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Abstract

In 1955 Fermi, Pasta, Ulam and Tsingou performed first numerical studies with
the aim to obtain the thermalization in a chain of nonlinear oscillators from
dynamical equations of motion. This model happend to have several specific
features and the dynamical thermalization was established only later in other
studies. In this work we study more generic models based on Random Matrix
Theory and social networks with a nonlinear perturbation leading to dynamical
thermalization above a certain chaos border. These systems have two integrals
of motion being total energy and norm so that the theoretical Rayleigh-Jeans
thermal distribution depends on temperature and chemical potential. We intro-
duce the wealth thermalization hypothesis according to which the society wealth
is associated with energy in the Rayleigh-Jeans distribution. At relatively small
values of total wealth or energy there is a formation of the Rayleigh-Jeans con-
densate, well studied in physical systems such as multimode optical fibers. This
condensation leads to a huge fraction of poor households at low wealth and a
small oligarchic fraction which monopolizes a dominant fraction of total wealth
thus generating a strong inequality in human society. We show that this ther-
malization gives a good description of real data of Lorenz curves of US, UK, the
whole world and capitalization of companies at Stock Exchange of New York SE
(NYSE), London and Hong Kong. It is also shown that above a chaos border
the dynamical Rayleigh-Jeans thermalization takes place also in social networks
with the Lorenz curves being similar to those of wealth distribution in world
countries. Possible actions for inequality reduction are briefly discussed.
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Introduction

In 1872 Ludwig Boltzmann published the fundamental work [1] that became the
foundation of the theory of statistical physics and thermalization emerging from the
dynamical laws of time reversible classical motion of many-body systems. Of course,
certain approximations had been used there, thus considering only pair collisions of
gas particles. But this was only the first step in the demonstration that the statisti-
cal laws follow from the dynamical equations. One of the important results obtained
in [1] was the Boltzmann H-theorem that a system entropy is monotonically growing
with time or remains constant at the steady-state.

The first numerical experiment with the aim to directly obtain statistical ther-
malization from dynamical equations of motion was done by Fermi, Pasta, Ulam and
Tsingou in 1955 studying the dynamics of a chain of nonlinear oscillators on the most
powerful MANIAC I computer (at this time) with an expectation to obtain the thermal
energy equipartition between oscillator modes [2]. However, opposite to expectations
the conclusion of authors was that “The results show very little, if any, tendency
toward equipartition of energy between the degrees of freedom.” [2].

Several explanations had been proposed to explain this result. Zabusky argued in
[3] that in the continuum limit the Fermi-Pasta-Ulam (FPU) problem is close to the
Korteweg-de Vries equation with stable solitons shown to be completely integrable [4],
as well as the nonlinear Schrödinger equation [5]. Also, at weak nonlinearity the FPU
α-model is close to the completely integrable Toda lattice [6, 7]. Another explanation
of absence of thermalization in the FPU problem was given in [8–10] showing that
below a certain chaos border, determined by the strength of the nonlinear interactions
between oscillators, the system is located in the regime of Kolmogorov-Arnold-Moser
(KAM) integrability and only above this border an overlap of nonlinear resonances
takes place with emergence of chaos and thermalization. Indeed, above a chaos border
numerical simulations demonstrated an emergence of dynamical thermalization with
energy equipartition as reported in [9, 10]. Possibilities of low energy chaos in the FPU
model were discussed in [11],

It should be pointed out that while impressive mathematical results and theorems
were obtained by mathematicians (see e.g. [12, 13] and Refs. therein) they remained
usually not applicable to thermalization in physical nonlinear systems which usually
have a divided phase space (see [14, 15]) where integrable islands of stable motion
are often embedded in a chaotic component. Thus the KAM theorem is valid for
unrealistically weak nonlinear perturbations [12, 13] and it is more appropriate to use
the Chirikov criterion of overlapping resonances to estimate more realistic parameters
for a chaos border [14, 15] (even if this criterion is not working for completely integrable
systems like the Toda lattice for example).

An overview of the full richness of the FPU model and various regimes of its
nonlinear dynamics has been presented 50 years after [2] in the book [16]. The variety
of studies presented there clearly demonstrates that this model has an important role
in the investigations of nonlinear dynamics. However, at the same time the variety of
different features of FPU dynamics indicates that the FPU model does not belong to
a class of generic oscillator systems with nonlinear interactions.
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With the aim to capture the generic features of dynamical thermalization the non-
linear random matrix model (NLIRM) was proposed in the work [17], submitted 150
years after the Boltzmann article [1]. In this model, the linear unperturbed Hamilto-
nian is described by a random matrix that can be also viewed as a system of linear
oscillators with complex linear couplings. The chaos in this system is induced only by
a nonlinear perturbation that can be local or can have a certain interaction range.
Thus in this model the unperturbed properties of eigenmodes and eigenenergies are
described by the generic Random Matrix Theory invented by Wigner for a descrip-
tion of the spectra of complex nuclei, atoms, and molecules in many-body quantum
mechanics [18]. Indeed, RMT finds a variety of applications in multiple areas of physics
[19, 20] including systems of quantum chaos where the dynamics is chaotic in the
classical limit [21, 22].

In [17] it was shown that above a certain chaos border the dynamical thermalization
takes place leading to the Rayleigh-Jeans thermal distribution (see Eq. (I.1 below) well
known in classical thermodynamics [23, 24]. However, the dynamics of the NLIRM
system has two integrals of motion being the total energy and norm (or probability that
is very natural for quantum evolution). Due to this the Rayleigh-Jeans distribution
is characterized by temperature and chemical potential. Such a situation appears in
various classical systems including dynamics of nonlinear waves (see e.g. [25]). In
fact this type of thermal distribution was described and experimentally observed for
light propagation in multimode optical fibers (see e.g. review [26] and Refs. below).
The important feature of the Rayleigh-Jeans thermalization is the condensation of
a main fraction of system norm or probability at the lowest energy modes of the
system. However, in [26] the emergence of such thermalization and condensation was
attributed to the turbulence like energy flows similar to those of the Kolmogorov-
Zakharov turbulence spectra of nonlinear waves [25] (even if it is stated [26] that the
dynamics is Hamiltonian). In contrast, it is argued in [17, 27] that such Rayleigh-Jeans
thermalization and condensation appear due to dynamical chaos emerging above a
chaos border while below this border the thermalization is absent and the system is
located in the integrable KAM regime. Certain similarities of this condensation with
the Fröhlich condensate proposed for molecular systems at room temperature [28, 29]
are discussed in [27]. The striking applications of Rayleigh-Jeans thermalization are
discussed in this work.

This work is composed of two parts. In the first Part I, we push forward the Wealth
Thermalization Hypothesis according to which the wealth is associated with system
energy and the wealth distribution in the human society is described by the Rayleigh-
Jeans thermalization and condensation which are at the origin of strong inequality in
the world. The comparison of the obtained thermalization results with the real data
of wealth inequality in countries and stock exchange markets confirms the validity
of the Rayleigh-Jeans thermal description. In the second Part II, we provide certain
additional arguments and justifications for this hypothesis. In particular, we argue
that social networks, actively investigated in the network science and society (see e.g.
books [30, 31]), provide a reliable model of social relations in the society. While the
previous studies of social networks describe the social relations and links only in the
frame work of linear matrix algebra we introduce a nonlinear interaction in such social
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networks. Similarly to the NLIRM results [17] our studies show that above a certain
chaos border for the strength of the nonlinearity dynamical thermalization takes place
in social networks being well described by the steady-state Rayleigh-Jeans distribution.
This gives an additional support to the Wealth Thermalization Hypothesis. In this
way the problem of emergence of statistical laws from dynamical equations of motion
finds new application perspectives.

The main results of this research are presented in Part I for links between wealth
inequality and Rayleigh-Jeans thermalization and in Part II for dynamical thermaliza-
tion in social networks supporting the Wealth Thermalization Hypothesis discussed in
Part I. Figures in there are marked as Fig.IXX and Fig.IIXX respectively. Additional
material and Figures are presented in Appendix A related to Part I and Appendix B
related to Part II, in the Appendix A and B Figures are marked as Fig. AXX and
Fig.BXX omitting the word Appendix A or B.

Part I: Wealth Thermalization Hypothesis

I.1 Prologue I

The wealth distribution in the human society is characterized by a striking inequality
(see e.g. [32–34]). Thus for the whole world 50% of the population owns only 2% of
total wealth, while 10% of population owns 75% of total wealth and 1% of population
owns 38% of total wealth [33].

The distribution of wealth is usually described by the Lorenz curve [34, 35] which
gives the dependence of accumulated normalized wealth 0 ≤ w ≤ 1 on the cumulated
normalized fraction of population or households 0 ≤ h ≤ 1. Thus the equipartition of
wealth corresponds to the diagonal w = h and the doubled area between diagonal and
the Lorenz curve w(h) determines the Gini coefficient 0 ≤ G ≤ 1 [34, 36]. Values of G
can be found in [37] for world countries in 2021 being in the range 0.59 < G < 0.90;
for the whole world G = 0.889.

The sharing of wealth varies from country to country but the global features remain
rather similar with a big fraction of very poor population with scanty wealth and a
very small fraction of rich people having a significant fraction of a country’s total
wealth. This gives an insight that some fundamental underground reasons can be at
the origin of this inequality.

Diverse methods of statistical mechanics and physical kinetics [23, 24, 38] have
been proposed and used by different research groups [39–47]. Various models of inter-
acting agents are investigated including Random Asset Exchange models [39–47]. In
several of these models there is appearance of some kind of oligarchic phase with a sig-
nificant wealth accumulation by a group of agents [42, 45–47]. The specific arguments
are presented in a favor of the Boltzmann-Gibbs type description of distribution of
money, wealth and income [41, 43]. Also a nonlinear Fokker–Planck description of asset
exchange is proposed [45, 46] with emergence of oligarchic phase. A few important
elements are stressed in [45, 46]: the conservation of two integrals of system evolution
being the total wealth and total norm (or number of agents), the argument in favor
of consideration of wealth instead of money based on the small-transaction approxi-
mation. The conservation of two integrals is rather natural assumption since a Gross
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domestic product and population of a country or the whole world are only weakly
changed on a typical time scale of one year.

The above models give interesting insights for understanding of certain features of
wealth distribution in the world countries but they remain model specific and their
universality remains questionable. The universality of the Boltzmann-Gibbs thermal
distribution is the ground element of the approach developed in [41, 43] but it does
not capture emergence of a huge condensate of poverty in various countries.

Our studies here are based on the Wealth Thermalization Hypothesis (WTH)
according to which the wealth of a country is described by the Rayleigh-Jeans (RJ)
thermal distribution:

ρm =
T

Em − µ
(RJ). (I.1)

Here we assume that the system wealth has certain states 0 ≤ m < N with energies
Em and the population probabilities in these states are ρm. Thus a systen wealth is
associated with a system energy. Also in (I.1) the parameters T and µ(T ) are the
system temperature and its chemical potential dependent on T . As in [45] there are
two conserved integrals of motion being the total norm of population, fixed to be
unity for convenience,

∑
m ρm = 1, and the system average wealth being its total

energy
∑

mEmρm = E. For a given system energy E and unity norm these two
integrals of motion determine the system temperature T and its chemical potential
µ(T ). The entropy S of the system is determined by the usual relation [23, 24]: S =
−∑m ρm ln ρm with the implicit theoretical dependencies on temperature E(T ), S(T ),
µ(T ).

The RJ thermalization (I.1) is universal and describes a variety of classical systems
[23, 24] including nonlinear waves [25], light propagation in multimode optical fibers
with a nonlinear media [48–53], dynamical thermalization for nonlinear perturbation
of the Random Matrix Theory (RMT) [17] and the nonlinear Schrödinger equation
(NSE) in quantum chaos billiards [27]. It is pointed out in [18–20] that RMT finds a
variety of applications in multiple areas of physics including nuclei, complex atoms and
systems of quantum chaos whose dynamics is chaotic in the classical limit. Thus almost
any physical nonlinear interaction above a chaos border [17] leads to dynamical RJ
thermalization (I.1). An example of such a system can be an ensemble of N nonlinear
RMT oscillators with random frequencies ωm ∝ Em of an ensemble of N agents with
nonlinear interactions leading to the RJ thermalization (I.1). The thermalization can
have a dynamical origin when chaotic nonlinear dynamics leads to (I.1) or it can
appear due to an external thermal bath. We suppose that for WTH a dynamical origin
is more adequate since in a first approximation on a scale of one year a country or the
whole world can be considered to be quasi-isolated from slow external processes.

Due to the presence of two integrals of motion, energy and norm, RJ thermalization
has the phase of RJ condensate emerging at relatively low total energy E or low
temperature T [27, 49, 50]. Thus at low energy and a big number of oscillators, as in
[17], or a big number of interacting agents, the fraction of RJ condensate is approaching
unity being concentrated at a vicinity of the ground state energy E0 being zero or
very close to zero [27]. Thus the RJ condensate (I.1) very naturally has a huge fraction
of very poor agents that naturally describes the huge world wealth inequality where
50% of population owns only 2% of the total wealth [33]. Below we describe in detail
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various consequences of WTH (I.1) and compare the results of this theory with real
Lorenz curves of certain countries and the whole world.
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Fig. I.1 Lorenz curves for the RJS model with the linear spectrum Em = m/N (for N =
10000) for different values of the rescaled energy ε = E/B. The x-axis corresponds the cumu-
lated fraction of households (h) and the y-axis to the cumulated fraction of wealth (w). The
dashed line is the line of perfect equipartition w = h. The Gini coefficients G for all curves are
G = 0.9600, 0.9000, 0.8006, 0.6250, 0.4990, 0.4066, 0.3333 (bottom to top).
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Fig. I.2 Color plot of wealth w from Lorenz curves of the RJS model (N = 10000). The x-axis
corresponds to the fraction of households h ∈ [0, 1] and the y-axis to the rescaled energy ε = E/B ∈
[0, 0.5]. The ticks mark integer multiples of 0.1 for h and ε.
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Fig. I.3 Comparison of the Lorenz curves for US 2019 (black), UK 2012-2014 (blue), World 2021
(dashed green) with those of RJS model (red curves; N = 10000); US and World curves are rather
close. For the three referenced curves Gini coefficients are G = 0.852, 0.626, G = 0.842 respectively
and the rescaled energies ε = E/B of RJS model are respectively fixed as ε = 0.07420, ε = 0.1996,
ε = 0.07911 so that the corresponding Gini coefficients match the referenced data.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
h

w

(a) US 2019
UK 2012-2014

RMT

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
h

w

(b) US 2019
UK 2012-2014

World 2021
DL, US, UK

DL, World

Fig. I.4 Both panels compare the Lorenz curves for different data sets (black for US 2019, blue
for UK 2012-2014 and green dashed for World 2021) with those of the RMT model (a) and the DL
model (b). As in Fig. I.3 the Gini coefficients G of the reference curves are used to fix the rescaled
energy ε = E/B of the corresponding model such that the model curves (red) have the same G. For
the RMT model (a) only two data sets are shown ε = 0.07996 (US) and ε = 0.2027 (UK). For the
DL model (b) the parameter values are a = 16 (US and World) and a = 3 (UK). These values are
fixed to have a best possible fit of the model data with those of the reference curves. The chosen
values ε = 0.01434 (US), ε = 0.1355 (UK), ε = 0.01535 (World) match the G values of the reference
data. In (b) the curves for US and World are rather close and a zoomed view is given in Appendix
Figure A.4. In (a) the RMT Lorenz curves are shown for one realization of a random matrix, other
realizations give practically the same curves.
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I.2 RJ thermalization and condensation

We start from a model with N equidistant energy levels 0 ≤ Em = m/N ≤ B
located in the energy band of total width B. This corresponds to certain levels of
wealth for N agents with a fraction of agents on level m being ρm. The conserved
average system energy is E =

∑
mEmρm and the dimensionless parameter ε = E/B

determines its fraction with respect to the maximal system energy B. We call this
model the RJ standard (RJS) model. On the basis of WTH with RJ distribution
(I.1) the local (normalized) wealth on level i is (Ei/E)ρi and the cumulated wealth
on levels [0,m] is w =

∑m
i=0(Ei/E)ρi with the cumulated fraction of population or

households h =
∑m

i=0 ρi. Computing both sums for all values of m = 0, 1, . . . provides
the Lorenz curve w(h). Since the Lorenz curve describes the normalized distribution
of cumulated fractions of wealth w ∈ [0, 1] and households h ∈ [0, 1] we use the
ratio Ei/E (since E =

∑
iEiρi) in the definition of wealth ensuring that w = 1 at

h = 1 for the total population. At given ε the relation (I.1) and two integrals of
energy and norm determine the physical parameters T, µ, S. In our numerical studies
we use N = 10000 which practically corresponds to the continuous limit with results
independent of N . The dependencies of T and µ on ε in the RJS model are shown in
Appendix Figure A.1. As discussed in [17, 27] for ε > 1/2 the temperature T becomes
negative and at ε close to unity there is a formation of an RJ condensate on highest
energy levels with Em → B (see Appendix Figure A.2). Many unusual properties of
RJ thermalization have been discussed in [17, 27] but for convenience we provide some
details in Appendix and Figures A.2, A.3 show the dependence of ρm on Em/B for
certain values of ε with a clear formation of an RJ condensate at small ε or 1 − ε.
Even if the regime with negative temperatures has been realized in fiber experiments
[48, 53] we consider that such a regime is not applicable to human society and hence
we consider only the range with 0 ≤ ε ≤ 1/2.

