the healthy phase. We hope that the barrage
strategy developed in this work will find applications in clinical experiments with fibrosis progression.

The paper constructing as follows: Section 2 describes the data sets, construction of Markov chain
transitions, Google matrix and the INFI model, Section 3 presents the obtained results and Discussion
and conclusion are given in Section 4. In the Appendix we provide additional data and Figures.

2. Data sets and INFI model description

2.1. Network data sets

In this work we use the same global PPI MetaCore network as in [12]. It contains N = 40079
nodes with N` = 292191 links (without self connections which existed in [11]). The number of
directed activation/inhibition links is N`+/N`− = 65157/49321 ' 1.3 and the number of neutral
directed links is N`n = N − N`+ − N`− = 177713. Here we do not take into account the bi-functional
activation/inhibition nature of links. Thus we simply have a directed network with N nodes and
number of directed links being N`.

For convenience, we present in Table 1, taken from [12], 54 selected fibrosis proteins (nodes). These
nodes are composed with 4 TGF-β proteins/nodes (Kt = 1, 2, 3, 4), 20 “up-proteins” (Ku = 1, . . . , 20),
20 “down-proteins” (Kd = 1, . . . , 20), both obtained from experiments [5] (as described above) and
10 new “X-proteins” (or “X-nodes”; Kx = 1, . . . , 10) which have a significant influence on the other
44 nodes. The 4 TGF-β nodes correspond to different isoforms of this protein. As in [12] we have 4
groups of proteins and we use a specific index for each group: TGF-β proteins with index Kt = 1, 2, 3, 4;
up-proteins with a strongest positive response noted by index Ku = 1, · · · , 20 (ordered by the positive
response with the strongest response for Ku = 1); down-proteins with a strongest negative response
noted by index Kd = 1, · · · , 20 (ordered by the modulus of negative response with the strongest
response modulus for Kd = 1); external proteins noted by index Kx ordered by their local PageRank
index (strongest PageRank probability of these 10 proteins is at Kx = 1; see more detail below). All
these 54 proteins have their global index Kg = 1, · · · , 54 used in Table 1.
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Table 1. Table of the subset of Nr = 54 selected fibrosis proteins (nodes). Here Kg represents the
global index of this group, Kt,u,d,x represent the index of the four subgroups of 4 TGF-β proteins, 20
up-proteins, 20 down-proteins and 10 additional X-proteins; the K (K∗) index represents the PageRank
(CheiRank) index for the global MetaCore network of N = 40079 nodes; the last column gives the
associated protein names.

Kg Kt,u,d,x K K∗ Protein

1 Kt = 1 10780 26299 TGF-β 0
2 Kt = 2 235 5690 TGF-β 1
3 Kt = 3 968 25073 TGF-β 2
4 Kt = 4 4726 29508 TGF-β 3
5 Ku = 1 28737 25928 ADAMTS16
6 Ku = 2 3478 25137 FGF21
7 Ku = 3 40048 28152 TNFSF18
8 Ku = 4 2467 19160 ACAN
9 Ku = 5 1489 24511 RPH3A

10 Ku = 6 26600 29559 ADAMTS8
11 Ku = 7 34769 39960 MEGF6
12 Ku = 8 26295 27326 SV2B
13 Ku = 9 27111 36021 C1QTNF3
14 Ku = 10 34616 39841 ANO4
15 Ku = 11 12696 16566 IL11
16 Ku = 12 26624 23640 CDH10
17 Ku = 13 7263 30243 HTR2B
18 Ku = 14 4647 6551 LAMA1-1
19 Ku = 15 8342 26295 LAMA1-2
20 Ku = 16 4021 8252 RAPGEF4
21 Ku = 17 29945 36964 DNER
22 Ku = 18 22159 8569 GALNT3
23 Ku = 19 29145 15531 ACSBG1
24 Ku = 20 24786 8735 OLFM2
25 Kd = 1 19039 28262 CLEC3B
26 Kd = 2 26477 28290 SCARA5
27 Kd = 3 26109 11185 SLC10A6
28 Kd = 4 6360 29204 CXCL5
29 Kd = 5 14952 8729 MYOC
30 Kd = 6 5961 22288 IFITM1
31 Kd = 7 5599 4483 ANGPTL4
32 Kd = 8 25538 17434 SELENBP1
33 Kd = 9 18938 33179 FMO1
34 Kd = 10 34080 39427 GPR88
35 Kd = 11 6276 22141 HMGCS2
36 Kd = 12 37060 28328 LGI2
37 Kd = 13 9162 2485 PTN
38 Kd = 14 513 5974 ADORA2A
39 Kd = 15 7789 22652 GFRA1
40 Kd = 16 6718 8844 IL1R2-1
41 Kd = 17 35446 28306 IL1R2-2
42 Kd = 18 12148 3444 PEG10
43 Kd = 19 27829 36195 FMO2
44 Kd = 20 1973 24994 COX4I2
45 Kx = 1 3 13 β-catenin
46 Kx = 2 4 6 p53
47 Kx = 3 11 10 ESR1
48 Kx = 4 13 25 STAT3
49 Kx = 5 22 11 RelA
50 Kx = 6 38 82 PPAR-γ
51 Kx = 7 111 767 IKK-β
52 Kx = 8 179 198 SNAIL1
53 Kx = 9 237 1520 MMP-14
54 Kx = 10 578 2123 Flotillin-1
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2.2. Without formulas: methods, characteristics and expected network results

As in [12] here we present qualitative explanations without formulas of the mathematical methods
and characteristics described in the next Subsections. Our aim here is to give a global view on our
approach for a common reader.

We use the MetaCore directed network [8] which represents an action of a protein A on a protein
B in a form of a directed link (edge) for N = 40079 proteins forming the network nodes (proteins).
These links are obtained on the basis of careful and detailed analysis of scientific literature about
thousands of experiments of various research groups that allowed to collect information about PPI and
thus generated a network database with N = 40079 nodes and N` = 292191 links. Certain medical
applications of the MetaCore network can be found in [9,10].

The universal mathematical methods to analyze such networks are generic and based on the
concept of Markov chains and Google matrix [13–15]. The validity of these methods has been confirmed
for various directed networks from various fields of science. Therefore, since the Google matrix analysis
is based on a generic mathematical foundation, we expect that this analysis will also work efficiently
for PPI networks.