The Lorenz curves for the RJS model at several ε values are shown in Fig. I.1. Due
to RJ condensate there is a very high fraction of poor households fp (with w ≤ 0.02)
and a small fraction of rich ones fr (with w ≥ 0.75) who owns a huge fraction of total
wealth. Thus the RJS model naturally describes the big phase of poor households and
the oligarchic phase of small fraction of households capturing the big fraction of total
wealth. At maximal ε = 0.5 with (µ → −∞) all ρm are equal and hence the Lorenz
curve is w = h2 with the limiting minimal Gini coefficient G = 1/3 for the RJS model.
The dependence of cumulated wealth w on h and ε is shown in Fig. I.2. It clearly
shows the phase of poor households (blue), corresponding to the RJ condensate, and
the oligarchic phase of very rich households (red). Thus we see that the RJ thermal
distribution (I.1) describes the main qualitative features of wealth inequality of human
society [33].

From Figs. I.1, I.2 we see that for the RJS model the WTH based on (I.1) captures
main elements of wealth inequality but it is important to see if it can reproduce the
real Lorenz curves for the whole world and specific countries. For this comparison of
WTH theory we choose three cases with the Lorenz curves for: the whole world from
[33] (integration of front page data gives cumulative w, h values); USA 2019 case from
[54] and UK 2012-2014 case from [55]. These real Lorenz curves are compared with
those obtained from the RJS model (I.1) in Fig. I.3. For the comparison values of
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Fig. I.5 Gini coefficient versus rescaled energy ε = (E−E0)/(EN−1−E0) for the RJS model (red),
RMT model (green), DL model (blue; only for the case a = 16), and the EQI model (pink for the
offset E0 = 0.1 and cyan for E0 = 1; same values of E0 are used in Appendix Figure A.6). The thin
black lines show the values of G = 0.852, G = 0.842 and 0.626 for the data of US 2019, World 2021
and UK 2014. The intersection of these lines with the red and green curves correspond to ε values
used in Figs. I.3, I.4.
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of rich oligarchic households fr = 1−h(25%) (owning 75% of wealth) on the rescaled energy ε = E/B
for the RJS model.
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ε are fixed in such a way that Gini coefficient is the same for theory and real data
curves. The comparison for UK case shows that there is a good agreement of real and
theoretical Lorenz curves even if there is a certain difference for the range 0.9 ≤ h ≤ 1.
The difference is more visible for USA case and the whole world (Lorenz curves are
very similar for these two cases). In Appendix Figure A.4, we also show that the the
RJS Lorenz curves have a satisfactory agreement with the Lorenz curves for France
and Germany (data are obtained for the year 2010 from [56]).

In view of certain differences between real Lorenz curves and those obtained from
RJS model (see Fig. I.3) we also study the case of RJ distribution (I.1) with level
energies Em taken from a random matrix of size N = 1000 as it was discussed in [17].
For this RJ RMT model the density of states is ν = dm/dEm = 2N

π

√
1− E2 with

typical eigenvalues in the interval Em ∈ [−1, 1] and we shift all Em to Em − E0 to
have nonnegative values Em ≥ 0 in (I.1). The comparison of Lorenz curves for US and
UK cases with the results of the RJ RMT model is shown in Fig. I.4a. The similarity
between real and RMT model data is a bit less good then those in Fig. I.3 for the RJS
model. This shows that the density of states ν can affect the Lorenz curves. Indeed,
we have ν = const. for the RJS model being different from the semi-circle law of RMT
model.

To reproduce the real Lorentz curves from [33, 54, 55] in a better way we also
analyze a double-linear (DL) model with energies Em = m/N for m < N/2 and
Em = EN/2 + a(m −N/2)/N for m ≥ N/2 at N = 10000 with a = 16 (B = 8.5) for
US and World data, and a = 3 (B = 2) for UK data. In this type of model the density
of states takes not one but two values being ν = 1 and ν = 1/a. The existence of two
ν values can correspond to a society where high wealth energy Em values are only
accessible to very rich people whose density is lower compared to common people. The
comparison of real Lorenz curves with those of the DL model is shown in Fig. I.4b (and
its zoomed version Appendix Figure A.5) demonstrating a better proximity between
real Lorenz curves and those from the DL model as compared to the results of the
RJS model in Fig. I.3. However, the DL model has two fit parameters a, ε while the
RJS model has only one ε.

We also remind that for the RJS model the minimal Gini value is G = 1/3 that
is reached at maximal physical value of ε = 1/2. Thus to have G < 1/3, we need to
significantly modify the density of states ν. Indeed, we can obtain a perfect complete
wealth and energy equipartition with w = h and G = 0 for the case when all Em = E0

values are the same. In this case, the integrals of energy and norm give only one
conservation law and all states have the same energy and same population. A small
spectrum modification to Em = E0 +m/N with a constant energy offset E0 leads to
Lorenz curves being closer to the diagonal with small Gini values G < 1/3 and a finite
slope w(h) ≈ [E0/(ε + E0)]h at small h (see Appendix with additional discussion of
this model and related Figure A.6). We call this model the equipartition (EQI) model.

We also show color Figures analogous to Fig. I.2 for various models discussed above
(see Appendix Figure A.7).

The dependence of the Gini coefficient G on ε is given in Fig. I.5 for the different
models. In global the results show that an increase of ϵ leads to a reduction of G.
Also in Fig. I.6, we show the dependence of fractions of poor fp and rich oligarchic fr
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Fig. I.7 Comparison of the Lorenz curve for the data of US 2019 (black) with the corresponding
curves for the RJS model (red curve; N = 10000) and the RJE model with a = 4.42 (blue curve;
N = 10000). The rescaled energy values ε = 0.01233 (RJE) and ε = 0.07420 (RJS) are obtained by
matching the Gini coefficient G = 0.8515. The value of a is obtained by a fit from the reconstructed
spectrum. The left (right) panel shows the full range h ∈ [0, 1] (zoomed range h ∈ [0.8, 1]).

households on ε for the RJS model. Thus at ε = 0.07 we have fp = 0.73 and fr = 0.097
that is close to the real values fp = 0.53(US), 0.5(World) and fr = 0.09(US), 0.1
(World) while for UK we have fp = 0.32, fr = 0.28 corresponding to a higher ε ≈ 0.21.
Furthermore Fig. I.6 shows that the fraction of poor households can be significantly
reduced and the fraction of rich households can be increased by increasing parameter
ε, thus diluting the oligarchic phase.

Finally, we mention that for the RJS model it is possible to work out analytic
expressions (at N → ∞; see Appendix Section 3) for the Lorenz curve and other
quantities that accurately match the numerical data (see Appendix Figure A.8). These
expressions depend on µ and at small ε ≤ 0.2 (with µ ≈ 0), we have w(h) ≈ e(h−1)/ε

and G ≈ 1− 2ε, matching 3 values of G in Fig. I.1.

I.3 RJ thermalization and universality

Above we presented the comparison of real Lorenz curves of countries and the whole
world with the theoretical results of the RJS model based on the physical phenomenon
of RJ thermalization and condensation. Since this thermalization is universal for clas-
sical systems when the norm and energy are conserved we expect that other systems
will be also describe by the RJS model and its extensions.

To check this expectation we analyze the capitalization data for S&P500 companies
at the New York Stock Exchange (NYSE), companies of London stock exchange and
Hong Kong stock exchange. The data are obtained from the open public sources [57],
[58] and [59] respectively. From these sources we construct the real Lorenz curves and
compare them with those given by the RJS model for these three cases (see Appendix
Section 4 and Figures A.8, A.9, A.10, A.11). The comparison shows that the RJS
model qualitatively describes the real Lorenz curves behavior approximately with the
same level of agreement as it was for countries and the whole world cases considered
before. It is interesting to note that for the case of Dow Jones companies with N = 30
companies the Lorenz curve is very close to the case of perfect equipartion with w = h2
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(see Appendix Figure A.12) and ϵ = 0.5, T → ∞ in the RJS model. However, for this
case we cannot consider that these companies form an isolated system.

To obtain an RJ extended (RJE) model giving a better agreement with the real
Lorenz curves for countries and stocks exchange we make the following extension of
the RJS model.
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Fig. I.8 Comparison of the Lorenz curve for the data of UK 2012-2014 (black) with the correspond-
ing curves for the RJS model (red curve; N = 10000) and the RJE model with a = 2.18 (blue curve;
N = 10000). The rescaled energy values ε = 0.1332 (RJE) and ε = 0.1996 (RJS) are obtained by
matching the Gini coefficient G = 0.6255. The value of a is obtained by a fit from the reconstructed
spectrum. The left (right) panel shows the full range h ∈ [0, 1] (zoomed range h ∈ [0.8, 1]).
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Fig. I.9 Comparison of the Lorenz curve for the data of World 2021 from [33] (black) with the
corresponding curves for the RJS model (red curve; N = 10000) and the RJE model (I.2) with
a = 5.34 (blue curve; N = 10000). The rescaled energy values ε = 0.008553 (RJE) and ε = 0.07911
(RJS) are obtained by matching the Gini coefficient G = 0.8420. The value of a is obtained by a fit
from the reconstructed spectrum. The left (right) panel shows the full range h ∈ [0, 1] (zoomed range
h ∈ [0.8, 1]).

The comparison of the different data with the RJS model shows that typically
the curves of the RJS model have a slower (final) growth rate. Since the latter is
proportional to the energy Em one could try an extended model where the energy
values grow stronger with m. One step in this direction is the DL model which allowed
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for a considerable improvement as can be seen in the right panel of Fig. I.4 and also its
zoomed version Fig. A.5 in Appendix. Another possibility is to choose an exponential
growth of Em but in such a way that still Em ∼ m for small m. This can be achieved
by the formula

Em =
exp(a (m/N))− 1

a
(I.2)

which we call RJE model (RJ extended or RJ exponential model). Here a is an addi-
tional parameter of the model in addition to the value of ε which is now ε = E/B
with bandwidth B = EN−1 ≈ (ea − 1)/a. In the limit a → 0, we recover simply the
RJS model while with increasing values of a the exponential growth of Em becomes
more dominant.
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Fig. I.10 Comparison of the Lorenz curve for the data of the London stock exchange FTSE at 31
December 2024 (black; data from Ref. [58]) with the corresponding curves for the RJS model (red
curve; N = 10000) and the RJE model with a = 3.13 (blue curve; N = 10000). The rescaled energy
values ε = 0.01346 (RJE) and ε = 0.04376 (RJS) are obtained by matching the Gini coefficient
G = 0.9126. The value of a is obtained by a fit from the reconstructed spectrum. The left (right)
panel shows the full range h ∈ [0, 1] (zoomed range h ∈ [0.8, 1]).

The energy spectrum (I.2) corresponds to a density of states:

ν(Em) =
dm

dEm
=

d

dEm

(
N ln(1 + aEm)

a

)
=

N

1 + aEm
(I.3)

which interpolates between a constant density of states ν(Em) ≈ N for Em ≪ a−1 (as
in the RJS model) and a power law decay ν(Em) ≈ N/aEm ∼ 1/Em for Em ≫ a−1.

To determine optimal values for the parameter a, we compute a reconstructed
spectrum from a given Lorenz curve of some given data set (see Appendix Section
5 for a description and more detailed discussion of this spectral reconstruction with
Figure A.13) and fit the reconstructed spectrum to the function Em ≈ C(ea (m/N) −
1)/a with two parameters C and a. The 2nd parameter C has no importance since one
could apply an arbitrary fixed factor on (I.2) without changing the resulting Lorenz
curve of the RJE model. This is because the construction procedure of Lorenz curve
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Fig. I.11 Comparison of the Lorenz curve for the data of the Hong Kong stock exchange at 19
June 2025 (black; data from Ref. [59]) with the corresponding curves for the RJS model (red curve;
N = 10000) and the RJE model with a = 6.83 (blue curve; N = 10000). The rescaled energy
values ε = 0.0008381 (RJE) and ε = 0.02648 (RJS) are obtained by matching the Gini coefficient
G = 0.9471. The value of a is obtained by a fit from the reconstructed spectrum. The left (right)
panel shows the full range h ∈ [0, 1] (zoomed range h ∈ [0.8, 1]).
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Fig. I.12 Color plot of cumulated wealth w from the Lorenz curves of the RJE model (I.2) (N =
10000) with the parameter a = 5.34. The x-axis corresponds to the fraction of households h ∈ [0, 1]
and the y-axis to the rescaled energy ε = E/B ∈ [10−4, 1[ in logarithmic representation. The white
dashed line corresponds to the value ε = 0.008553 obtained by matching the Gini coefficient of the
RJE model (at a = 5.34, N = 10000) with the data of World 2021 from [33] (see Fig. I.9). Note that
the color values along the dashed line correspond to the blue RJE curve in Fig. I.9.
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involves only the ratio Em/E (with E being the average energy) so that the global
energy scale (or bandwidth B) drops out.

To fix some procedure, we perform the fit of the reconstructed spectrum for two fit
intervals for the rescaled level number x = m/N being either x ∈ [0, 0.7] or x ∈ [0, 0.9]
and select the resulting value of a for which the RJE model provides a closer Lorenz
curve to the given data set. In certain cases, the shorter fit interval provides a better
fit value of a (cases where the global fit is of reduced quality for small x) and in other
cases the longer fit interval is more accurate (cases where the global fit is also of rather
good quality for small x).

The results for US 2019, UK 2012-2014, World 2010, FTSE 2024 (London stock
exchange) and the Hong Kong 2025 stock exchange are shown in Figs. I.7—I.11, in
each case with two panels, top for the full range of h ∈ [0, 1] and bottom for the zoomed
range h ∈ [0.8, 1]. Here, we choose for simplicity the value of N = 10000 for the curves
of both RJE and RJS models (the RJS curves are also shown for comparison). Other
values such as N = 1000 or the given size of the data set, give the same Lorenz curves
at graphical precision.

In all cases, the agreement of the RJE model with the data is significantly better
than the RJS model. In particular for HK 2025, the agreement is close to perfect and
even in the zoomed panel it is difficult to distinguish the theoretical RJE curve (blue)
from the data (black). For the case UK 2012-2014 the original simpler RJS model was
already quite good, but also here the RJE model provides a significant improvement.
The RJE curves for US 2019 and World 2021 are also very good, nearly as good as the
curve for HK 2025. For FTSE 2024 the agreement of the data with the RJE model is
a bit less perfect (since S&P500 captures only about 80% of NYSE) but still clearly
better than the RJS model.