The Google matrix of the global MetaCore PPI network G is constructed with specific rules
briefly described in the next Subsection 2.3 and in detail in [13–15]. The matrix G is obtained from a
matrix of Markov chain transition elements Sij that give weights of transitions between nodes. The
important property of G is that its application (multiplication) to an arbitrary initial vector v preserves
the probability and the normalization of this vector (sum of all vector elements) remains constant
(taken to be unity). As a result of multiple multiplications by G any initial vector converges to the
steady-state distribution given by the PageRank vector P. The components of this vector represent
the probabilities of each node (protein) in this limit. The nodes with the highest probabilities are the
most influential nodes of the network (all nodes are monotonically ordered by decreasing values of the
PageRank components which provides the “PageRank index” K such K(j) = 1, 2, . . . for nodes j with
largest values P(j)). These nodes have typically many ingoing links and it is likely that some of these
ingoing links come from other nodes that also have large PageRank values.

For the inverse network, in which all link directions are inverted, the corresponding PageRank
is called CheiRank vector P∗ [15]. The highest probabilities P∗(j) are for nodes j with the CheiRank
index K∗(j) = 1, 2, . . . being the most communicative nodes. They typically have many outgoing links.

In the INFI model Ising spins with polarization ±1 (red or blue) or 0 (white) are placed at each
node of network. They describe fibrosis activated protein state (red or σj = +1) which can activate
other proteins, healthy protein state (blue or σj = −1) which can prepare other proteins and neutral
state proteins (white or σj = 0) that cannot affect other proteins but can be activated or repaired by red
or blue proteins. The initial spin configuration has certain fixed red proteins with index Kg = 1, . . . , 10
(see Table 1) and fixed blue proteins with index Kg = 25, . . . , 30 (or 34 or 38) whose colors always
remain unchanged, all other proteins are white (or σj = 0). These white proteins, and also red or
blue non-fixed proteins, can change their color depending on the majority color of nodes directly
linked to it (taking into account the weights of ingoing and outgoing links of the matrix Sij taken
without dangling nodes). This choice is similar to social relations when a member of society takes his
opinion to be imposed by opinions of other members related with him. An asynchronous Monte Carlo
process performs multiple changes of spins leading to the convergence to a steady-state polarization of
all spins. The fraction of red spins fr determines if the fibrosis progression affected a major part of
network or not. We give the mathematical definitions of the INFI model in next Subsections.

2.3. Markov chains, Google matrix, PageRank and CheiRank

In this section we remind some basic mathematical definitions of Markov chains and how
the Google matrix and the related PageRank and CheiRank vectors for the MetaCore network are
constructed. For this we use a simple version of the MetaCore network where initial links are not
weighted (see Refs. [11,12] for some details about a more refined version with bi-functional links).
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First, one introduces the adjacency matrix with elements Aij = 1 if a node j points to another node i
(different from j) and Aij = 0 if there is no link from j to i or if i = j (we use the same convention as
in Ref. [12] where all diagonal elements are chosen to be Ajj = 0 even if there is a link from a node j
to itself). Then we define a matrix S̃ by S̃ij = Aij/ ∑l Al j if ∑l Al j 6= 0 and S̃ij = 0 otherwise (i.e. for
columns j where all elements Al j are 0). This matrix does not yet describe a Markov process since it
has potentially some zero columns j (such nodes j are also called dangling nodes). However, in this
work we will use a Monte Carlo process based on this particular matrix (see next section).

To obtain a proper stochastic matrix S one replaces Sij = 1/N for the dangling nodes j and
Sij = S̃ij for the other nodes (dangling nodes have no outgoing links so that a column of dangling
node j has only zero elements in the matrix S̃ij). Here Sij represents the transition probability for a
random surfer from node j to i and the column sum normalization ∑i Sij = 1 ensures the conservation
of probability.

The Google matrix elements Gij are typically defined by

Gij = αSij + (1− α)/N (1)

where α = 0.85 is the usual damping factor [13,14]. The Google matrix is also a proper stochastic
matrix (column sum normalized) and here the random surfer jumps with probability α on the network
according to S and with a probability (1 − α) to an arbitrary random node of the network. The
damping factor modification helps to avoid possible isolated communities and ensures that the Markov
process converges for long times rather quickly to a uniform stationary probability distribution. The
latter defines the PageRank vector P which is actually the right eigenvector of the Google matrix G
corresponding to the leading eigenvalue λ = 1, i.e. GP = P. The elements P(j) of the PageRank vector
correspond to the probability to find the random surfer on the node j in the stationary limit of the
Markov process. The PageRank index K(j) is obtained by ordering the nodes with decreasing values
of P(j), i.e. the highest (lowest) PageRank probability P(j) corresponds to K(j) = 1 (K(j) = N). In
this work we will use the K-rank of a node to characterize this node in a unique way. The PageRank
probability P(j) is typically related to the number of ingoing links pointing to node j. However, it also
takes into account the “importance” (i.e. PageRank probability) of the nodes having a direct link to j.

One can also consider the network obtained by the inversion of all link directions. The same
construction as described above provides a Google matrix noted as G∗ and the corresponding PageRank
vector is called the CheiRank vector P∗, defined by G∗P∗ = P∗. The CheiRank probability P∗(j) is
typically related to the number of outgoing links weighted by the value P∗(i) of nodes i having a link
from j to i. The CheiRank index K∗(j) is obtained by ordering the CheiRank vector with decreasing
values of P∗(j).

For further details about the properties of Google matrix, PageRank and CheiRank vectors, with
many different example networks (also with proteins networks), we refer to [11,12,14,15].

2.4. Ising spin network, Monte Carlo process for INFI model

In this work, we consider an Ising type of model using the symmetrized matrix S̃ + S̃T to model
the effective spin interactions. We denote by σi the spin associated to the node (protein) i but here
we allow for three different values being σi = +1 (“red state”, “fibrosis state”), σi = −1 (“blue state”,
“healthy state”) and also σ = 0 (“white state”, “undetermined or neutral state”). We study this model
using a specific Monte Carlo process similar to [26]. The white state will only be used in the initial
condition and is supposed to be only temporary.

First, we fix 10 specific nodes permanently to the red state, those with Kg = 1, . . . , Kg = 10 in the
set of Table 1 corresponding to the four TGF proteins and the first 6 Ku-proteins with strongest positive
response on the TGF stimulation [12]. We also fix nb nodes permanently to the blue state being the
nodes with Kg = 25, . . . , Kg = 24+ nb corresponding to the first nb Kd-proteins with strongest negative
TGF-response. Here we choose mostly nb = 6 (same number as the 6 Ku proteins with fixed red state)
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but we also present some data for the cases ng = 10 (same total number of fixed red proteins) and
ng = 14. Therefore 10 + nb nodes have already a permanently fixed spin value σi = ±1.

We implement a Monte Carlo procedure that modifies the other Nv = N − 10− nb remaining
nodes with “variable” spin values (non fixed). For this at given iteration time τ, we update the Nv

variable nodes by computing the sum over all nodes j of the network (fixed and variable) :

Zi = ∑
j( 6=i)

(S̃ij + S̃ji)σj (2)

and choosing σi(τ + 1) = +1 if Zi > 0, σi(τ + 1) = −1 if Zi < 0 and σi(τ + 1) = σi(τ) (unchanged)
if Zi = 0. Without going into technical details, we mention that the numerical implementation of (2)
exploits of course the sparse structure of the matrix S̃ij. This update is done for every node i in the set
of Nv variable nodes in a random order using a random permutation (thus no repetitions) which is
chosen at the beginning of the iteration process. Once a spin value for a node i has been updated, the
new value σi(τ + 1) will be used for the update of the subsequent nodes ĩ. We note that somewhat
similar asynchronous Monte Carlo process what used for bio-networks in [29,30] but there the matrix
elements S̃ij + S̃ji had values ±1 and network sizes were relatively small (about 100).

This full update procedure for one time step and the full set of Nv variable nodes is repeated up
to the iteration time τmax = 100 (with different random permutations for the update order at each time
step). We also verify if at any given value of τ there is ideal convergence where the spins no longer
change. (This happens typically at τlast ≈ 10; see below for details).

The full iteration procedure with τmax = 100 time steps is repeated R = 100000 times with
different random permutations and eventually also different random positions of initial blue or white
nodes (depending on the precise type of initial condition).

During this procedure, we compute the fraction of red outcome fr(i) for each node as the number
of times the node i has red state at τmax (at different realizations) divided over R and also the overall
average fr = ∑i fr(i)/Nv over the nearly full network of variable nodes. To test the convergence, we
also compute the overall average at intermediate values of τ.

In order to test the procedure and also in the direct influence of the permanently fixed nodes,
we first choose an initial condition where all Nv variable nodes are initialized to the white state.
Figure A1 illustrates for this case the convergence of (the overall network average) fr(τ) with iteration
time τ. The convergence seems to be very good at τ > 5 with nearly constant values on graphical
precision. However, a closer look at the data shows that | fr(τ + 1)− fr(τ)| ∼ 10−5 for τ = 10 and
the value of fr(τ) becomes constant only at τ ≥ τlast ≈ 70 with typical last non-vanishing differences
| fr(τlast − 1)− f (τlast)| ∼ 10−10 and | fr(τlast + 1)− f (τlast)| = 0. We have verified that this behavior is
due to the fact that typically at τ ≈ 10 there is exact convergence for a given realization of the random
permutations (random pathways) with no further modifications of the spins at τ > 10. However, there
are rare realizations with larger values, up to τ = τlast ≈ 70 for exact convergence.

In the next section, we present the results for different quantities and also other initial conditions.

3. Results

3.1. Numerical results

All results presented in this work were obtained with maximal iteration time τmax = 100 and
R = 100000 realizations for (potential) different initial conditions and random permutations for the
Monte Carlo procedure. Also when we describe a particular initial condition it is implicitly understood
that the permanently fixed 10 red and nb blue nodes given above are indeed fixed to these values from
the very beginning, i.e. if we say “that there are nib initial blue values” (with nib = 0, 1, . . .) we mean
that there are nib blue nodes on the set of Nv variable (non-fixed) nodes, other variable nodes are initialized
to white values and the fixed nodes have still their 10 red and nb blue values (in particular the value of
nib does not include the number of nb fixed blue nodes).
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In Figure 1, we show for the case of white or zero initial spins (for the Nv variable nodes; i.e.
nib = 0) and the three cases of nb = 6, 10, 14 initial blue fixed nodes (and 10 fixed nodes as explained
above) the probability distribution (normalized by an integral) of fraction of red outcomes fr(i) for the
nodes obtained by a histogram with bin width ∆ fr = 0.01. These distributions are strongly peaked at
values close to fr,peak ≈ 0.93 (nb = 6), fr,peak ≈ 0.81 (nb = 10), fr,peak ≈ 0.65 (nb = 14) for roughly 82 %
of nodes. The secondary peak at fr = 0 corresponds to the fraction (number) ≈ 0.18 (7230) of nodes
(same value for the three cases of nb) which stay white after 100 iterations for all R = 100000 pathway
realizations. This set of stable white nodes correspond to nodes not connected to the small number
of fixed red and blue nodes. However, despite the small value of only 10 initial fixed red notes the
majority of the other nodes has a red outcome, especially for nb = 6 and with slightly reduced values
for nb = 10, 14. Note that the bin width ∆ fr = 0.01 in Figure 1 is still the rather large and histogram
computations with ∆ fr = 0.001 and ∆ fr = 0.0001 show that the actual peaks of the distributions are
much sharper as visible in Figure 1.
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Figure 1. Probability density p( fr) of fr for nb = 6, 10, 14 obtained from a histogram with bin width
∆ fr = 0.01 using Nv = N − 10− nb data points fr(i) corresponding to the number of variable nodes.
For each node i the value fr(i) is obtained as the fraction of red outcome (σi = +1) of R = 100000
pathway realizations for this node using the initial condition with no initial (variable) blue nodes, i.e.
nib = 0. The distributions are normalized by

∫ 1
0 p( fr) d fr and there are strongly peaked at values close

to fr,peak ≈ 0.93 (nb = 6), fr,peak ≈ 0.81 (nb = 10), fr,peak ≈ 0.65 (nb = 14) for roughly 82 % of nodes.
The secondary peak at fr = 0 corresponds to the fraction ≈ 0.180 of nodes (same value for the three
values of nb) which stay white after 100 iterations for all R = 100000 pathway realizations.

It seems that with the white initial condition (except for the fixed nodes) nearly all nodes (except
those in the stable white set) have a large probability for red outcome. Therefore, we try to reduce this
red outcome by choosing a certain number nib of initial blue (variable) nodes and other nodes with
white initial values. The question is also where to place these blue nodes. In a first model we choose
the nib blue nodes at different random positions (for each of the R = 100000 pathway realizations)
on the full set of variable nodes giving a set of Nr = Nv of possible blue initial nodes with possible
values nib = 0, . . . , Nr and a corresponding fraction fib = nib/Nr. Figure 2 shows for the case nb = 6
(the results for nb = 10 and nb = 14 are very similar) the overall network average fr at maximum
iteration time as a function of fib (or nib). The initial value fr ≈ 0.75855 at nib = 0 corresponds to
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the average which can also be obtained from the histogram data shown in Figure 1 which is roughly
0× 0.18 + 0.93× 0.82 ≈ 0.76. With increasing fib (or nib) the value of fr decreases, e.g. fr ≈ 0.1 for
nib ≈ 60 and fr ≈ 10−2 for nib ≈ 100. However, this decrease is not optimal since the initial nib blue
nodes can be on arbitrary random positions of available variable nodes. Therefore, we also try different
network subsets for the potential initial blue nodes.