We also verified that for three other cases DE 2010, FR 2010 and NYSE 2025
the RJE model gives a good description with values a = 4.2, a = 3.82 and a = 2.66
respectively. Here the results have also a strongly improved agreement of the RJE
model with the real data. For NYSE 2025 the agreement is slightly less good compared
to other cases (since S&P sector captures only about 80 percent of total NYSE) but
even here the RJE model is significantly better than the simple RJS model.

On the basis of presented results we conclude that the RJ thermalization gives a
universal description of inequality described by the Lorenz curves for countries and
company capitalization at stock exchange.

I.4 Overview of wealth thermalization results

In this Part I we use the WTH approach (I.1) to describe the wealth distribution in
a closed system that may be a country or the whole world or a stock exchange. Our
main argument is that in such a system interaction of agents is described by nonlinear
equations with the conservation of two integrals of motion being total number of
agents (norm or total probability analogous to number of system particles) and total
wealth (analogous to total system energy). Under these conditions the wealth sharing
is described by the universal RJ thermal distribution (I.1) as it is the case for various
physical systems [17, 23–25, 27, 49–53]. The striking feature of RJ thermalization
(I.1) is that at low system energy (low ε) there is the physical phenomenon of RJ
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condensation when a high fraction of total probability is located at lowest energy
states that corresponds to the high fraction of poor households with very low wealth
and also other small fraction of oligarchic households that monopolizes a big fraction
of total wealth. Thus according to the WTH phenomenon a huge wealth inequality in
the world [32, 33] finds a natural thermodynamic explication. We show that the WTH
theory gives a good description of the Lorenz curves of US, UK and the whole world. It
also gives a very good description of capitalization of companies at stock exchange of
New York, London, Hong Kong demonstrating the universality of RJ thermalization
description.

On the basis of WTH theory we see that a reduction of wealth inequality can be
realized by an increase of rescaled system energy (ε = E/B). This point is illustrated
in Fig. I.12 which shows a color plot of the Lorenz curves of the RJE model at a = 5.34
for different values ε. For this case there is very good matching with the World 2021
data at ε = 0.008553 as can be seen in Fig. I.9 and at larger values of ε the green/red
domain with moderate/high wealth increases. The simplest way to reach this is to
reduce the global dispersion of wealth (given by B) that can be realized by a high
taxation of high wealth revenues.

In the next Part II, we give more justifications for the WTH approach showing
that a nonlinear perturbation of social networks leads to the RJ thermalization and
condensation.

Part II: Dynamical thermalization in social networks

II.1 Prologue II

During last years social networks gained a significant importance for communications,
opinion formation and relations analysis in a human society (see e.g. [30, 31]). Many
fundamental properties of such networks have been studied with a variety of their
applications established for multiple fields of science. However, all these studies are
based on a linear matrix algebra of links between network nodes provided by their
adjacency matrix. At the same time it may be interesting and important to analyze
the effects of nonlinear interactions between network nodes (agents or users). Indeed,
it looks rather natural to assume that in real relations between network agents non-
linear effects should play an important role. With this aim we consider a nonlinear
perturbation of two examples of nondirected social networks. These two networks are
taken from the database compiled by Newman [60]. The first one represents a collab-
oration network of scientists studying networks created by Newman [61–63] and the
second one is a network of politicians generated from Facebook in [64] with network
data of [64] taken from [60].

Both networks are nondirectional so that their adjacency matrix is symmetric and
can be viewed as a certain Hamiltonian of a quantum system or a system of coupled
linear oscillators. As in [17] a nonlinear interaction is included as a nonlinear frequency
shift on a network site (node, agent). The dynamical evolution of the obtained system
of nonlinear oscillators has two integrals of motion being the total energy and total
norm (probability or number of agents). This corresponds to two integrals of motion

16



in the evolution of wealth of agents considered in [45, 46] assuming that the wealth is
associated to the system energy.

We show that above a certain chaos border of nonlinear interactions a dynamical
thermalization takes place in the social networks nonlinear dynamical models leading
to RJ thermal distribution (I.1). At low values of the total system energy, or total
wealth, RJ condensation emerges in the considered social networks leading to an enor-
mous phase of poor households and a small oligarchic fraction capturing a main part
of total wealth. Since social networks can be considered as realistic models of rela-
tions in a human society the obtained results for dynamical RJ thermalization provide
an additional support and justification for the WTH related to the origins of wealth
inequality considered in Part I.

In a certain sense the presented studies of dynamical thermalization in social net-
works can be considered as an extension of the studies of the FPU problem [2] but
with a Hamiltonian part of linear oscillators based on a typical structure of social net-
work links. This linear part of the Hamiltonian is similar to that of the random matrix
model NLIRM [17]. We attribute this similarity between two systems to the fact that
the nodes in social networks are well connected with each other and only a few link
hoppings are required to pass from any node to any other node (see e.g. [30, 31]).
Indeed, only 4-5 such link transitions, called the Erdös number, are required to con-
nect any node of the entire Facebook with 8×108 users to any other node [65]. Due to
this the so called “six degrees of separation” [30, 31], the nonlinear interactions lead
to an efficient chaos transition with dynamical thermalization and RJ condensation.

II.2 Model description and numerical methods

In this work, we consider mainly a nondirected network of N = 379 known scientists
with Nℓ = 1828 links from [61, 62], called the netscience network, where certain
weights are attributed to the links (see Eq. (2) of [61]). In addition, we also present
a few results for a larger anonymous nondirected network of N = 5908 of politicians
and Nℓ = 83412 links, called the politician network, obtained from Facebook [64]. In
this network all links have the same weight being unity. For both cases, links i → j
and j → i for different nodes j ̸= i are counted twice in the definition of Nℓ and self
links i→ i are either absent (netscience network) or taken out (politician network).

For these networks, we define the adjacency matrix Aij by Aij = wij if there is
a link from node j to i and where wij is the weight of this link (which is 1 for the
politician network) and Aij = 0 if there is no link j → i. For nondirected networks
this matrix is symmetric and has real eigenvalues. We briefly mention that using this
matrix A one can define a stochastic matrix S by normalizing the columns of A where
eventual empty columns of A for dangling nodes are replaced by 1/N entries in S but
this does not happen for the two networks above. Then the Google matrix G with
elements Gij is defined as Gij = αSij + (1− α)/N with the damping factor α and its
typical value α = 0.85. The reason for this is to obtain a unique leading eigenvector of
G with eigenvalue λ = 1, called the PageRank, which can be computed efficiently by
the power method. However, in the two networks here also for α = 1 there is a unique
PageRank with a gap between λ = 1 and other eigenvalues with |λ| < 1. We refer to
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Ref. [69] for a review on the network matrices A, S and G and the PageRank (for the
more general case of directed networks) .

We associate to each of these networks a “quantum Hamiltonian” by

H = A+ κHGOE (II.1)

where κ is a small parameter and HGOE is a random GOE-matrix [18–20] with a
semicircle density of states of radius unity (at large N ≫ 1) which corresponds
to random gaussian matrix elements with zero mean and variance ⟨(HGOE

n,n′ )2⟩ =

(1+ δn,n′)/(4(N +1)). The contribution of κHGOE corresponds to a small static per-
turbation of the network links which we also expect in real life. In this work, we mainly
used one specific random realization of HGOE for a given network of size N but we
verified with different realizations that the results do not depend on this choice.

Using the matrix H, we consider the nonlinear oscillator system

i
∂ψn(t)

∂t
=

N∑
n′=1

Hn,n′ψn′(t) + β|ψn(t)|2ψn(t) (II.2)

with complex oscillator amplitudes ψn(t) for nodes n where β is the parameter of the
nonlinear perturbation. The dynamical system (II.2) has two integrals of motion being
the norm N and the classical energy H:

N =
∑
n

|ψn|2 , H =
∑
n,n′

ψ∗
nHn,n′ψn +

β

2

∑
n

|ψn|4 . (II.3)

In fact, the system (II.2) is actually a classical Hamiltonian system with Hamilton
function H if we write ψn = (qn + ipn)/

√
2 with canonical coordinates qn and pn. In

this work we fix the norm by N = 1. The case N ̸= 1 can be transformed to the case
N = 1 by a suitable rescaling of ψ and β.

For β = 0 this system is simply the time dependent Schrödinger equation for a
quantum system with the state |ψ⟩ =∑n ψn|n⟩ (with ℏ = 1). It is useful to diagonalize

H by Hϕ(m) = Emϕ
(m) with eigenvectors ϕ(m) (and components ϕ

(m)
n ) and to define

amplitudes Cm in eigenmode space by

Cm =
∑
n

ϕ(m)∗
n ψn . (II.4)

Here we write more general formulas with the complex conjugate of ϕ
(m)
n which are

also valid for the more general case of complex hermitian matrices H even though in

our case H is real symmetric where it is possible to choose real eigenvectors ϕ
(m)
n ∈ R.

Also we assume that the eigenvectors are orthogonal∑
n

ϕ(m̃)∗
n ϕ(m)

n = δm̃,m (II.5)
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so that the matrix Unm = ϕ
(m)
n , containing the eigenvectors in its columns, is orthogo-

nal (or unitary for complex hermitianH) with the diagonalization identityH = UÊU†

where Êm̃,m = Emδm̃,m and the inverse transformation of (II.4) being

ψn =
∑
m

ϕ(m)
n Cm . (II.6)

Using (II.4)-(II.6) one can show that the nonlinear system (II.2) can be rewritten in
the eigenmode amplitudes Cm as

i
∂Cm

∂t
= EmCm + β

∑
m1,m2,m3

Qmm1m2m3C
∗
m2
Cm3

Cm1
(II.7)

with nonlinear transition coefficients

Qmm1m2m3 =
∑
n

ϕ(m)∗
n ϕ(m1)

n ϕ(m2)∗
n ϕ(m3)

n . (II.8)

At β = 0 the solution of this system is Cm(t) = e−iEmtCm(0) and for small values of
β there is typically a complicated KAM scenario with a transition to a chaotic region
in a large part of the phase space for sufficiently large β.

The two integrals of motion (II.3) can be written in the eigenmode amplitudes Cm

as:

N =
∑
m

|Cm|2 , H =
∑
m

Em |Cm|2 +Hnl , (II.9)

Hnl =
β

2

∑
n

|ψn|4 =
β

2

∑
m0,...,m3

Qm0m1m2m3C
∗
m0
C∗

m2
Cm3

Cm1
. (II.10)

As in [17], we solve the nonlinear system by a symplectic fourth order integrator
[66] also known as one of the splitting methods [67, 68]. More details about our imple-
mentation of this method can be found in the supplementary material of [17]. This
method has the advantage that it respects the symplectic symmetry of the problem.
In particular the first integral N is exactly conserved (up to usual numerical round-
ing errors) while the second integral H varies only slightly in time with a small error
∼ dt4 and can be used to verify if the choice of dt is appropriate.

As initial condition, we usually start with an eigenstate located at an initial energy
mode m0 with Cm(t = 0) = δm,m0 . For the netscience network, we also consider a few
cases where the initial state is localized on some specific node n0 with ψn(t = 0) = δn,n0

(i.e. Cm(t = 0) = ϕ
(m)∗
n0 ). As in [17] an integration time step dt is chosen in such a way

that the second integral of motion H is conserved with a high relative precision being
below 10−4 for most initial modes (or ∼ 10−2 for very few boundary modes; note that
due to the method the first integral N is always conserved “exactly” with numerical
precision ∼ 10−15).
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II.3 Theoretical elements of RJ thermalization

At sufficient strong values of β and long times t, we expect the nonlinear system to
be chaotic and the amplitudes to be somehow ergodic. Assuming a simple behavior
ψn(t) ∼ 1/

√
N the typical value of the nonlinear energy contribution in H is Hnl ∼

β/N which can be neglected at N ≫ 1 and then we have:

E = H ≈
∑
m

Em|Cm(t)|2 (II.11)

where E is the specific energy value of the integral H. However, in real systems, such
as the network generated matrices H considered here, the assumption ψn(t) ∼ 1/

√
N

may not be realistic, especially at initial times. More generally, the nonlinear energy
contribution is Hnl = β/ξIPR where

ξIPR =

(∑
n

|ψn|4
)−1

(II.12)

is the inverse participation ratio (IPR) on the state ψn. The IPR corresponds roughly
to the number of populated nodes and is broadly used in the problems of disordered
solids (see e.g. [70]). The identity (II.11) is still valid if β/ξIPR can be neglected for
sufficiently large values of ξIPR ≫ β. For the case of the eigenmode initial condition

with ψn(t) ≈ ϕ
(m0)
n at small times it is the IPR of the eigenstate ϕ(m) which fixes the

value of Hnl at initial times. We discuss the IPR for the eigenstates of both models in
the next sections pointing out that certain eigenmodes may have relatively small IPR
values (depending on Em and κ).

In any case, even if the initial value ofHnl is not very small, we expect that it decays
with time t and that (II.11) holds at large times (assuming a chaotic behavior, i.e. no
KAM localized state for very small β). This situation corresponds to a microcanonical
ensemble with energy conservation (II.11) and an additional second constraint

1 = N =
∑
m

|Cm(t)|2 . (II.13)

This special microcanonical ensemble can be treated analytically in a simple way only
for small energies (temperatures) with E in the lower part of the spectrum Em and
it is more convenient to replace it with a grand canonical ensemble with a probability
density

P ({Cm}) = 1

Z
exp

(
−
∑
m

Em − µ

T
|Cm|2

)
, (II.14)

Z =

∫ ∏
m

d2Cm exp

(
−
∑
n

Em − µ

T
|Cm|2

)
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= πN
∏
m

T

Em − µ
= πN

∏
m

ρm with ρm = ⟨|Cm|2⟩ = T

Em − µ
(II.15)

being the (thermalized) average occupation probability of the mode m. Here the tem-
perature T and the chemical potential µ are determined such that both constraints
are verified in average:

1 =
∑
m

ρm , E =
∑
m

Emρm . (II.16)

(See also [17] and Appendix A.1 below for more details on this.) The probability
density (II.14) corresponds to the RJ thermalization for classical fields. The condition
ρm > 0 (for all m) ensures that there is only a unique physically valid solution of
(II.16) with either T > 0, µ < E1 or T < 0, µ > EN .

For the numerical system evolution we compute the time average ρm(t) =
⟨|Cm(t̃)|2⟩ over time intervals t/2 < t̃ ≤ t for successive discrete time values t = 2l ≤
tmax with l = 2, 3, . . . , lmax and tmax being typically 222 − 224 for the netscience net-
work and 219−220 for the politician network. These values for ρm(t) can be compared
to the thermalized theoretical values ρm,RJ = T/(Em − µ) where T and µ are deter-
mined from the constraints (II.16) using the value E = ⟨E⟩ =∑mEmρm(t) to fix the
energy from the numerically obtained values of ρm(t).

Note that for the eigenmode initial condition with Cm(t = 0) = δm,m0 , we typically
have E ≈ Em0 if Hnl(t = 0) can be neglected. However, in case of relatively large β
values and small IPR, with a significant initial value of Hnl(t = 0), we have the more
precise relation E = Em0 +Hnl(t = 0) which may give a significant energy shift in the
linear part at larger times scales ⟨E⟩ = H−Hnl(t) = E−Hnl(t) ≈ E = Em0 +Hnl(t =
0) assuming thatHnl(t) becomes small for large t (for “ergodic states” in a thermalized
regime). However, the initial value Hnl(t = 0) may be rather large such that Em0 and
⟨E⟩ are rather different. Therefore, it is more appropriate to use ⟨E⟩ =∑mEmρm(t)
(with numerical values of ρm(t) at large t) rather than Em0 to estimate the value
of E to determine T and µ from (II.16) and to compute the theoretical RJ values
which are to be compared with the numerical results. We see in the next sections
that the numerical data ρm(t) indeed approach the thermalized theoretical values for
sufficiently large t and the netscience network while for the politician network the
situation is more difficult due to a limited available integration time.