10−4

10−3

10−2

10−1

100

0 0.0001 0.001 0.01 0.1 1

0 1 10 100 1000 10000

f r

fib

nib

Figure 2. Probability of red outcome fr = ∑i fr(i)/Nv averaged over all (variable) Nv network nodes
versus fraction fib of random initial blue nodes in the full set of Nr = Nv variables nodes and for the
case nb = 6. The top x-axis shows the number nib = Nr fib of initial (variable) blue nodes. For each
value of nib the initial condition corresponds to nib initial blue nodes (σi(τ = 0) = −1) with different
random positions in the set of size Nr (for the R = 100000 pathway realizations). The representation is
logarithmic on both axis except for the first data point at nib = 0 which has artificially been placed at a
finite position below nib = 1 for practical reasons. Note that the value fr(nib = 0) ≈ 0.75855 of this
data point can also be obtained from the distribution average

∫ 1
0 fr p( fr) d fr from the data of Figure 1

for the case nb = 6.

In Figure 3, we show the dependence of fr on fib (or nib) for a reduced subset of Nr = 38
nodes corresponding to the 38 proteins of Table 1 which are not used for fixed red/blue values, i.e.
Kg = 11, . . . , Kg = 24 and Kg = 31, . . . , Kg = 54. Now, nib represents the number of initial blue nodes
on random positions in this subset (and white initial nodes on every other variable node). Now, the
decrease of fr with nib seems somewhat stronger, i.e. fr ≈ 0.1 for nib ≈ 8 and fr ≈ 10−2 for nib ≈ 16,
and we may conclude that this subset is more effective to reduce the red outcome (“to block fibrosis”)
than the full set of available variable nodes.
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Figure 3. As Figure 2 for nb = 6 but using a reduced set of potentially initial blue nodes with
Nr = 38 using the non-fixed nodes of the set given in Table 1 (i.e. the nodes with Kg = 11, . . . 24
and Kg = 31, . . . , 54). For each value of nib the initial condition corresponds to nib initial blue nodes
(σi(τ = 0) = −1) in this reduced set of 38 nodes (with random positions for each of the R = 100000
pathway realizations). All other variable nodes have initial white values (σi(τ = 0) = 0). The first
data point at nib = 0 has the same value as in Figure 2 and it has also artificially been placed at a finite
position below nib = 1 for practical reasons.

To determine a still more effective subset, we determine all nodes which have a direct link or
inverse link to one of the 10 fixed red nodes (those with Kg = 1, . . . , Kg = 10 in Table 1). This defines a
particular set, of size NE = 353, with Erdös number being unity with respect to the 10 fixed red nodes
as HUB and using the symmetrized link matrix S̃ij + S̃ji. Figure 4 shows the dependence of fr on fib
(or nib) for this Erdös set with Nr = NE. Now the decrease is even more effective with fr ≈ 0.1 for
nib ≈ 6 and fr ≈ 10−2 for nib ≈ 14,

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.611186doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611186


11 of 25

10−4

10−3

10−2

10−1

100

0 0.01 0.1 1

0 1 10 100

f r

fib

nib

Figure 4. As Figure 3 for nb = 6 but using the Erdös set (all nodes with direct links in both directions
to the 10 fixed red nodes) as reduced set of potentially initial blue nodes with Nr = NE = 353. The first
data point at nib = 0 has the same value as in Figure 2 and it has also artificially been placed at a finite
position below nib = 1 for practical reasons.

In Figure 5, we show in a color plot the dependence of fr(i) for the 54 nodes i belonging to the
set of Table 1 on the index ng which is a monotonic function of nib (essentially linear for nib ≤ 10 and
logarithmic for nib > 10; see caption of Figure 5 and Appendix Figure A1 for details). The data of
Figure 5 correspond to the data of Figure 4 using the Erdös set with NE = 353 as potential initial blue
nodes (i.e. for each value of nib ∈ {0, . . . , 353} we have nib initial blue nodes at random positions in
this set). In Fig 5, we can of course identify the 10 fixed red nodes (Kg = 1, . . . , 10) and the nb = 6 fixed
blue nodes (Kg = 25, . . . , 30) with either fr(i) = 1 or fr(i) = 0 respectively for all values of ng. The
other nodes follow quite closely the decrease of Figure 4 for the global average of fr. However, for
certain specific nodes (Kg = 17, 23, 36, 38, 41, 44) the decay of fr with ng (or nib) is less pronounced
for ng > 10. Apparently, these nodes are less likely to be blocked by a modest number of initial blue
nodes.

We have also analyzed the data of Figure 2 (using all Nv variable nodes as potential initial blue
nodes) and Figure 3 (using the remaining set of 38 non-fixed nodes of Table 1 as potential initial
blue nodes) with similar color plots and in both cases we observe the same qualitative behavior as in
Figure 5 : identification of fixed red/blue nodes, similar decrease of fr(i) with increasing nib for the
other nodes and less pronounced decrease for the 6 specific nodes mentioned above.
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Figure 5. Color plot of fr(i) for the 54 nodes of the set of Table 1 for the case of Figure 4 (i.e. nb = 6,
using the Erdös group with Nr = 353 nodes as potential initial blue nodes and nib being the number
of initial blue nodes at random positions in the Erdös group). The x-axis corresponds to the index Kg

of Table 1 and the y-axis represents to the coarse-grained index ng = 0, . . . , 31 which corresponds to
nib = ng for ng ≤ 10 (linear scale) and nib ≈ 10× 1.2ng−10 for ng > 10 (logarithmic scale). See also
Figure A2 which shows the link between nib and ng. The values of the color bar correspond to fr(i)
(i.e. red for fr(i) = 1, green for fr(i) ≈ 0.06 and blue for fr(i) = 0). Here small fr(i) values have been
amplified to improve the visibility (non-linear scale in the Colombo).

The question arises which of the nodes of the Erdös set, or more generally, which configurations
of few selected nodes of this set, are most effective to reduce the red outcome when selected as initial
blue nodes. To answer this question, we compute for each node i of the Erdös set the red outcome
frc(i) averaged over the full network when this specific node i is selected as single initial blue node, i.e.
with nib = 1 but now with different cases of given fixed positions (instead of random positions). Note
that this quantity is different from fr(i) used in the histogram of Figure 1 which is the probability of
red outcome of node i (not averaged over the network) with full white initial condition. The nodes
of the Erdös set can be ordered with increasing values of the new quantity frc(i) which provides a
specific ranking index K fr in this set. In Table 2, we present in K fr -order the nodes (proteins) of the
Erdös set which have either K ≤ 40 or K∗ ≤ 40, either low K- or K∗-rank. It turns out these nodes also
provide the lowest values of frc and K fr (with some holes for K fr > 17).
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Table 2. Table of selected fibrosis proteins (nodes) belonging to a smaller subset of the Erdös group
such that either K ≤ 40 or K∗ ≤ 40 where the K (K∗) index represents the PageRank (CheiRank) index
for the global MetaCore network of N = 40079 nodes. frc represents the average fraction of red nodes
obtained when using the corresponding node as single initial non-fixed blue node and the index K fr is
obtained by ordering the Erdös group of 353 elements with increasing values of frc; the last column
gives the associated protein names. The shown subset of the Erdös group corresponds essentially to
the nodes with lowest frc-value (up to K fr = 17). The four nodes marked by “∗” in the first column are
the nodes used for the subsequent example computations using 4 specific optimal nodes.

K fr K K∗ frc Protein

* 1 17 1 0.010691 c-Myc
* 2 4 6 0.029542 p53
* 3 342 7 0.038899 c-Fos

4 14 14 0.053526 Androgen receptor
5 22 11 0.075088 RelA (p65 NF-kB subunit)
6 94 34 0.07674 HDAC1
7 188 19 0.078157 p300
8 6272 3 0.078989 IGF2BP3
9 232 9 0.081749 SP1

10 64 29 0.083725 HIF1A
* 11 3 13 0.083939 β-catenin

12 203 21 0.13861 E2F1
13 728 5 0.14694 SOX9
14 432 24 0.14808 BRG1
15 8 115 0.15027 EGFR
16 72 18 0.15149 EZH2
17 13 25 0.15649 STAT3
20 480 40 0.17501 C/EBPβ
21 38 82 0.20211 PPAR-γ
24 298 33 0.20997 ELAVL1 (HuR)
26 394 37 0.22213 CREB1
31 6370 17 0.28502 PUM2
32 17711 8 0.29183 CUX1 (p110)

Then we choose as example four “optimal” nodes with K = 3, 4, 17, 342 (marked with an asterix
in the first column of Table 2). The nodes K = 4, 17, 342 occupy indeed the top three places in the
K fr -rank while the node K = 3 “only” corresponds to the position K fr = 11. The reason for this choice
is related to the fact that these four nodes are more uniformly optimal if we also choose a small number
of nib = 2, . . . , 10 initial blue nodes. In this case, using the data of Figure 4 (or the code to produce
these data) it is actually possible to compute the conditional probability frc(i) of a red outcome when
the node i is by chance selected by the random initial condition for nib > 1 (as one of the initial nib
blue nodes). For example for nib = 4 with R = 100000 different random initial conditions of 4 blues
nodes out of 353 we have typically a bit more than 1000 realizations where an arbitrary fixed node
i belongs to the random set of 4 initial nodes. This provides enough data for a reasonable average
to compute the conditional probability of red outcome of the node i. In this way, it is possible to
compute more general K fr -rankings as in Table 2, also for modest values of nib > 1. It turns out that
these rankings produce roughly the same sets of nodes in the first places (with possible permutations
between different nib-values) and the four selected nodes K = 3, 4, 17, 342 are indeed optimal as a
group for the three values nib = 2, 3, 4 (and also some larger values).

In Figure 6, we present (for nb = 6) the dependence of fr on ni for this small optimal set of 4
possible initial blue nodes (red square data points). Here the decrease of fr with increasing ni is indeed
very strong with fr ≈ 0.035 for nib = 1 and fr ≈ 0.00318 for nib = 4. Furthermore, Figure 6 also
provides the conditional probabilities of red outcome frc([K1, . . . , Knib ] (black small circle data points)
for specific configurations [K1, . . . , Knib ] with one configuration for nib = 0, 4, four configurations for
nib = 1, 3 and six configurations for nib = 2. We see that there are considerable fluctuations between
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the different configurations in the red outcome for nib = 1 and nib = 2 with optimal values being
frc([17]) ≈ 0.009477 and frc([3, 17]) ≈ 0.004863. Appendix Figure A3 provides two panels of similar
figures for the other cases nb = 10 and nb = 14.
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[3, 4, 342]
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Figure 6. As Figs. 3 and 4 but with linear x-axis and using the optimal set with four K-values
[3, 4, 17, 342] for potential initial blue nodes (i.e. nb = 6, Nr = 4 and nib = 0, . . . , 4 being the number of
initial blue nodes at certain positions in this set). The red square data points represent the average fr

with respect to all possible configurations of nib initial blue nodes and the black data points represent
the conditional average frc([K1, . . . , Knib ]) for particular configurations [K1, . . . , Knib ] of initial (variable)
blue nodes (with Kj being K-rank values of nodes and nib = 0, . . . , 4). For each column the top (bottom)
black data point corresponds to the top (bottom) configuration shown above. For nib = 0 (“empty”
configuration “[]” with no initial variable blue node) and nib = 4 (full configuration “[3, 4, 17, 342]” of
all four nodes) there is only one configuration and therefore only one associated black data point.

Figure 7 is a similar color plot as Figure 5 but for the specific set of 4 optimal nodes [3, 4, 17, 342].
The conclusions are similar to Figure 5 (confirmation of fixed red/blue nodes, strong decrease with
increasing nib for other nodes and certain specific nodes with less pronounced decrease.
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Figure 7. Color plot of fr(i) as in Figure 5 but using the optimal set with four K-values [3, 4, 17, 342]
for potential initial blue nodes (i.e. nb = 6, Nr = 4 and nib = 0, . . . , 4 being the number of initial blue
nodes at random positions in this set). Here the y-axis corresponds directly to nib and the x-axis to Kg

of Table 1. The values of the color bar correspond to fr(i) (with amplified scale as in Figure 5).