Another quantity of thermalization is the entropy of the system as a function of
either ⟨E⟩ or t. There are two points of view to define the entropy. The first one is
to use the discrete occupation probabilities ρm and define the quantum von Neumann
entropy by

Sq = −
∑
m

ρm ln(ρm) . (II.17)

The latter can also be viewed as the entropy of the associated quantum system of the
N levels of the Hamiltonian H with neglected nonlinear term.
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The second point of view is based on the underlying classical nonlinear oscillator
system with the classical Boltzmann entropy:

SB = −
∫ ∏

m

d2Cm P ({Cm}) ln
(
P ({Cm})hNB

)
(II.18)

where P ({Cm}) is the classical probability density (in some statistical ensemble) of the
oscillator amplitudes Cm and hB is a small constant which compensates the physical
dimension in the logarithm. The interpretation of this constant is that we use the
discrete probabilities p({Cm}) = P ({Cm})hNB of finding a micro-state in a given
elementary cell of volume hNB at phase space point {Cm} to define the entropy by a sum
over a grid of such elementary cells: −∑ p({Cm}) ln(p({Cm}) which gives exactly the
above expression (II.18). Below, we give an explicit numerical choice for the parameter
hB which corresponds to a certain constant offset in the definition of SB .

The formula (II.18) is numerically not convenient since the classical probability
density in phase space is not easily available from the trajectory Cm(t) and the integral
itself (over many variables) is also difficult to evaluate. In thermal equilibrium, we can
replace P ({Cm}) by (II.14) which gives

SB = ln(Z/hNB ) +
∑
m

Em − µ

T
⟨|Cm|2⟩ = ln(Z/hNB ) +N (II.19)

=
∑
m

ln (ρm/hB) +N (1 + lnπ) . (II.20)

The expression (II.20) is also more generally valid (outside thermal equilibrium) if we
assume independently gaussian distributed amplitudes:

P ({Cm}) ∼ exp

(
−
∑
m

am|Cm|2
)

(II.21)

with arbitrary coefficients am related to ρm = ⟨|Cm|2⟩ = 1/am. In thermal equilibrium
we have am = (Em −µ)/T but we may assume that (II.21) is also valid at sufficiently
large finite iteration times if ρm = 1/am is computed as some suitable time average
over the trajectory. However, we insist that this assumption is not necessarily very
exact especially at small t and that outside thermal equilibrium (II.20) is only a
convenient approximation of (II.18) in terms of parameters ρm obtained from the
numerical procedure.

To have reasonable numerical values of SB which are (mostly) positive, we choose
the numerical value hB = 1/N2 for the data and figures presented in this work (the
numerical choice of hB defines only a certain constant offset in the definition of SB).
Since typical values of ρm are ∼ 1/N (at rather larger T ) this gives indeed ρm ≫ h.
In particular for uniform ρm = 1/N we have SB/N = ln(N) + 1 + lnπ which is
comparable to Sq = ln(N). However, at very small times and/or small values of β it is
still possible that many values of ρm are below 1/N2 which gives potentially negative
values of SB . This is an artificial effect of the classical oscillator model and we remind
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Table 1 Table of node names with largest eigenvector components. The first three columns
show names of 10 top nodes in Km-rank order (Km = 1, . . . , 10) obtained by ordering the
eigenvectors components of modes m = 1, 2, 3 of lowest energies Em with decreasing values of

|ϕ(m)
n | (in n for given value of m). The 4th (6th) column corresponds to the K-rank order for

the PageRank at α = 1 (α = 0.85) and the 5th column contains the PageRank probabilities
(at α = 1) for the node list in the 4th column.

K1 K2 K3 K(α = 1) P (α = 1) K(α = 0.85)

Barabasi Pastorsatorras Newman Barabasi 0.03064 Barabasi
Jeong Sole Pastorsatorras Newman 0.02349 Newman
Albert Vespignani Vespignani Jeong 0.01839 Sole
Oltvai Newman Watts Pastorsatorras 0.01736 Jeong
Ravasz Valverde Girvan Moreno 0.01532 Pastorsatorras
Bianconi Watts Moore Vespignani 0.01532 Boccaletti
Demenezes Ferrericancho Stauffer Sole 0.01532 Vespignani
Dezso Girvan Sneppen Boccaletti 0.01226 Moreno
Vicsek Montoya Park Kurths 0.01124 Kurths
Yook Moore Lusseau Vazquez 0.01124 Stauffer

that the entropy of classical systems (oscillators, ideal gas etc.) typically behaves as
S ∼ ln(T ) for small T with a logarithmic singularity at T → 0. For practical reasons
and since SB is extensive, we consider typically the entropy per mode SB/N which
has comparable numerical values to Sq assuming ρm ∼ 1/N .

We note that in our model the 2nd law of thermodynamics applies to the 2nd
entropy SB and technically it does not apply to Sq. In particular, it is possible that
Sq(t) may temporarily decrease with t for certain specific situations (see below) while
SB(t) always increases with t (except for a few cases with a very minimal decrease
at very short times and/or small values of β below the chaos border). Furthermore,
the usual thermodynamic relation dS/dE = 1/T only holds for S = SB (and not
for Sq), that can be verified by a rather simple calculation from (II.20) using ρm =
T (E)/(Em − µ(E)). In particular the terms ∼ dµ(E)/dT cancel exactly due to the
two constraints (II.16).

II.4 Netscience network model

In this section, we present the results for the netscience network. Note that addi-
tional results and figures related to this section (and also the subsequent sections) are
presented (and sometimes discussed in more detail) in Appendix B.

The issue of thermalization depends in a sensitive way on the “ergodic” structure

of the eigenvector components ϕ
(m)
n of the matrix H given in (II.1). We compute the

eigenvalues and eigenvectors of this matrix for the netscience network withN = 379 for
different values of the parameter κ. For certain eigenvectors of modes m with minimal

energies Em, m = 1, 2, 3, . . ., we also determine the ranking index Km such |ϕ(m)
n | is

ordered in n in this index, i.e. |ϕ(m)
n | ≥ |ϕ(m)

n′ | if Km(n) < Km(n′). The PageRank
eigenvector is computed at damping factor α = 1 and α = 0.85. This is the leading
eigenvector of G(α); see text above (II.1) and [69]. Both cases have a similar ranking
index K.
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In Tab. 1, we present the names of the top 10 nodes for the eigenmodes with
m = 1, 2, 3 and also both PageRank vectors (at α = 1 and α = 0.85) ordered by their
respective ranking index Km or K(α). The data in this table was computed for κ = 0
but the top rankings of the eigenmodes at κ = 0.5 are actually identical to those of
κ = 0. The top 4 PageRank names at α = 0.85 being Barabasi, Newman, Sole and
Jeong also appear as nodes with strong “community centrality” in [62] (see additional
data at Ref. [84] therein). They also play an important role in the PageRank at α = 1
with rank values K = 1, 2, 7, 3 respectively. Barabasi and Jeong occupy the positions
K1 = 1 and 2 in the first eigenmode ranking for m = 1 while Newman and Sole appear
withK2 = 4 and 2 in the 2nd eigenvector. Newman also holds the first ranking position
K3 = 1 in the 3rd eigenvector. We also mention that each of the three eigenvectors
with modes a N + 1−m (m = 1, 2, 3, N = 379) at largest energies (not shown in the
table) has actually a rather strong overlap with top nodes with the lowest modes m
(e.g. ϕ(1) and ϕ(379) have some common node names in their top ranking index and
similarly for the 2nd and 3rd eigenvectors) while there is no overlap between m = 1
and m = 2.

Fig. II.1 shows in different panels the density of states of H at κ = 0 and κ = 0.5
and also the dependence of Em on m. The global spectral energy band is in the
range E1 ≈ −6.4 and EN ≈ 9.7 (see caption of this figure for 4 bottom and top
eigenvalues) with strong gaps of boundary eigenvalues while the density of states
has peaked structure around E = 0, with a slightly stronger peak for κ = 0. The
global dependence of Em on m seems rather similar between κ = 0 and κ = 0.5 but
the zoomed bottom panels show that at κ = 0 there are several plateau values of
degenerate levels at E = 0 and E = −1/p for p = 2, . . . , 7 which are lifted by small
GOE perturbations. At κ = 0.1 the degeneracies are only weakly lifted and one can
still see the effect of them in the (zoomed) Em vers m curve while at κ = 0.5 this
curve is essentially a straight line in the shown interval −0.8 < Em < 0.2.

In order to understand these degeneracies we have analyzed the eigenvector struc-
ture in more detail by computing for each eigenvector m (at κ = 0) the support length

l(m) which we define as the number of nodes n with ϕ
(m)
n ̸= 0 (or more precisely with

|ϕ(m)
n | > 10−12 due to the limited numerical precision) and also the IPR (for κ = 0

and κ = 0.5).
It turns out that the eigenvectors of the degenerate energies (at κ = 0) visible

in Fig. II.1 have small values of the support length in the interval 8 ≤ l(m) ≤ 48
(l(m) = 48 for Em = 0). There are also other eigenmodes (non degenerate or only
with a double degeneracy ) with very small support length in the range 2 ≤ l(m) ≤ 8.
In total there are 104 out of 379 eigenmodes with l(m) ≤ 48. These modes are all
characterized by energies Em = p/q with nice rational values (maximal q = 420 and
other q ≤ 12). These points are also illustrated in In Fig. B.1 in Appendix B.1 which
provides also a more detailed discussion on this.

The IPR values of the eigenvectors at κ = 0 (in the interval 1.77 ≤ ξIPR ≤ 45.98)
are actually not strongly correlated to the support length (see Fig. B.2). Globally the
IPR is rather small, also for modes with maximal l(m) = N , and for some modes
with small l(m) the IPR value may be close to ξIPR ≈ 20 (about 50% of the possible
maximal value).

24



0

0.2

0.4

0.6

−6 −4 −2 0 2 4 6 8 10

ρ
(E

)

E

κ = 0
κ = 0.5

−6
−4
−2
0
2
4
6
8
10

0 100 200 300

E
m

m

κ = 0
κ = 0.5

−0.8

−1/2

−1/3
−1/4
−1/7

0

0.2

100 150 200 250

−1/5−1/6

E
m

m

κ = 0
κ = 0.1 −0.8

−1/2

−1/3
−1/4
−1/7

0

0.2

100 150 200 250

−1/5−1/6

E
m

m

κ = 0
κ = 0.5

Fig. II.1 Spectral properties of the eigenvalue spectrum of the matrix H for the netscience network
with N = 379 eigenvalues Em (E1 < E2 < . . . < EN ). The top left panel shows the density

of states for κ = 0 and κ = 0.5 normalized by
∫ EN
E1

dE ρ(E) = 1 with histogramm bin width

dE = 10(EN −E1)/N ≈ 0.436. The top right panel shows the eigenvalue Em versus indexm for κ = 0

and κ = 0.5. Note that m/N ≈
∫ Em
E1

dE ρ(E). Bottom panels show Em versus m in a zoomed range

for either κ = 0 and κ = 0.1 (left) or κ = 0 and κ = 0.5 (right). The plateau values for κ = 0 (red
data points) at Em = 0 and Em = 1/p for p = 2, . . . , 7 correspond to degenerate energy levels. Many
eigenvectors of these energies (and other energies with nice rational values) have a small support length
l(m) ≪ N where l(m) is the number of non-zero values of eigenvector components (with numerical
precision 10−12). These degeneracies are lifted by small GOE perturbations at κ = 0.1 or κ = 0.5.
Bottom and top eigenvalues (at κ = 0.5) are −6.38,−6.12,−5.46,−4.67 and 5.94, 7.06, 8.86, 9.73.
(Bottom/top eigenvalues at κ = 0 are very close).

25



Globally, the netscience network and its related adjacency matrix has some specific
algebraic structure explaining these modes. Even though the netscience network has
only one single component of maximal size N = 379 there is some hidden subblock
structure in some other base obtained by linear combinations of certain states.

We mention, without going into much details, that for κ = 0 and even strong
interaction values such as β = 10, typical states with initial modes m0 in the band
center do not thermalize well to all modes Em according to the RJ-values of ρm. For
many values of m (corresponding to the degenerate modes) the values of ρm stay very
small even for long times such as t = 224. For this reason, we focus in the following on
the case κ = 0.5 with a rather significative GOE-perturbation which clearly lifts the
degeneracies, where all eigenvectors have the maximal value l(m) = N and where the
IPR values are roughly a factor 10 larger than for the case κ = 0 (see also Fig. B.2).
Only a few number of boundary modes, which are clearly in the perturbative regime
due to the large gaps, have roughly the same IPR values between κ = 0.5 and κ = 0.
We assume that it is natural to have in human society a presence of such small random
links between society members that can appear due to global information sources (e.g.
radio, TV). Thus we present results mainly for the case at relatively small κ = 0.5
where the RMT perturbation takes out the degeneracies present at κ = 0.

The values of typical Lyapunov exponents (obtained for initial mode initial con-
ditions), show that at β = 10 and κ = 0.5 all modes are in the chaotic regime (see
Fig. B.3). Even for a very small value of β = 0.2 the values of Lyapunov exponent is
not very small for modes with −2 < Em0 < 2 while boundary modes are in the KAM
regime. The basic properties of the theoretical thermalized values of ρm for the energy
spectrum of the netscience network and the energy dependence of temperature T and
chemical µ are illustrated in Figs. B.3 and B.4.

We now turn to the discussion of how well the numerical results for the nonlinear
system (II.2) are in agreement with the RJ-theory. As already explained above, we
solve (II.2) numerically for the netscience network using initial conditions localized
on one energy mode m0 with Cm(t = 0) = δm,m0 . Due to the nonlinear term we
expect, for sufficiently large values of the parameter β, that the probability states to
diffuse approaching to the RJ-distribution. To verify this point, we compute long time
averages ρm(t) = ⟨|Cm(t̃)|2⟩ over time intervals t/2 < t̃ ≤ t for successive discrete time
values t = 2l, l = 1, 2, . . . with values up to t = 225. Using these numerical averages,
we compute Sq and SB/N using the formulas (II.17) and (II.20) in terms of ρm and
using hB = 1/N2 in (II.20). Then we can compare with the theoretical values of Sq

and SB/N using the RJ-thermalized occupation probabilities ρm,RJ = T/(Em − µ).
To obtain the values of T and µ, we need to solve the implicit equations (II.16)
with a given energy value E as parameter. One possible choice for the comparison is
E = Em0 where m0 is the used initial mode of the numerical data. However, it turns
out that the agreement between numerical and theoretical values is better if we choose
E = ⟨E⟩ = ∑mEmρm (using the numerical values of ρm at a given time t) to solve
(II.16) to obtain T , µ and ρm,RJ . Typically, we have ⟨E⟩ ≈ Em0 but for boundary
modes with small initial IPR, and larger initial nonlinear energy contribution, there
may be a significant energy shift between Em0 and the final ⟨E⟩ value (see also the
discussion at the beginning of the last section around Eqs. (II.11)-(II.13)).
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Fig. II.2 Entropy Sq (SB/N) versus energy E in top (bottom) panels for certain cases of the
netscience network with κ = 0.5, N = 379. Left panels correspond to 64 selected modes at β = 4 and
t = 222 (red + symbols) and right panels correspond to 128 selected modes at β = 10, t = 222 (red +
symbols), β = 10, t = 220 (green × symbols), 64 modes at β = 0.2, t = 222 (blue ∗ symbols) and 32
modes at β = 0.05, t = 222 (pink □ symbols) In the right bottom panel the data points with SB < 0
(certain points for β = 0.2 and all points for β = 0.05) have been shifted up to SB = 0. The blue
line shows the energy dependence of the theoretical thermalized entropy for both entropy quantities.
Sq (SB) has been computed by Equation (II.17) (Equation II.20 with hB = 1/N2) using ρm values
obtained as the time average ρm = ⟨|Cm(t̃)|2⟩ for t/2 < t̃ ≤ t (for t = 222 or t = 220 according to the
selected data in this Figure).