In Figure 8, we show the 353 nodes of the Erdös set in the global K-K∗-plane (in a double
logarithmic representation) with colored data points such that the color provides the value of frc(K)
for each node at given K-value (obtained at nib = 1 with the corresponding node as initial blue node).
Optimal nodes with low red outcome (blue color) have typically small values in their K- and K∗-rank
and nodes with large red outcome (red color) have typically large values in their K- and K∗-rank.
Furthermore, Figure 8 also provides the positions of the 10 fixed red and the 6 blue nodes in the global
K-K∗-plane with typically quite large values for K and K∗. Using the same data Appendix Figure A4
shows the dependence of frc (at nib = 1) on the rank K fr . Obviously, this curve is monotonically
increasing and the range with small values of frc is rather small, i.e. frc < 0.1 corresponds to K fr ≤ 11
(see also Table 2). Note that the average of the curve in Figure A4 corresponds to the data point at
nib = 1 in Figure 4 which is fr(nib = 1) ≈ 0.5818.
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Figure 8. The positions of the 353 nodes of the Erös group in the K-K∗ plane in a double logarithmic
representation (colored full circles). The color of each data point corresponds to the value of frc(K)
using the initial configuration [K] (i.e. nib = 1 with initial blue node at given value of K). To be
more precise, the values of the color bar correspond to frc(K)/ frc,max with frc,max ≈ 0.77775 being the
maximum value of frc (i.e red for maximum, green for intermediate and blue for zero values and with
no amplification of small values). The red (blue) crosses indicate the positions of the fixed 10 red (6
blue) nodes.

We have also analyzed the statistical properties of the individual fr(i) values, same quantity as in
Figure 4, but using the data of Figure 6 for nib = 4 with the initial blue node configuration [3, 4, 17, 342]
and global (network averaged) value fr ≈ 0.00318. For example Appendix Figure A5 shows the 100
nodes with largest values of this quantity in the K-K∗ plane. Obviously, among the 26 nodes with
fr(i) = 1 we have the 10 permanently fixed red nodes (Kg = 1, . . . , 10 in Table 1) but there are also
further 16 nodes with fr(i) = 1 probably with (mostly) exclusive links to the fixed 10 red nodes, i.e. no
or few links to other nodes, therefore explaining the fixed outcome fr(i) = 1. There are about 1% (4%)
of network nodes with values fr(i) > 0.5 ( fr(i) > 0.08850).

Furthermore, Appendix Figure A6 shows the histogram distribution p( fr) for the same data with
a rapid decay at fi < 1 and a small peak at fr = 1 corresponding to the 26 nodes i with fr(i) = 1. We
have also computed the related global probability P( fr) for a node i to have a value fr(i) > fr. This
quantity is shown in Appendix Figure A7, confirming the rapid decay which is quite well algebraic as
P( fr) ∼ f−1.5

r (for fr ≥ 5× 10−3) and which is similar to the Poincare recurrences decay in symplectic
chaotic maps with Ulam networks [31].

The slow algebraic decay of P( fr) has important consequences. It shows that the average values
of fr shown in Figure 6 even underestimate the effect. Explicitely, the average value of fr ≈ 0.00318 for
nib = 4 in Figure 6 corresponds, according to Appendix Figure A7, to a fraction of nodes P(0.00318) ≈
0.22 having an fr(i) value above this average and 78% of nodes have a smaller fr(i) value. It is
well known, that for such long tail distributions one should also focus on the median value fr,median
defined by P( fr,median) = 0.5 corresponding in our case to fr,median = 10−5 (only 1 red outcome in the
R = 100000 pathway realizations) indicating that (slightly more than) 50% of nodes have an fr(i) value
below or equal to the median value with nearly perfect reduction of the red outcome.
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3.2. Results without formulas

In this work we presented a mathematical model of fibrosis progression in the PPI MetaCore
network describing the global interaction structure of almost all proteins and important molecules
(nodes). We show that even with only 10 fibrosis activated proteins the fibrosis progression can spread
over a great majority of nodes (about 70 %). The developed analysis of network structure allows
us to propose an efficient strategy which allows to reduce a number of fibrosis activated nodes by
a factor 300 and disease elimination. The method is based on the Erdös barrage construction: we
determine the Erdös nodes directly linked to the fixed 10 activated red nodes; this number can be
relatively large (353 in our case); however, we show that a barrage with only 4 blue repairing Erdös
nodes, corresponding to the four proteins c-Myc, p53, c-Fos and β-catenin, gives a reduction of the
average number of fibrosis activated nodes by a factor 300; these 4 nodes belong to network nodes
with high PageRank and CheiRank indexes of global MetaCore network.

Furthermore, this average actually underestimates the effect since it is determined by a relative
small number of nodes with a modest reduction (e.g. factor of ∼ 100) while for more than 50% of
nodes the reduction factor is even 100000 (only 1 infection outcome in the 100000 statistical realizations
of our simulation). We have also identified in the group of Table 1 six interesting proteins HTR2B,
ACSBG1, LGI2, ADORA2A, IL1R2-2 and COX4I2 (corresponding to the vertical green lines in Figures 5
and 7) where the reduction effect is somewhat less pronounced (compared to the 50% of nodes with
nearly perfect reduction). We expect that our INFI model can be tested with other PPI networks (e.g.
those of [32,33]).

4. Discussion and conclusion

Identifying fibrosis-associated proteins and fibrosis progression is a critical issue in treating heart
failure. An experimental determination of the fibrosis progression process is extremely time consuming
and labor-intensive. In this work we present and describe a mathematical model of such a fibrosis
progression using the global PPI MetaCore network. The performed analysis shows that even a small
number of fibrosis activated proteins can lead to a global fibrosis progression of a major part of the
whole PPI network.

We developed an efficient method of the Erdös barrage when a small group of e.g. 4 repairing
protein can reduce the number of fibrosis activated proteins (nodes) by a factor 300 leading to a healthy
state of the global system described here by the MetaCore network. We expect that similar results can
be obtained for other disease progression. We think that it would be very interesting to test this INFI
approach with other global PPI networks like [32,33]. We hope that the described INFI method will
lead to new efficient medical treatments of fibrosis and other various diseases.

Appendix

A. Additional figures

Here we present additional Appendix Figures A1,. . . , A7 for the main part of this article.
Appendix Figure A1 illustrates the convergence of the time evolution of spin configurations.
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Appendix Figure A1. Illustration of the convergence of spin-configurations for nb = 6, 10, 14 and
nib = 0. Shown is average fr(τ) versus iteration time τ. For practical reasons the convergence seems
to be quite good at τ ≈ 5. However, the value of fr(τ) becomes constant only at τ ≥ τlast ≈ 70 with
typical last non-vanishing differences | fr(τlast − 1)− f (τlast)| ∼ 10−10 and | fr(τlast + 1)− f (τlast)| = 0.
All data in this work have been computed with values up to τ = 100 to verify that exact convergence is
achieved.
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Appendix Figure A2. Dependence of nib on the coarse-grained index ng used in Figure 5 (blue/star
data points). The green line shows for comparison the linear behavior nib = ng (exactly identical
to blue line for ng ≤ 10) and the red line shows the exponential behavior nib = 10× 1.2ng−10 (good
approximation for ng > 10).
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Appendix Figure A2 illustrates the link between nib and the coarse-grained index ng used in
Figure 5.
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Appendix Figure A3. As Figure 6 but for nb = 10 (top panel) and nb = 14 (bottom panel).

Appendix Figure A3 shows fr for optimal configurations at nb = 10 and nb = 14 (as Figure 6).
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Appendix Figure A4. frc(K) versus K fr (K) using the data of Figure 8 (i.e. nb = 6, frc(K) being
computed for nib = 1 with one single initial blue node at node K belonging to the Erdös group.) The
index K fr (K) is the index obtained by ordering the NE = 353 nodes of the Erdös set with increasing
values of frc(K).

Appendix Figure A4 shows the values of frc(K) (for nb = 6) computed from one initial (variable)
blue node K belonging to the Erdös group ordered by increasing values of frc(K) inside this group.
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Appendix Figure A5. The positions of the 100 nodes with top 100 fr(i) values of the (non network
averaged) red outcome for individual nodes i in the K-K∗ plane in a zoomed double logarithmic
representation (colored full circles) using the data for nib = 4 of Figure 6 with the configuration
[3, 4, 17, 342] for the initial blue nodes. The color of each data point corresponds to the value of fr(i)
according to the color bar. There are 26 nodes i with fr(i) = 1 including the 10 permanently fixed red
nodes (black cross symbols; Kg = 1, . . . , 10 in Table 1) and 16 additional nodes and there are 36 (100)
nodes i with fr(i) > 0.5 ( fr(i) ≥ 0.08850).

Appendix Figure A5 shows for the data for nib = 4 of Figure 6 with the initial blue node
configuration [3, 4, 7, 342] the 100 nodes with top individual fr(i) values of the red outcome in the K-K∗

plane.
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Appendix Figure A6. Histogram distribution p( fr) for the data of Figure A5 using the values fr(i) for
all nodes with bin width ∆ fr = 0.01. The normalization is as in Figure 1 by an integral.

Appendix Figure A6 shows the distribution p( fr) for the data of Figure A5. The peak at fr = 1
corresponds to the 26 nodes i with fr(i) = 1. The large peak at fr = 0 corresponds to 95% of probability
for 0 ≤ fr ≤ 0.01.
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Appendix Figure A7. Fraction P( fr) of nodes i with fr(i) ≥ fr versus fr (red curve) for the data
of Figs. A5, A6. The presentation is double logarithmic except for the data points at fr = 0 which
have artificially been added at a finite value below 10−5 and the 26 nodes i with fr(i) = 1 have been
excluded in the computation of P( fr). The steps/vertical lines at fi = 0 ( fi = 10−5) correspond to 7539
(13696) network nodes i having 0 (1) case(s) of red outcome out of the R = 100000 random pathway
realizations (note that there are 7230 nodes who have always white outcome). The green straight line
corresponds to the power law fit P( fr) ≈ a f b

r with a = (6.07± 0.03)× 10−5 and b = −1.457± 0.001
obtained for the interval fi ∈ [5× 10−3, 4× 10−2].

Appendix Figure A7 shows the probability P( fr) for a node i to have a value fr(r) ≥ fr for the
data of Figs. A5, A6. The decay of P( fr) is rather well algebraic as P( fr) ≈ 6.07× 10−5 f−1.46

r for
fr ≥ 5× 10−3 if the 26 nodes i with fr(i) = 1 are excluded in the computation of P( fr). (If these
nodes are included the decay is still algebraic in the fit interval fi ∈ [5× 10−3, 4× 10−2] but P( fr) is
significantly above the power law for fi > 4× 10−2.) Note that P( fr) corresponds to the integrated
probability P( fr) =

∫ 1
fr

p( f̃r) d f̃r using the probability density p( fr) visible in Appendix Figure A6
(apart from the numerical approximation due to the histogram with finite bin width).

Author Contributions: All authors equally contributed to all stages of this work.

Funding: This research was supported in part through the grant NANOX No ANR-17-EURE-0009, (project
MTDINA) in the frame of the Programme des Investissements d’Avenir, France; it was granted access to the HPC
resources of CALMIP (Toulouse) under the allocation 2024-P0110; it was also supported by INSERM funding.

Acknowledgments: We thank L.Ermann for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Murtha L.A., Schuliga M.J., Mabotuwana N.S, Hardy S.A., Waters D.W., Burgess J.K., Knight D.A. and Boyle
A.J., The processes and mechanisms of cardiac and pulmonary fibrosis, Front Physiol. 128 (2017) 777.

2. Liu T., Song D., Dong J., Zhu P., Liu J., Liu W., Ma X., Zhao L. and Ling S., Current understanding of the
pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure, Front. Physiol. 8 (2017) 238.

3. Meng Xm., Nikolic-Paterson D. and Lan H. TGF-β: the master regulator of fibrosis, Nat. Rev. Nephrol. 12 (2016)
325.

4. Wynn T.A., Cellular and molecular mechanisms of fibrosis, Jour. Pathology 214(2) (2007) 199.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.611186doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611186


24 of 25

5. Pintus S.S., Sharipov R.N., Kel A., Timotin A., Keita S., Martinelli I., Boal F., Tronchere H., Kolpakov F. and
Kunduzova O., Drug repositioning for cardiac fibrosis through molecular signature of aberrant fibroblast activation,
INSERM preprint, to be published (2021).

6. Karimizadeh E., Sharifi-Zarchi A., Nikaein H., Salehi S., Salamatian B., Elmi N., Gharibdoost F. and Mahmoudi
M., Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis,
BMC Medical Genomics 12 (2019) 199.

7. Pchejetski D., Foussal C., Alfarano C., Lairez O., Calise D., Guilbeau-Frugier C., Schaak S., Seguelas M-H.,
Wanecq E., Valet P., Parini A. and Kunduzova O., Apelin prevents cardiac fibroblast activation and collagen
production through inhibition of sphingosine kinase 1, Eur. Heart J. 33 (2012) 2360

8. MetaCore, Available: https://clarivate.com/cortellis/solutions/early-research-intelligence-solutions/.
Accessed September 2024.

9. Ekins S., Bugrim A., Brovold L., Kirillov E., Nikolsky Y., Rakhmatulin E., Sorokina S., Ryabov A., Serebryiskaya
T., Melnikov A., Metz J. and Nikolskaya T., Algorithms for network analysis in systems-ADME/Tox using the
MetaCore and MetaDrug platforms, Xenobiotica 36(10-11) (2006) 877; doi:10.1080/00498250600861660.