Thus Fig. II.2 compares the energy dependence of the numerical data of Sq and
SB/N for a selected number of initial modes with the theoretical values (for E = ⟨E⟩)
for the netscience network at κ = 0.5 and different values of β. For β = 4 and β = 10
at t = 222 the numerical entropy values agree very well with the theoretical curves
for E ≤ 4 (with 2-3 exceptions at β = 10). Some of the boundary modes at E > 4
have very low entropy values which can be explained by the large energy gaps for
theses modes which are very stable with respect to the nonlinear perturbation. They
have also slightly smaller Lyapunov exponents compared to the modes with Em in the
band center. Furthermore, the effect of the energy shift due to the initial nonlinear
energy contribution pushes these modes more to the right boundary for β > 0 while
boundary modes at the lower part of the spectrum are more pushed to the band center
with a reduced chaos border by this effect. For β = 10 the second set of data with
t = 220 is very close to the first set if data at t = 222 (with a few exceptions at E > 0)
showing that most entropy values are already quite stable for t ≥ 220. These results
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are confirmed for other values 1 ≤ β ≤ 20 (data not shown in this or other figures
here) with the same kind of exceptions for E > 4 and for 1 ≤ β ≤ 3 a few boundary
modes at the lower energy border for E ≤ −5 are not well thermalized as well.

The entropy data for very small coupling constants β = 0.2 and β = 0.05 (blue
and pink data points in the right panels) are clearly below the theoretical curves.
Note that for SB/N negative values have been artificially shifted up to zero values
for a better visibility. This vertical shift concerns some boundary modes (all modes)
for β = 0.2 (β = 0.05) with rather strong negative values of SB (using the parameter
hB = 1/N2). However, for β = 0.2 the entropy values of the center energy modes in
the interval −1.5 < E < 1.5 are not very far from the theoretical curves and they still
continue to increase in time (at largest available time values). Also their Lyapunov
exponents are somewhat stronger than those of the boundary modes at same value of
β. These results indicate that center modes at β = 0.2 are already in a “weak” chaotic
regime, but with reduced Lyapunov exponent and much larger thermalization time
scales, while boundary modes are still in a pertubative KAM regime. For β = 0.05 the
entropy values are very low for all modes, most Sq values are close to zero and only
three values are between 1 and 2 which is 1 to 3 times smaller than the theoretical Sq

value. We know that in the energy band center there are many oscillators with very
close frequencies Em and in such cases the KAM theory is not valid and even a very
small nonlinearity for e.g. 3 oscillators with equal frequencies have about 50% of the
phase space being chaotic (see e.g. [71, 72]).

For the case κ = 0 and β = 10 we show in Appendix Fig. B.6 the energy dependence
of Sq. Globally there a is similar agreement as for the case with κ = 0.5 but for this
longer iteration time scales t = 224 are required.

In Fig. II.3, we show the dependence of numerical values ρm(t) on Em for the
netscience network, β = 10, κ = 0.5, several initial modes m0 and two time values
t = 222 and t = 224 (note that ρm(t) = ⟨|Cm(t̃)|2⟩ for t/2 < t̃ ≤ t). The blue curve
corresponds to the thermalized expression ρRJ(Em) = T/(Em − µ) with T and µ
obtained by solving the implicit equations (II.16) with E = ⟨E⟩ =∑mEmρm(t = 224).
The states with initial modes m0 = 4, 46, 292 are very well thermalized with values
of ρm that are in good agreement with the theoretical curve. There are somewhat
stronger fluctuations for m0 = 292 and the shorter time value t = 222. Even the first
(left) boundary mode m0 = 1 is quite well thermalized while the second mode m0 = 2
is not well thermalized with most ρm values below the theoretical curve and a few data
points strongly above it. The reason for this strange behavior is that the first mode
m0 = 1 has a very strong energy shift effect (E1 = −6.38 while ⟨E⟩ = −4.99) due to
its particularly small value of the initial IPR (≈ 2.8, see also first left data point in
right panel of Fig B.2 in Appendix B).

The right boundary mode m0 = 378 has a significant nonlinear energy shift being
close to maximal possible energy values. Thus the energy integral of motion (energy
constraint) does not allow to diffuse to a more ergodic state and the system remains
in the integrable KAM regime.

More generally, for modes with T < 0 and Em0 > 0 the energy shift effect has a
tendency to increase the energy to a region with a stronger condensation and due to
the energy constraint it is more difficult to thermalize while at Em0 < 0 the energy
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Fig. II.3 Dependence of ρm(Em) on Em for the netscience network with κ = 0.5, β = 10, N = 379,
the initial condition Cm(t = 0) = δm,m0 where the initial modes are m0 = 1, 2, 4, 46, 292, 378. ρm has
been obtained as the time average ρm = ⟨|Cm(t̃)|2⟩ for t/2 < t̃ ≤ t for t = 222 (green × symbol) and
t = 224 (red + symbol). The blue curve shows the RJ theoretical curve ρRJ(Em) = T/(Em −µ) with
T and µ determined from the implicit equations (II.16) and using the mean linear energy of the state
⟨E⟩ =

∑
m Emρm(t = 224) for the value of E. The values of T , µ and ⟨E⟩ for the 6 initial modes

m0 = 1, 2, 4, 46, 292, 378 are T = 0.003689, 0.001347, 0.008348, 0.01443,−0.02676,−0.003266, µ =
−6.388,−6.384,−6.402,−6.555, 10.74, 9.729 and ⟨E⟩ = −4.99,−5.874,−3.238,−1.088, 0.6025, 8.492.
Note that the case of the initial mode m0 = 1 has finally at large times higher values of T , −µ and
⟨E⟩ than the case for m0 = 2 which is due to a stronger energy shift from the nonlinear energy
contributions for m0 = 1.
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shift effect facilitates thermalization (to a certain modest degree). This can be seen at
the modes m0 = 1 and m0 = 4 and also in Fig. II.2 where many modes with E > 4
do not thermalize and their entropy values are clearly below the theoretical curves
(for the cases β = 4 and β = 10 with good thermalization at E < 4). Further two
examples of well thermalized states at the smaller value β = 4 are shown in Fig. B.7
for initial modes m0 = 8 and m0 = 54.
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Fig. II.4 Time dependence of Sq for the netscience network with κ = 0.5, N = 379. The full lines
with colors red, green, blue, pink correspond to β = 10 for modes m0 = 1, 4, 46, 292 respectively, the
dashed lines correspond to β = 0.2 (for m0 = 4, 46, 292 with colors green, blue, pink) and the dotted
lines indicate the theoretical thermalized RJ values. Sq has been computed by (II.17) using ρm(t)
values obtained as the time average ρm = ⟨|Cm(t̃)|2⟩ for t/2 < t̃ ≤ t.

Figs. II.4 and II.5, show the entropy time dependence of of Sq(t) and SB(t)/N for
the 4 well thermalized modes m0 = 1, 4, 46, 292 at β = 10 (full lines) and also for
m0 = 4, 46, 292 at β = 0.2 (dashed lines of same color for corresponding modes). The
plateau values correspond to the used intervals for the time average in the computation
of ρm(t) between t/2 and t for t = 2l, l = 1, 2, . . . 24.

For β = 10 both entropy quantities increase with time and saturate at values close
the theoretical thermalized values (dotted lines). The initial values between t = 1 and
t = 2 are already ∼ 1 (for Sq) or ∼ 4 (for SB). Note this figure does not show any data
for the very initial time interval t ∈ [0, 1[ with at least 10 (or more) basic integration
steps with dt = 0.1 (or less) at which there is already some initial diffusion from
Sq = 0 (or SB = −∞) of the mode localized initial condition to some finite values.
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For Sq (at β = 10) and the modes m0 = 1, 4 the latest values of Sq(t) are even a bit
above the thermalized values. A similar effect for a well thermalized boundary mode
was also observed in [17] (for intermediate time scales) and such a behavior is indeed
possible since Sq is different from the thermodynamical entropy SB/N . Furthermore,
Sq is not maximal at the thermalized ρm,RJ = T/(Em − µ) values but SB/N is of
course maximal for ρm,RJ which can be verified by a standard textbook calculation
by maximizing (II.17) and (II.20). Mathematically, Sq from (II.17) is maximal at the
Gibbs values ρm,G = e−(Em−µG)/TG where the Gibbs temperature TG and chemical
potential µG are determined from the implicit equations (II.16) using ρm = ρm,G.
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Fig. II.5 Time dependence of SB for the netscience network with κ = 0.5, N = 379. The full lines
with colors red, green, blue, pink correspond to β = 10 for modes m0 = 1, 4, 46, 292 respectively,
the dashed lines correspond to β = 0.2 (for m0 = 4, 46, 292 with colors green, blue, pink) and the
dotted lines indicate the theoretical thermalized RJ values. SB has been computed by (II.20) using
hB = 1/N2 and ρm(t) values obtained as the time average ρm = ⟨|Cm(t̃)|2⟩ for t/2 < t̃ ≤ t.

For β = 0.2 the modes m0 = 4, 46 stay localized, even with significant negative
values of SB/N (for the parameter choice hB = 1/N2) and Sq ≈ 0. It is likely that
there are in the KAM regime. The mode m = 292 at β = 0.2 is very interesting with
a very late onset of thermalization at t ≈ 220, with a “final” value at t = 224 only
slightly below the theoretical value.

We also consider (for κ = 0.5, β = 1, 4, 10 and the netscience network) two example
states where the initial condition is localized on one specific node n0 (instead of some

eigenmode m0) with ψn(t = 0) = δn,n0 (i.e. Cm(t = 0) = ϕ
(m)∗
n0 ) being either Barabasi
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or Newman which are the two top PageRank nodes (see also Table 1). For this case,
we show some results in Fig. B.8 of Appendix B. For example the time evolution of
both entropy quantities is similar to Figs. II.4 and II.5 with a good convergence to
the theoretical thermalized entropy, now in a regime of negative temperature T < 0
since the conserved energy is E ≈ H ≈ β/2. Also the data of ρm(t) at large times
match very nicely the theoretical thermalized curves. For more details on this case see
Fig. B.8 and its related discussion in Appendix B.

Finally, the results for dynamical thermalization in the netscience network with
nonlinear interactions show that the time evolution is converging to the theoretical RJ
distribution for a majority of initial conditions if the system is above a certain chaos
border with β > βc We estimate that βc ∼ 1 even if a small chaotic component can
survive even below βc as it as the case in [72]. In the regime of dynamical thermalization
the Boltzmann entropy is growing monotonically with time reaching its maximal value
in the thermal state in agreement with the Boltzmann H-theorem [1].

II.5 Politician network model

In this section and related Appendix B subsection, we present a few results on the
politician network for N = 5908 politicians via Facebook using data from [64]. For this
case, we do not know the names associated to each node and each of the Nℓ = 83412
links has the same unit weight 1 so that Aij = 1 for the non-vanishing matrix elements
of the adjacency matrix.

Fig. II.6 shows for the cases of this network and different values of κ the density
of states ρ(E) of the eigenvalues Em of the matrix H = A + κHGOE and also the
dependence of Em on m. The global interval for the energies is between E1 ≈ −25.5
and EN ≈ 64.6, which is significantly larger than for the netscience network. The
overall form for ρ(E) and the Em dependence on m is rather similar to the netscience
network but with a somewhat reduced (relative) sub-interval for the bulk of eigenvalues
in the center (in comparison to the global energy interval). Now, at κ = 0, there are
two degenerate eigenvalues E0 = 0 (with about 700 modes) and E0 = −1 (with about
40 modes) which produce visible peaks in ρ(E) (a strong one for Em = 0 and a modest
one for Em = −1). At κ = 0.1 and κ = 0.5 these degeneracies are lifted but their
effect on ρ(E) is still visible at κ = 0.5 with slightly reduced peaks.

The IPR values of the eigenmodes are very small for boundary modes and have
a broad distribution for center modes with a reduced probability to have small IPR
values at κ = 0.5 in comparison to κ = 0. See Fig. B.9 in Appendix B and the related
Appendix discussion for more details.

Fig. II.7 shows (same style as Fig. II.3) the dependence of ρm on Em for four
example states of the politician network at maximal iterations times t = 219 (m0 =
8, 128) or t = 220 (m0 = 1137, 2399). The latter two modes have been chosen because
of their large IPR ≈ 1250 − 1300 values close to the maximal values in the hope
to optimize the chance to observe a rapid thermalization. However, due to the large
matrix size N = 5908 for the politician network the numerical effort is very high and
only the limited time scales used in Fig. II.7 are available. Indeed, the states visible
in Fig. II.7 are clearly not yet thermalized at t = 219 or t = 220. However, the time
evolution between the two sets of data points at t/100 and t still indicates a tendency
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Fig. II.6 Spectral properties of the eigenvalue spectrum of the matrix H for the politician network
with N = 5908 eigenvalues Em. The top left panel shows the density of states for κ = 0 and

κ = 0.5 normalized by
∫ EN
E1

dE ρ(E) = 1 with histogram bin width dE = 10(EN − E1)/N ≈ 0.153.

The top right panel shows the eigenvalue Em versus index m for κ = 0 and κ = 0.5. Note that

m/N ≈
∫ Em
E1

dE ρ(E). Bottom panels show Em versus m in a zoomed representation for either κ = 0

and κ = 0.1 (left) or κ = 0 and κ = 0.5 (right). The plateau values for κ = 0 (red data points) at
Em = 0 and Em = −1 correspond to degenerate energy levels lifted by small GOE perturbations
at κ = 0.1 or κ = 0.5 but the larger (smaller) degeneracy at Em = 0 (Em = −1) has still a strong
(modest) effect on the density of states with a strong (small) peak at E = 0 and a (slightly) deformed
Em vers m curve. Bottom and top eigenvalues (at κ = 0.5) are −25.48,−22.02,−20.76,−19.80 and
44.46, 46.23, 53.50, 64.58. (Bottom/top eigenvalues at κ = 0 are very close).

for convergence to the thermalized curve at much longer time scales numerically not
easily accessible. In particular, for the modes m0 = 8, 128 the cloud of data points
approaches the theoretical curve, with a delayed “convergence” for the values ρm with
Em close to 0 which can be explained by the effects of the strong initial degeneracy
at Em = 0 (for κ = 0) and typical reduces IPR values (also for κ = 0.5).

Furthermore, the entropy values of the states shown in Fig. II.7 (and some other
states we computed) are already rather close to the theoretical value as can be seen
in Fig. B.10 in Appendix B. This figure shows for each mode three data points for
successive values of t clearly indicating a convergence to the theoretical entropy values.
In summary, we can say that the available numerical data provides indications for the
onset of thermalization for the politician network but at longer time scales than yet
accessible by the numerical method.

Thus the results of this Section show that in large size networks the thermalization
time scale can be rather high.
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Fig. II.7 Dependence of ρm(Em) on Em for the politician network with κ = 0.5, β = 10, N = 5908,
the initial condition Cm(t = 0) = δm,m0 where the initial modes are m0 = 8, 128, 1137, 2399. ρm has
been obtained as the time average ρm = ⟨|Cm(t̃)|2⟩ for t/2 < t̃ ≤ t for two values of t. The blue curve
shows the RJ theoretical curve ρRJ(Em) = T/(Em−µ) with T and µ determined in the usual way as
described in the text (see also the caption of Figure II.3). The values of T , µ and ⟨E⟩ for the 4 initial
modesm0 = 8, 128, 1137, 2399 (and the larger t value) are T = 0.002053, 0.003161, 0.003972, 0.005611,
µ = −25.49,−25.5,−25.55,−33.53 and ⟨E⟩ = −13.36,−6.824,−2.083,−0.3803. For comparison the
values of Em0 for these modes are Em0 = −13.53,−6.84,−2.085,−0.382. The cases with m0 = 8, 128
(m0 = 1137, 2399) have been computed using the time step dt = 1/32 (dt = 0.1) for the symplectic
integrator up to t = 219 (t = 220).