10. Bessarabova M., Ishkin A., JeBailey L., Nikolskaya T., and Nikolsky Y., Knowledge-based analysis of proteomics
data, BMC bioinformatics 13 Suppl 16 (2012) 13; doi:10.1186/1471-2105-13-S16-S13.

11. Kotelnikova E., Frahm K.M., Lages J. and Shepelyansky D.L., Statistical properties of the MetaCore network of
protein-protein interactions, Appl. Netw. Sci 7 (2022) 7.

12. Kotelnikova E., Frahm K.M., Shepelyansky D.L. and Kunduzova O., Fibrosis protein-protein interactions from
Google matrix analysis of MetaCore network, Int. J. Mol. Sci. 23 (2022) 67.

13. Brin S. and Page L., The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN
Systems 30 (1998) 107.

14. Langville A.M. and Meyer C.D., Google’s PageRank and beyond: the science of search engine rankings, Princeton
University Press, Princeton (2006).

15. Ermann L., Frahm K.M. and Shepelyansky D.L., Google matrix analysis of directed networks, Rev. Mod. Phys. 87
(2015) 1261.

16. Dorogovtsev, S. Lectures in Complex Networks; Oxford University Press, 2010.
17. Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009,

81, 591–646. https://doi.org/10.1103/RevModPhys.81.591.
18. Galam, S. Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach. Journal

of Mathematical Psychology 1986, 30, 426–434. https://doi.org/https://doi.org/10.1016/0022-2496(86)90019-2.
19. Sznajd-Weron, K.; Sznajd, J. Opinion evolution in closed community. International Journal of Modern

Physics C 2000, 11, 1157–1165, [https://doi.org/10.1142/S0129183100000936]. https://doi.org/10.1142/
S0129183100000936.

20. Sood, V.; Redner, S. Voter Model on Heterogeneous Graphs. Phys. Rev. Lett. 2005, 94, 178701. https:
//doi.org/10.1103/PhysRevLett.94.178701.

21. Watts, D.J.; Dodds, P.S. Influentials, Networks, and Public Opinion Formation. Journal of Consumer Research
2007, 34, 441–458, [https://doi.org/10.1086/518527]. https://doi.org/10.1086/518527.

22. Galam, S. Sociophysics: a review of Galam models. International Journal of Modern Physics C 2008, 19, 409–440,
[https://doi.org/10.1142/S0129183108012297]. https://doi.org/10.1142/S0129183108012297.

23. Schmittmann, B.; Mukhopadhyay, A. Opinion formation on adaptive networks with intensive average degree.
Phys. Rev. E 2010, 82, 066104. https://doi.org/10.1103/PhysRevE.82.066104.

24. Kandiah, V.; Shepelyansky, D.L. PageRank model of opinion formation on social networks. Physica A 2012,
391, 5779. https://doi.org/10.1016/j.physa.2012.06.047.

25. Coquide, C.; Lages, J.; Shepelyansky, D.L. Opinion Formation in the World Trade Network. Entropy 2024,
25(2), 141. https://doi.org/10.3390/e26020141.

26. Ermann, L.; Shepelyansky, D.L. Confrontation of capitalism and socialism in Wikipedia Networks.
arXiv:2408.07606[cs.SI] 2024 https://doi.org/10.48550/arXiv.2408.07606.

27. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc.
Nat. Acad. Sci. 1982, 79(8), 2554. https://doi.org/10.1073/pnas.79.8.2554.

28. Benedetti, M.; Carillo, L.; Marinari, E.; Mezard, N. Eigenvector dreaming. J. Stat. Mech. 2024, 013302.
https://doi.org/10.1088/1742-5468/ad138e.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.611186doi: bioRxiv preprint 

https://clarivate.com/cortellis/solutions/early-research-intelligence-solutions/
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/https://doi.org/10.1016/0022-2496(86)90019-2
http://arxiv.org/abs/https://doi.org/10.1142/S0129183100000936
https://doi.org/10.1142/S0129183100000936
https://doi.org/10.1142/S0129183100000936
https://doi.org/10.1103/PhysRevLett.94.178701
https://doi.org/10.1103/PhysRevLett.94.178701
http://arxiv.org/abs/https://doi.org/10.1086/518527
https://doi.org/10.1086/518527
http://arxiv.org/abs/https://doi.org/10.1142/S0129183108012297
https://doi.org/10.1142/S0129183108012297
https://doi.org/10.1103/PhysRevE.82.066104
https://doi.org/10.1016/j.physa.2012.06.047
https://doi.org/10.3390/e26020141
https://doi.org/10.48550/arXiv.2408.07606
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1088/1742-5468/ad138e
https://doi.org/10.1101/2024.09.04.611186


25 of 25

29. Albert, R.; Thakar, J. Boolean modeling: a logic-based dynamic approach for understanding signaling
and regulatory networks and for making useful predictions. WIREs Syst. Biol. Med. 2014, 6, 353. https:
//wires.onlinelibrary.wiley.com/doi/10.1002/wsbm.1273.

30. Tripathi, S.; Kessler, D.A.; Levine, H. Biological Networks Regulating Cell Fate Choice Are Minimally
Frustrated. Phys. Rev. Lett. 2020, 125, 088101. https://doi.org/10.1088/1742-5468/ad138e.

31. Frahm, K.M.; Shepelyansky, D.L. Poincare recurrences and Ulam method for the Chirikov standard map. Eur.
Phys. J. B 2013, 86, 322. https://link.springer.com/article/10.1140/epjb/e2013-40120-6.

32. TRANSPATH, Available: https://genexplain.com/transpath/. Accessed September 2024.
33. REACTOME, Available: https://reactome.org/. Accessed September 2024.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.611186doi: bioRxiv preprint 

https://wires.onlinelibrary.wiley.com/doi/10.1002/wsbm.1273
https://wires.onlinelibrary.wiley.com/doi/10.1002/wsbm.1273
https://doi.org/10.1088/1742-5468/ad138e
https://link.springer.com/article/10.1140/epjb/e2013-40120-6
https://genexplain.com/transpath/
https://reactome.org/
https://doi.org/10.1101/2024.09.04.611186

	Introduction
	Data sets and INFI model description
	Network data sets
	Without formulas: methods, characteristics and expected network results
	Markov chains, Google matrix, PageRank and CheiRank
	Ising spin network, Monte Carlo process for INFI model

	Results
	Numerical results
	Results without formulas

	Discussion and conclusion
	References