II.6 Entropy in the RMT model

In Ref. [17], we already studied the thermalization problem for a nonlinear perturba-
tion of a GOE matrix with semicircle radius 1 (corresponding to A = 0, κ = 1 and
N = 64 in the notations here). However, in [17] only the quantity Sq was computed
(and called S there). Therefore, we provide here also a few results for SB/N using the
data of [17]. Specifically, Figs. B.11 and B.12 in Appendix B show the time dependence
of Sq(t) and SB(t)/N for the cases already shown in Fig. S1 of [17] which is actually
very similar to Fig. B.11 (the latter is provided for convenience and also shows more
theoretical values than Fig. S1 of [17]).

Both entropy values converge for the cases with β = 1 clearly to the thermalized
entropy values. For the initial mode m0 = 3 at β = 1, we observe that Sq(t) takes
at intermediate times (t ∼ 214) even larger values (roughly by a factor 1.5) than
the thermalized theoretical value before the curve drops to its final value at larger
times. This behavior is indeed possible since Sq is not the thermodynamical entropy
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of the problem. However, SB(t) increases monotonically with t all modes (including
this mode) and converges in (certain cases) to the thermalized value. For the mode
m0 = 30 Figs. B.11 and B.12 show each three curves (of either Sq or SB/N) at
β = 1, 0.1, 0.02. For β = 1 (β = 0.1) there is a rapid (slow/delayed) convergence to
the (same) thermalized value while for β = 0.02 the mode does not thermalize since
it is very likely in the integrable KAM regime. Thus the time dependence of SB(t) is
well in agreement with the Boltzmann H-theorem [1].

At the same time we note that a nonmonotonic time dependence of SB(t) was
found in numerical simulations of dynamical thermalization in quantum chaos billiard
described by the nonlinear Schrödinger equation [27]. However, in this system the
number of linear modes is formally unlimited and there is a question how to define a
finite Boltzmann entropy in such a case since the definition (II.20) is diverging in such
a case.

II.7 Wealth inequality and Lorenz curves

It is interesting to compute Lorenz curves for the specific spectra of both networks
discussed above. We briefly remind the construction procedure which was introduced
in Part I. For a given energy spectrum Em (e.g. for the netscience network at κ = 0.5),
we first compute a shifted spectrum Ēm = Em − E1 such that Ē1 = 0 and other
Ēm > 0. Then for a specific value of the energy Ē = E − E1 with Ē1 < Ē < ĒN

corresponding the rescaled energy ε = (E −E1)/(EN −E1) = Ē/ĒN we compute the
RJ thermalized values of T , µ and ρm in the usual way (T and ρm are not modified
by the shift and for µ the same shift as for Em is applied). In particular, the relation
Ē =

∑
m Ēmρm is verified. Using these values of ρm we compute (for 0 ≤ m ≤ N) the

cumulated household fraction h(m) =
∑m

i=1 ρi and the associated cumulated wealth
fraction w(m) =

∑m
i=1(Ēi/Ē)ρi such that h(0) = w(0) = 0, h(N) = w(N) = 1 and

h,w ∈ [0, 1]. The set of points (h(m), w(m)) for 0 ≤ m ≤ N then provides the Lorenz
curve.

To characterize the degree of “inequality” one uses the Gini coefficient defined as
the area between the line w = h (of perfect “equality”) and the curve divided over its
maximal possible value if w = 0 (i.e. 1/2 for the area of the triangle below the line
w = h).

Fig. II.8 shows for the netscience network a certain number of Lorenz curves for
different values of the rescaled system energy ε. The largest used value ε = 0.38 is
close to the critical value εc = 0.39622 at which the transition from T > 0 to T < 0
appears. As expected at smaller values of ε the curves describe a strong inequality
with a value of G close to 1. Here for ε ≈ εc we have G ≈ 0 and a curve quite close to
the line w = h of perfect equality. This is different from the RJS model (of a uniform
spectrum) used in Part I where at ε = εc = 1/2 we have found w = h2. Apart from
that, for most curves there is a large interval h ∈ [0, h0] where w(h) = 0 which is due
to the very large energy gaps of the first modes at m = 1, 2, 3, . . . in comparison to the
level spacings of modes in the bulk. For h > h0 the curves increase to the final value
w(h = 1) = 1 and there are rather close to the straight line between (h0, 0) and (1, 1).
This behavior can be modified a bit (at least for the larger values of ε) by choosing an
ever stronger value of κ. Fig. B.13 in Appendix B illustrates this for κ = 6 where the
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Fig. II.8 Lorenz curves for the netscience network with κ = 0.5, β = 10, N = 379 for
different values of the rescaled energy ε = (E − E1)/(EN − E1) = Ē/ĒN . The x-axis cor-
responds the cumulated fraction of households (h) and the y-axis to the cumulated fraction of
wealth (w). The largest value ε = 0.38 is slightly below the critical value εc = 0.39622 at
which the transition from T > 0 to T < 0 appears. The Gini coefficients G for all curves are
G = 0.9534, 0.8834, 0.7668, 0.5336, 0.6502, 0.301, 0.1321 (bottom to top).

straight lines are a bit more curved. However, in this case also the density of states is
strongly modified and it is rather close to the semicercle law with radius κ = 6 with
a significant reduction of the initial energy gaps.

The results of Fig. II.8 show that e.g. ar ε = 0.15 the phase of absolutely poor
households is approximately 60% of all households while the top 10% of most rich
households own approximately 32% of total wealth.

Fig. II.9 shows a color density plot for the Lorenz curves for a continuous distri-
bution of ε ∈ [0, εc[ essentially confirming the observations of Fig. II.8 the length h0
of the initial interval (with w(h) = 0) behaves roughly as h0 ≈ ε/εc.

Figs. II.10 and II.11 are as Figs. II.8 and II.9 respectively but for the politician
network. Now the critical value for the transition from positive to negative T is εc =
0.28297. The structure of the curves and the color plot are rather similar as for the
netscience network but the effect of straight lines for h > h0 is even a bit stronger
which is certainly related to the larger initial energy gaps of the politician network.

The results of this section show that the RJ thermalization and condensation
in social networks presented in the previous sections leads to the formation of an
enormous phase of very poor households and a small fraction of rich households that
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Fig. II.9 Color plot of wealth w from Lorenz curves for the netscience network with κ = 0.5,
β = 10, N = 379. The x-axis corresponds to the fraction of households h ∈ [0, 1] and the y-axis to the
rescaled energy ε = (E − E1)/(EN − E1) ∈ [0, εC [ where εc = 0.39622 is the critical value at which
the transition from T > 0 to T < 0 appears. The ticks mark integer multiples of 0.1 for h and ε.
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Fig. II.10 Lorenz curves for the politician network with κ = 0.5, β = 10, N = 5908 for different
values of the rescaled energy ε = (E−E1)/(EN −E1). The x-axis corresponds the cumulated fraction
of households (h) and the y-axis to the cumulated fraction of wealth (w). The largest value ε = 0.28
is slightly below the critical value εc = 0.28297 at which the transition from T > 0 to T < 0 appears.
The Gini coefficients G for all curves are G = 0.9328, 0.8321, 0.6642, 0.4963, 0.3284, 0.1605, 0.06647
(bottom to top).
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Fig. II.11 Color plot of wealth w from Lorenz curves for the politician network with κ = 0.5,
β = 10, N = 5908. The x-axis corresponds to the fraction of households h ∈ [0, 1] and the y-axis to
the rescaled energy ε = (E − E1)/(EN − E1) ∈ [0, εC [ where εc = 0.28297 is the critical value at
which the transition from T > 0 to T < 0 appears. The ticks mark integer multiples of 0.1 for h and ε.

owns a significant fraction of total system wealth. The presence of a significant energy
gap in the energy spectrum of two social networks studied here enhance the fraction
of the poor phase comparing to the other spectrum models considered in Part I.
The question of how typical such energy gaps are for social networks requires further
studies. Another feature of the considered social networks is a stronglly peaked density
of states approximately at the middle of the energy band. As a result the energies
Em are very flat in this energy region. This is rather different from the RMT model
or RJS model of Part I where the density of states is approximately constant in this
energy range. We suppose that the origin of this difference is related to the fact that
in the considered networks we have links between the members of the same society
layer or class: scientists linked to scientists, politicians to politicians. Probably this is
a general feature of internet connections where there is little if any distinction between
classes of network members. In a real human society there is some kind of natural
society statification: factory workers are mainly linked with workers, peasants with
peasants, businessmen with businessmen, aristocrats with aristocrats. This feature
is well present in a real human society with its society classes and wealth gradient
between classes (of course with fluctuations and relatively weak links between classes).
Thus it is possible that the society networks should be revised and updated to include
the above feature of human society.

II.8 Overview of social networks results

The presented studies of dynamical thermalization in social networks show that chaos
in these systems lead to the RJ thermalized distribution if nonlinear interactions are
above a certain chaos border. The time scale for onset of this RJ distribution is deter-
mined by the strength of the nonlinearity. This time scale can be relatively long. On
a first glance this seems rather surprising in view of a rather small number of links to
hope and connect any pair of nodes, with the Erdös number NE ≈ 4− 5 [30, 31, 65].
However, such link transitions are provided only by the linear part of system Hamil-
tonian while only the nonlinear interactions lead to transitions between eigenmodes
(see (II.7)) with eventual thermalization. Our results show that the RJ thermaliza-
tion process in the social networks has close similarities with those in the NLIRM

38



model [17]. Thus we expect that the Lyapunov exponents λm and the thermalization
time scale tRJ have a similar to [17] dependence on nonlinearity β and number of
oscillators (nodes) where it was found that the typical Lyapunov exponent values are
λ ∼ β1.5/N1.9. We expect that tRJ ∝ 1/λ but further studies are required to confirm
these dependencies.

The emergence of RJ condensate leads to a formation of an enormous phase with
high fraction of total norm located at low energy, or wealth, states. This leads to a
massive fraction of poor households in the social networks as it is well seen in the
figures of the Lorenz curves in Section II.7. At the same time a significant part of total
wealth is captured by a small oligarchic group of rich households. Thus the obtained
results for dynamical thermalization in social networks provide a confirmation of WTH
origin and highlight the problem of wealth inequality in human society from a new
view point.

Discussion and conclusion

In 1955 Fermi, Pasta, Ulam and Tsingu performed the first numerical simulations of
a chain of nonlinear oscillators with the aim to find a dynamical thermalization and
energy equipartition between the degrees of freedom. However, this model happened
to have various specific features so that no tendency to equipartition was found in 1955
[2]. To extend these studies a generic model of coupled oscillators was proposed in [17]
on the basis of nonlinear perturbation of Random Matrix Theory showing that chaos
leads to dynamical thermalization with the resulting RJ distribution over the linear
energy eigenmodes. This model has two integrals of motion being the total energy and
total norm (probability). Thus the RJ distribution in this isolated Hamiltonian system
is characterized by the system temperature T (E) and chemical potential µ(E).

In fact the emergence of the RJ thermalization had been studied earlier numeri-
cally and experimentally for light propagation in multimode optical fibers [26, 48–53],
even if the origin of this thermalization was attributed to the Kolmogorov-Zakharov
turbulence [25] without links to chaos and KAM integrability. The emergence of RJ
condensation was established numerically [49] and experimentally [48, 50]. The emer-
gence of an RJ condensate and thermalization in quantum chaos fibers with the
nonlinear Schrödinger equation was demonstrated in numerical and analytical stud-
ies reported in [27]. At the same time it should be pointed out that the Fröhlich
condensate for molecules at room temperature, discussed in [28, 29], has also certain
similarities with the RJ condensate, even if in [28, 29] the system is considered under
external pumping and dissipation (see discussion in [27]).

In Part I we analyzed the consequences of RJ thermalization and condensation
associating system energy and norm, both conserved by time evolution. These quan-
tities are related to the global wealth and the number of interacting households which
are also conserved as justified in [45, 46]. The performed analysis shows that this WTH
description depicts very well the shape of real Lorenz curves of wealth of households
for several countries and the whole world. Also the WTH approach well reproduces the
Lorenz curves for the stock exchange markets of New York, London and Hong Kong.
To provide more arguments in support of the WTH description we study in Part II
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the dynamical thermalization in social networks induced by a nonlinear perturbation.
Our results show the emergence of RJ thermalization and condensation in social net-
works with nonlinear interactions between network agents with the interactions being
above a certain chaos border. As in Part I the RJ condensation leads to the Lorenz
curves with an enormous fraction of poor households and a small fraction which owns
a main part of total wealth. On the basis of the results of this work we argue that the
WTH description provides new perspectives for the understanding of the nontrivial
aspects of the wealth inequality in the world.
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Appendix A Additional material for Part I

A.1 General features of the thermalization in the RJS model

Here we remind a bit more details about thermalization of the RJS model (see also
Refs. [17, 27] for more details). Let us assume that we have N linear classical oscillators
with individual energies Em, m = 0, . . . , N − 1 which are coupled by some small non-
linear perturbation (see Ref. [17] for an example) such that there are two conserved
quantities being the global (squared) amplitude and total energy:

1 =

N−1∑
m=0

ρm , E =

N−1∑
m=0

Emρm (A.1)

where ρm is the time averaged squared amplitude and occupation probability of each
oscillator. If the non-linear terms are sufficiently strong or if there is some weak cou-
pling to an external system (which respects both constraints (A.1)) one can assume
that the system thermalizes. Applying the framework of the grand canonical ensem-
ble one introduces two parameters: temperature T and chemical potential µ to satisfy
both constraints (A.1) in average and it can be shown (see e.g. Ref. [17]) that

ρm =
T

Em − µ
, T =

E − µ

N
(A.2)
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where the expression for the temperature T is obtained from
∑

m(Em − µ)ρm =
(E−µ) which follows directly from (A.1). The chemical potential is determined (using
standard numerical techniques) by solving the implicit equation:

1 =
E − µ

N

N−1∑
m=0

1

Em − µ
(A.3)

which allows for one physical solution of µ outside the energy interval [Emin, Emax]
with either µ < Emin (T > 0) or µ > Emax (T < 0) (depending on the value of
E we have either T < 0 or T > 0) such that ρm > 0. The data presented in this
work were obtained by this procedure for different model spectra and certain values
of N = 10000 (or N = 1000 for the RMT model). Concerning the RJS model we have
also considered the cases N = 100, N = 1000 and verified that the obtained Lorenz
curves are very close (in graphical precision).
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Fig. A.1 The left (right) panel shows the (rescaled) temperature NT (the chemical potential µ)
versus the rescaled energy ε = E/B for the RJS model Em = m/N , N = 10000. The dashed black
lines in the right panel correspond to the values of E0 = 0 and B ≈ 1 showing that either µ < E0

(for T > 0) or µ > B (for T < 0).

As illustration Fig. A.1 shows for the RJS model with Em = m/N , m =
0, 1, . . . , N − 1, N = 10000 both T and µ as a function of ε = E/B (here B =
Emax −Emin ≈ 1). Note that the left panel shows the rescaled temperature NT since
typical numerical values of T are ∼ 1/N due to the finite value of B in our particular
model. (We note that the construction of the Lorenz curve is independent of a global
scaling factor one could apply to the energy levels.) The figure illustrates that −µ→ 0
(µ→ −∞) for ε→ 0 (ε→ 1/2).

Using (A.3) one can show that −µ ≈ E/(N − 1) ≪ E for very small energies
0 < E ≪ 1/N and in this particular case we have ρ0 ≈ 1 (strong condensation)
and other ρm ∼ E/(NEm) ≪ 1/N (for m > 0). With increasing values of E (or ε)
the values of “−µ” increase and more probability is shifted to the other ρm values
for m > 0. At ε ≈ 1/2 we have very large values of “−µ” (and of T ) such that all
ρm ≈ 1/N are uniformly constant. Further increase of ε enters the regime of negative
temperatures (with µ > Emax) with possible condensation at the last oscillator with
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Fig. A.2 Color plot of the coarse-grained thermalized occupation probabilities ρm = T/(Em−µ) =
(E−µ)/[N(Em−µ)] for the RJS model. The x-axis corresponds to the fraction Em/B ∈ [0, 1] (left to
right) and the y-axis to the rescaled energy ε (top to bottom for increasing values). The tics indicate
integer multiples of 0.1 for both quantities. The color values shown in the color bar correspond to the
value of ρm averaged over intervals of size 1/20 (for Em/B on the x-axis) and computed for 21 values
ε = i/20, i = 0, 1, . . . , 20 (for the y-axis; the minimal value ε = 0 has been slightly enhanced and
the maximal value ε = 1 has been slightly reduced to have a stable computation of the thermalized
µ-value). To increase visibility of small values a non-linear color bar scale has been chosen (e.g. green
color corresponds to 1/16).
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Fig. A.3 Dependence of the thermalized occupation probabilities ρm = T/(Em − µ) = (E −
µ)/[N(Em − µ)] on Em/B for the RJS model Em = m/N , N = 10000 and the same values of
ε = E/B used in Figure I.1 of the main part.
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ρN−1 ≫ 1/N (in this work we do not insist on the regime of T < 0). These features are
visible in both figures Figs. A.2 and A.3 showing ρm versus Em/B for different values
of ε (as color plot or curves in log-scale). The effect of condensation for small ε with
a finite probability ρ0 ≫ 1/N is clearly visible in both figures and qualitatively one
could even say that it extends even up to ε = 0.2 with ρ0 = 0.002495 still being larger
than 1/N . However, here also some other values of ρm with small m are significantly
larger than 1/N (as can be seen in A.3 for the first 5% of modes with ρm ≥ 3/N).
Also the coarse-grained average value at the first 5% of modes at ε = 0.2 is roughly
0.35 times the maximal coarse-grained value at ε ≈ 0 (according to Fig. A.2). This
effect corresponds to (modest) condensation on several modes or a given small mode
interval.

When constructing the Lorenz curve we have w = 0 for h < ρ0 and in the presence
of (strong) condensation there is a finite interval of households with no wealth at all.
Even for modest condensation over several modes the wealth value is initially very
low. This can also be seen in Fig. I.1 where w(h ≤ 0.1) ≈ 0 for ε = 0.2 showing the
effect of modest condensation.

Below, we will present a continuous version of the RJS model with the exact limit
N → ∞ and some analytic formulas for the key quantities.

A.2 Additional data
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Fig. A.4 Comparison of the Lorenz curves for DE 2010 (black) and FR 2010 (blue dashed) with
those of the RJS model (red curves; N = 10000). The data of DE and FR were extracted from
Ref. [56]. As in Fig. I.3 the Gini coefficients G = 0.758 (DE) and G = 0.679 (FR) were used to
determine the ε values of the RJS model as ε = 0.1220 (DE) and ε = 0.1659 (FR) to match the Gini
coefficients of the reference data.

In this section, we present additional data. First Fig. A.4 shows the Lorenz curves
from Germany and France and the corresponding curves of RJS model (with matching
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Gini coefficients). These data were extracted from Ref. [56] with best possible precision
and correspond to the period of 2010. The agreement with the RJS is comparable (not
perfect but still rather close) as with the cases of US and World in Fig. I.3. The Gini
coefficients of Germany (G = 0.758) and France (G = 0.679) are both intermediate
between UK (G ≈ 0.62) and US/World (G ≈ 0.85/0.84).
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Fig. A.5 As panel (b) of Fig. I.4 but with a zoomed representation for h ∈ [0.4, 1] and w ∈ [0, 0.5]
to increase the visibility between the close curves for US 2019 and World 2021.

The next Figure A.5 shows a zoomed representation of panel (b) of Figure I.4 for
h ∈ [0.4, 1] and w ∈ [0, 0.5] to increase the visibility between the close curves for US
2019 and World 2021 and to also to enhance the small differences with respect to the
DL model (red lines).

Furthermore, Fig. A.6 presents results for the EQI model with E0 > 0, Em =
E0+m/N and ε = (E−E0)/(EN−1−E0) ≈ E−E0. In this case, the finite value E0 > 0
induces an initial finite slope E0/E = E0/(E0+ε) in the Lorenz curve. We have verified
that for the four cases shown in Fig. A.6 this formula indeed represents the initial
slope (see figure caption for the values). In this model, even the poorest households
own a significant fraction of the wealth which is given by this slope. Here the range of
possible Gini coefficients is quite limited with maximum values of Gmax ≈ 0.1 or 0.4
for E0 = 1 or E0 = 0.1 respectively. Due this reason it is not possible to match the
data of US, UK, World etc. (with much larger Gini coefficients) to this model (for the
cases shown in Figs. I.6, A.6).

Finally, Fig. A.7 shows several color plots in the same style as Fig. I.2, i.e. the
color value (visible in the color bar) shows w of the Lorenz curve as a function of h
(x-axis) and ε (y-axis). The 2nd panel for the RMT model is rather similar to Fig. I.2
for the RJS model, with a slight tendency for smaller G values for ε > 0.2 (at given
ε, see also Fig. I.5). The first panel for the DL model with a = 16 has a stronger
condensation effect (i.e. more poor or poorer households) at ε ≈ 0.08 as compared

44



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

w

h

ε = 0.05, E0 = 1
ε = 0.4, E0 = 1

ε = 0.05, E0 = 0.1
ε = 0.15, E0 = 0.1

Fig. A.6 Lorenz curves of the thermalized EQI model (N = 10000) with the two offset values
E0 = 0.1 and E0 = 1 and for each case for two values of the rescaled energy ε = (E−E0)/(EN−1−E0).
Note that for E0 = 1 ⇒ EN−1 ≈ 2E0 and for E0 = 0.1 ⇒ EN−1 ≈ 11E0. The dashed line
corresponds to the line of perfect equipartition w = h. The Gini coefficients G for all curves are
G = 0.4239, 0.3000, 0.1162, 0.04286 (bottom to top). These curves show a finite initial slope with
value E0/(ε+ E0) = 0.4, 0.6667, 0.7143, 0.9524 (bottom to top).
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Fig. A.7 Color plot of Lorenz curves for different models in the same style of Figure I.2. The
panels correspond to the DL model with parameter a = 16 (top left), to the shifted RMT semi-
circle spectrum (top right), to the EQI model with given offset E0 = 0.1 (bottom left) and E0 = 1
(bottom right). For the EQI model the rescaled energy ε ∈ [0, 0.5] for the vertical axis is given by
ε = (E − E0)/(EN−1 − E0) (same expression for the other models but with E0 = 0). All cases
correspond to N = 10000 levels except for RMT with N = 1000.
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to ε ≈ 0.03. Both bottom panels correspond to the EQI model with E0 > 0 (here
ε = (E−E0)/(EN−1−E0)) with reduced Gini coefficients and where poor people own
a significant fraction of the wealth, even at small values of ε.

A.3 Analytical results for RJS model

For the RJS model with finite ε it is possible to obtain explicit formulas in the limit
N → ∞ by replacing the sums over m with integrals over an energy variable Ẽ =
m/N ∈ [0, 1]. In the following, we also use ε = E (since E0 = 0 andB = (N−1)/N → 1
for N → ∞). In the limit N → ∞ the implicit equation (A.3) becomes:

1 = (ε− µ)

∫ 1

0

1

Ẽ − µ
dẼ = (ε− µ) ln

(
1− µ

−µ

)
(A.4)

which can be rewritten in the following form:

µ = −(1− µ)e−1/(ε−µ) . (A.5)

Both equations determine µ as a function of ε ∈]0, 1[. In the limit of small ε one can
simply iterate Eq. (A.5) by inserting µ0 = 0 in the RHS which gives µ1 = −e−1/ε

on the LHS which can be inserted in the RHS to obtain a better value µ2 etc. This
procedure converges nicely for small ε and for other values of ε one can use standard
techniques to solve these equations numerically and efficiently. For ε ≪ 1, the first
approximation (−µ) ≈ e−1/ε ≪ ε is already very good.

To understand the limit of |µ| ≫ 1 it is more useful to consider ε as a function of
µ which is determined by (A.4). Expanding the logarithm in (A.4) up to 3rd order in
1/µ one finds that

ε ≈ 1

2

(
1 +

1

6µ

)
→ 1

2
(A.6)

for |µ| → ∞ which is expected from the curve of µ in Fig. A.1. The 1/µ correction in
(A.6) will be useful below.

As explained in the main part of this work, to compute the Lorenz curve we have to
compute a partial sum over ρm to obtain the household fraction h and over (Em/ε)ρm
to obtain the wealth variable. Now, we replace these partial sums also by integrals up
to some arbitrary value s ∈ [0, 1] which provides functions h(s) and w(s) allowing to
determine the Lorenz curve w(h). These partial integrals are:

h(s) = (ε− µ)

∫ s

0

1

Ẽ − µ
dẼ = (ε− µ) ln

(
s− µ

−µ

)
(A.7)

⇒ s(h) = (−µ)
(
eh/(ε−µ) − 1

)
(A.8)
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and

w(s) =
ε− µ

ε

∫ s

0

Ẽ

Ẽ − µ
dẼ

=
1

ε

[
(ε− µ)s+ µ(ε− µ) ln

(
s− µ

−µ

)]
. (A.9)

Inserting (A.7) and (A.8) in (A.9) we obtain the following analytical expressions for
the Lorenz curve:

w(h) =
−µ
ε

(
(ε− µ)

(
eh/(ε−µ) − 1

)
− h
)

(A.10)

=
1− µ

ε
e−1/(ε−µ)

(
(ε− µ)

(
eh/(ε−µ) − 1

)
− h
)
. (A.11)

Here (A.11) has been obtained by replacing the global factor µ with (A.5) which gives
a more convenient expression. Using (A.5), one can verify that (A.10) (and therefore
also (A.11)) satisfy the conditions w(0) = 0 and w(1) = 1.

The expression (A.11) allows to take the limit ε ≪ 1 with µ ≈ −e−1/ε ≪ ε such
that for ε≪ 1 we have the simplified Lorenz curve (replacing µ = 0 in (A.11)):

w(h) ≈ e−1/ε

(
eh/ε − 1− h

ε

)
≈ e(h−1)/ε . (A.12)

Here both expression are equivalent approximations for small ε with e−1/ε ≪ 1. The
first (second) expression does not exactly verify the condition for w(1) (or w(0)). The
second expression is very simple and numerically quite sufficient for ε ≤ 0.2.

We have verified that both expressions (A.10) and (A.11) coincide with the numer-
ical data shown in Fig. I.1 up to graphical precision with an error below 10−4 and for
all values of ε used in Fig. I.1. The approximate formulas (A.12) are valid for ε ≤ 2
with an error ∼ 10−2 for ε = 0.2 (and smaller errors for smaller values of ε). This
can be seen in Fig. A.8 comparing the data for ε = 0.1, 0.2, 0.3 between the analytic
expressions and the data for N = 10000. Even for ε = 0.3 only a modest deviation
of the approximate curve is visible while here and in all other cases the more precise
expression (A.11) matches the numerical data very closely.

Using the analytical expressions for w(h) one can compute several other quantities.
For example it is interesting to consider the 2nd order expansion in h for |h/(ε−µ)| ≪ 1
which gives:

w(h) =
(−µ)

2ε(ε− µ)
h2 . (A.13)

We know that the limit |µ| → ∞ corresponds to ε → 1/2 and in this case (A.13) is
valid for all h ∈ [0, 1]. This gives the very simple formula w = h2 (which is also obvious
from the fact that ρm = 1/N = const. for |µ| → ∞ and the way the Lorenz curve is
constructed from ρm).
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Fig. A.8 Comparison of Lorenz curves of wealth fraction w versus household fraction h for the
analytical model with the numerical data of the RJS model for finite N = 10000 and for three key
values of the rescaled energy ε = 0.1, 0.2, 0.3 (top to bottom). Left panels shows the difference between
the analytical model and numerical data and right panels show directly the curves w versus h for
the numerical data (red lines and plus symbols) and the analytical model. Blue lines/data points
correspond to the formula (A.11) valid for all values of ε and using the appropriate value of the
chemical potential µ determined by the implicit equation (A.4). Green lines/data points correspond
to the (second) approximate formula (A.12) valid for small ε ≤ 0.2. The discrete points of data
in the top right panel for ε = 0.1 at values close to w = 0 indicate finite values for ρ0 = 0.1129,
ρ0 + ρ1 = 0.1660, etc. which are due to RJ condensation.
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It is also possible to compute the Gini coefficient:

G = 1− 2

∫ 1

0

w(h) dh

= 1 +
2µ

ε

[
(ε− µ)2(e1/(ε−µ) − 1)− (ε− µ)− 1

2

]
(A.14)

= 1− µ

ε
− 2(ε− µ) . (A.15)

Here the second simpler expression (A.15) has been obtained by replacing the exponen-
tial term in (A.14) using the implicit equation of µ. The limit ε≪ 1 with µ ≈ −e−1/ε

gives G ≈ 1−2ε which matches well the values of G given in the caption of Fig. I.1 for
ε ≤ 0.1 (rather close value for ε = 0.2). The other values are matched exactly by the
more precise expression (A.15). Furthermore, inserting the expression (A.6) for large
|µ| in (A.15) one finds (confirms) that G = 1/3 for ε = 1/2 (here it is necessary to
keep the 1/µ correction in (A.6) to obtain the correct result for G).

Using the analytical expression (A.11) for w(h), it is also straightforward to com-
pute (with simple numerics) the inverse function h(w). Using this and the analytical
expression (A.15) for the Gini coefficient, we have also recomputed the curves for G(ε),
h(2%), 1 − h(25%) (both as a function of ε) and verified that the analytical curves
coincide with the numerical curves shown in Fig. I.5 and Fig. I.6 (for the RJS model
at N = 10000) up to graphical precision (typical error ∼ 10−4).

One might be concerned that the integral approximation is not very good for small
µ (close to the singularity of the first term in (A.3)) and some finite but large value
of N such as N = 10000. This is true but the integral provides a modified logarithmic
singularity which allows also to mimic correctly the condensation effect with correct
probabilities. Therefore even though the values of µ are modified for ε ≪ 1 (but still
0 < −µ ≪ ε ≪ 1 for both models !) the resulting probabilities (e.g. integrals or
sums of ρm over some interval in Ẽ = m/N) are the same. The values of µ obtained
by the continuous analytical model match very well the curve shown in Fig. A.1 but
of course this figure does not allow to verify if µ ≈ −e−1/ε (continuous model) or
µ ≈ −ε/(N − 1) (for the finite N model with discrete sums) which are both close
to zero in the figure. In any case, we find that the analytical expressions given here
(if µ is properly evaluated by its implicit equation (A.4) and if properly evaluated
by avoiding numerical instabilities of some formulas in some special cases) match the
numerical data with an error that scales with 1/N .

Without going into details, we mention that we have also considered a more refined
version of the continuous model using a finite value of N and keeping the first singular
term separate from the integral (which starts at s = 1/N and not S = 0). In this case,
we obtain a modified implicit equation of µ which results in values of µ closer to the
model of finite N but the resulting physical quantities (w(h) curves, Gini coefficients
etc.) are (numerically with an error < 10−4) the same as both the numerical data
and the simple model. The resulting analytical expressions of the refined model are
slightly modified (essentially replacing h by h − ρ0 for h ≥ ρ0 in the formula of the
Lorenz curve and using w(h) = 0 for h < ρ0 where ρ0 may now have a finite value).
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Note that the initial interval h ∈ [0, ρ0[ with exactly w(h) = 0 for the refined and also
the discrete model translates to exponentially small values w(h) ≈ h2 e−1/ε/(2ε) for
the simple analytical model (replacing µ ≈ −e−1/ε in (A.13)).

A.4 Data for companies of stock exchange at New York,
London, Hong Kong

We present here the Lorenz curves for the capitalization of companies at stock
exchanges of New York, London, Hong Kong. They are obtained respectively from
Refs. [57–59].

First, we present in Fig. A.9 the Lorenz curve for the data of 504 S&P500 companies
of the New York Stock Exchange (NYSE) of June 16, 2025 (see Ref. [57]). This Fig. A.9
shows the direct comparison of the Lorenz curve of NYSE and the corresponding RJ
thermal distribution of the RJS model (at same Gini value). Here, we use the standard
value N = 10000 for the RJS curve but using a reduced value N = 504 (as the number
of companies) gives the same RJS curve within graphical precision. The quality of
agreement with the RJS model is comparable to the cases of US or World in Fig. I.3.
We also note the characteristic values: h = 0.191 at wealth w = 0.02; w = 0.092 at
h = 0.5; the wealth of top 10 percent of h companies is 1 − w(0.9) = 0.602 and the
wealth of top 1 percent of companies is 1−w(0.99) = 0.267. Thus we see that there is
a small fraction of oligarchic companies that monopolize a big fraction of total wealth.
The fraction of poor companies, corresponding to the RJ condensate, is smaller than
the fraction of poor households in the US or World cases. We attribute this to the
fact that these 504 companies of S&P500 represent only about 80 percent of the total
capitalization of US companies.
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Fig. A.9 Comparison of the Lorenz curve for the S&P500 companies of NYSE 2025 (black; data
from Ref. [57]) with the corresponding curve for the RJS model (red curve; N = 10000) at same Gini
coefficient G = 0.692 obtained for ε = 0.1582.
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Fig. A.10, compares the Lorenz curve for the London stock exchange (2024; data
from Ref. [58]) with the RJS model. Here, the Gini coefficient G = 0.9126 is higher
than for the US and World cases and the corresponding value ε ≈ 0.044 for the RJS
model is quite small. Due to the high value of G the first probability ρ0 = 0.6545 is
very high indicating a strong RJ condensation with exactly w = 0 for h ∈ [0, ρ0[ in
the RJS model. The chosen value N = 1637 is identical to the number of considered
companies but the RJS curve for N = 10000 is identical on graphical precision (with
a slightly modified value for ε).
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Fig. A.10 Comparison of the Lorenz curve for the 1637 companies of the London stock exchange
FTSE at 31 December 2024 (black; data from Ref. [58]) with the corresponding curve for the RJS
model (red curve; N = 1637) at same Gini coefficient G = 0.9126 obtained for ε = 0.04387. The left
(right) panel shows the full range h ∈ [0, 1] (zoomed range h ∈ [0.8, 1]).

Fig. A.11, compares the Lorenz curve for the Hong Kong stock exchange (2025;
data from Ref. [59]) with the RJS model. Here, the Gini coefficient G = 0.9471 is even
higher than for the London stock exchange and the corresponding value ε ≈ 0.027 for
the RJS model is even smaller. Due to the very high value of G the first probability
ρ0 = 0.7768 is even higher (than ρ0 for the London stock exchange) indicating a strong
RJ condensation with exactly w = 0 for the larger interval h ∈ [0, ρ0[ in the RJS
model. The chosen value N = 2683 is identical to the number of considered companies
but the RJS curve for N = 10000 is identical on graphical precision (with a slightly
modified value for ε).

Fig. A.12, compares the Lorenz curve for the 30 Dow Jones companies (2025; data
from Ref. [57]) with the RJS model. Here, the Gini coefficient G = 0.3096 is very low
and the corresponding value ε ≈ 0.55 for the RJS model is very high being in the
region for T < 0 with large |T |. The value of G is even smaller then G = 1/3 for
the curve w = h2 corresponding to the RJS model with ε = 0.5 and |T | → ∞. The
chosen value N = 30 is identical to the number of considered companies but despite
the modest value of N the RJS curve for N = 10000 is identical on graphical precision
(with a slightly modified value for ε). We mention, that a comparison with the EQI
model for a modest value of E0 to fit approximately the finite initial slope in the data
provides the energy value ε ≈ 0.48 < 0.5 corresponding to the regime of T > 0 but
still with large |T |. We note that this case is very special since these 30 companies are
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Fig. A.11 Comparison of the Lorenz curve for the 2683 companies of the Hong Kong stock exchange
at 19 June 2025 (black; data from Ref. [59]) with the corresponding curve for the RJS model (red
curve; N = 2683) at same Gini coefficient G = 0.9471 obtained for ε = 0.02651. The left (right) panel
shows the full range h ∈ [0, 1] (zoomed range h ∈ [0.8, 1]).

certainly not isolated and they constitute a subset of the 504 companies of S&P500
(which are not perfectly isolated as well).
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Fig. A.12 Comparison of the Lorenz curve for the 30 Dow Jones companies of NYSE 2025 (black;
data from the site of Ref. [33] taken at June 18, 2025) with the corresponding curve for the RJS
model (red curve; N = 30) at same Gini coefficient G = 0.3096 obtained for ε = 0.5528. The dashed
green (black) line represents the curve for w = h2 (w = h) for the RJS model at ε = 0.5, T → ∞
(perfect equipartition).

A.5 Spectral reconstruction procedure

Let us briefly remind the construction of a Lorenz curve, already given in the main part,
from a given model spectrum Em with appropriate values of µ, E and T such that the
two conditions (A.1) are verified. For this a set of points (hm, wm) is determined with
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h0 = w0 = 0, hm+1 = hm + ρm and wm+1 = wm + (Em/E) ρm for m = 0, . . . , N − 1
and where

ρm =
E − µ

N(Em − µm)
(A.16)

(see also (A.2)). Then the conditions (A.1) assure that hN = wN = 1 and the points
(hm, wm) provide for 0 ≤ m ≤ N the associated Lorenz curve with both hm, wm ∈
[0, 1].

The question arises if it is possible to invert this construction, i.e. to determine
(“reconstruct”) for a given Lorenz curve w(h) a certain effective spectrum Em with
appropriate values of µ and E such that its related Lorenz curve is very close to the
Lorenz curve of real data with best possible precision (depending on the choice of N).

This is indeed possible and to define an explicit reconstruction procedure let us
assume we have some smooth Lorenz curve w(h) with derivatives w′(h) ≥ 0 and
w′′(h) > 0 for all h ∈ [0, 1]. In particular, we assume that we can compute numerically
with high precision and in a reliable way the derivative w′(h) which satisfies w′(h1) >
w′(h2) for all points with h1 > h2 (this assumption may be problematic in practice; see
below). For simplicity, we also assume that w′(0) = 0 and we want to construct spectra
with E0 = 0 which is the most relevant case for the typical examples (it is not difficult
to modify the method for the more general case w′(0) ̸= 0 with E0 ̸= 0). Furthermore,
we choose E = 1 to fix the global energy scale. Then the value of Em/E = Em is (very
close to) the derivative w′(hm) at the corresponding value of hm. However, initially we
do not know the value of hm for a given index m (or the index m value as a function
of hm).

We choose some initial value for µ (close to zero), start with m = N − 1 and want
first to determine Em = EN−1. Here we know the last value hm+1 = 1 at m = N − 1.
Therefore, we can at least approximately compute Em = w′(hm+1) and then the
associated value of ρm using (A.16). This pair (Em, ρm) is yet not very precise since
the derivative is taken at the right boundary of the interval [hm, hm+1] and we can
refine its value by recomputing Em = w′(hm+1 − ρm/2) using a small shift with the
first approximate value of ρm (which will then be updated with the more precise value
of Em using (A.16)). In principle, one could iterate this refinement step until there
is convergence of (Em, ρm). However, in our experience the method works best with
precisely one refinement step (to ensure later convergence for a good value of µ). Once
ρm is known, we obtain hm = hm+1 − ρm. Then we decrease m by 1 and repeat this
procedure to compute the next values of Em, ρm and hm at m = N −2. This provides
a recursion for m = N − 1, N − 2, . . . , 1, 0 and three sequences for Em, ρm and hm
with decreasing m.

For the last value E0 at m = 0 we do not use the derivative but we simply fix
it by E0 = 0. Typically, in this regime the derivative is already very small. Ideally,
the last value h0(µ) should be h0(µ) = 0 but this is only true for a specific value of
µ which has to be found iteratively, e.g. to be determined numerically as the zero of
the function h0(µ) by some standard method (which is actually quite tricky for bad
quality data with problematic convergence) and where this function is computed by a
full reconstruction loop m = N − 1, . . . , 0 for each value of µ as described above.

53



Instead of searching numerically the zero of the function h0(µ), one can also use
another more practical method to determine the correct value of µ. For this, one can
at the last step m = 0 manually fix the last density value and compute from (A.16) a
new modified value µ̃ such that the condition ρ0(µ̃) = h1 holds exactly and therefore
h0 = 0 is perfectly verified. The modified value µ̃ can be reinjected in the procedure
from the start resulting in a fixed-point iteration for µ which typically converges quite
well and allows also to use the exact initial value µ = 0 at the first iteration (which is
not a problem since this value is not used in the last step at m = 0 with E0 = 0). For
this method the convergence is typically a bit slower, but more reliable, as compared
to the secant method applied to h0(µ) but the latter fails to converge in cases of bad
quality data which influence the computation of w′(h). In such a situation the fixed
point iteration does not always provide a convergence with high precision as well but
still the µ values stabilize in some small interval (with relative fluctuations ∼ 10−3

etc.) and any value in this interval can be used to have a nice reconstructed spectrum.
Once the procedure is finished, we can use the obtained spectrum Em to recompute

a new appropriate value of µ and the densities ρm in the usual way by numerically
solving (A.3) with the value E = 1. In case of good convergence of the procedure this
simply confirms the already obtained values of µ and ρm but in case of a problematic
convergence, this provide a final refinement of µ and ρm which will match precisely the
spectrum Em with E = 1 according to (A.1) and (A.2). Using these refined densities,
we can finally recompute the Lorenz curve associated to this spectrum in the usual
way. This curve matches typically, also in the case of not perfect convergence, very
well the original data with numerical errors below 10−3 (or less).

The choice of the parameterN for the size of the reconstructed spectrum is not very
important, except it needs to be sufficiently large, e.g. N = 1000. The reconstructed
spectrum Em provides, as a function of the rescaled level number x = m/N , essentially
the same curves for different (sufficiently large) values of N provided that the same
(reliable) numerical implementation for the derivative function w′(h) is used.

The method depends in a very sensitive way on the quality of the numerical imple-
mentation of w′(h), quality of input data and chosen interpolation procedure and this
part is actually rather tricky. Usual linear interpolation for the initial data for the
Lorenz curve w(h) provides a piecewise constant derivative w′(h) which works reason-
ably well in the above procedure concerning µ-convergence and good matching of the
initial Lorenz curve.

If the raw data is of good quality, i.e. with support points that lie very accurately
on a smooth function, one can also use a combination of rational interpolation (for the
region where w′(h) > 1) and polynomial interpolation (for the region with w′(h) < 1)
and in both cases with a small number of support points between 3 and 6 which are
closest to the value of h for which we want to compute w′(h). In both interpolation
approaches, one can work out efficient formulas to exactly evaluate the derivative of
the interpolation function. However, if the data is of bad quality this procedure may
be problematic for µ-convergence and also violate the property that w′(h1) < w′(h2)
for h1 < h2 which is crucial to obtain a correctly ordered spectrum (with Em1 ≤ Em2

for m1 < m2). In such a case, it may be necessary to clean the data by coarse-graining
them (keeping only 15-20 significant data points) and then recompute a new data
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set with 500 or 1000 points using high quality interpolation (also rational/polynomial
interpolation with 4-5 support points from the reduced set). In particular for the data
of UK 2012-2014 from Ref. [31] with a lot of data points but with limited precision
this was necessary.

In order, to keep things simple and reliable, we opted for a compromise between
rational/polynomial interpolation and a piecewise constant derivative. Without going
into too much details, we mention that we computed first discrete derivatives (from
good quality data) and applied linear interpolation to obtain a piecewise linear numer-
ical implementation of w′(h) which respects that w′(h1) < w′(h2) for h1 < h2 and is
still a continuous function. In this approach the support points for h are now in the
center of two former supports points (for which the discrete derivative was taken) and
also a slight renormalization was applied to assure that the interpolated piecewise lin-

ear function satisfies numerically
∫ 1

0
w′(h)dh = 1, a property which is very important

for the reconstruction procedure.
Using this particular implementation of w′(h), we have applied the above recon-

struction procedure to all available data sets. Typically, the obtained reconstructed
spectra initially increase slowly (linearly, with a possible quadratic correction) but
at some critical value of xc = mc/N ≈ 0.7-0.9 the increase becomes significantly
stronger. Beyond this critical value the precise form of the obtained spectrum depends
rather strongly on the chosen interpolation method and the obtained values of Em

are not very reliable. This corresponds to the regime of the Lorenz curve with h close
to 1 where both w′(h) and w′′(h) may be very large and difficult to obtain with high
precision by interpolation.
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Fig. A.13 Rescaled reconstructed spectrum Em/B for the data of Hong Kong 2025 (red data
points) versus rescaled level number x = m/N . The blue curve shows the curve Em/B = C (eax − 1)
with C = 0.00160± 0.00004 and a = 6.83± 0.03 obtained from a fit in the interval x ∈ [0, 0.9]. The
value of a = 6.83 is used in Fig. I.11 for the blue curve of the RJE model.
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Globally, the fit Em = C(ea(m/N)−1) works rather well at least for some reasonable
subinterval. For each data set, we perform two fits of this function for the intervals
x ∈ [0, 0.7] and x ∈ [0, 0.9] that provides two interesting values of a. We inject these
two values of the parameter a in the RJE model and determined which a value gives
a better agreement for the Lorenz curve (the value of ε is determined as usual by
matching the Gini coefficient to be identical between initial Lorenz curve and the
model curve). Figs. I.7—I.11 show the resulting RJE curves for 5 of our data sets,
already discussed in the previous section, with a very good agreement of the RJE
model at the optimal fitted values of a.

In Fig. A.13, we show as illustration one example of an reconstructed spectrum for
the data set of the stock market Hong Kong 2025 using the value N = 2683 and the
piecewise linear derivative for w′(h). The number N = 2683 represents the number of
companies used in the Hong Kong SE data but the precise choice of this value is not
very important and the reconstruction procedure works also nicely for N = 1000 or
N = 10000 for this example. In this case, the shown fit Em/B = C (eax − 1) works
quite well for the larger interval x ∈ [0, 0.9] and the resulting value of a = 6.83 provides
a nearly perfect Lorenz curve of the RJE model.

We mention that the bandwidth B of the reconstructed spectrum shown in
Fig. A.13 is B = 566.6 and it corresponds to the initial choice E = 1 to fix the
global energy scale such that the rescaled energy of the reconstructed spectrum is
εrc = 1/B ≈ 0.001765. The value of εRJE for the fitted blue curve is slightly modified
due to a modified bandwidth of the latter: εRJE ≈ εrc/[C (ea − 1)] = 0.001193 which
compares to the value ε = 0.0008381 given in the caption of Fig. I.11 obtained by
matching the Gini coefficient. The slightly different value for ε is due to the matching
of the Gini coefficient and the fact that the fit is far from perfect. Furthermore, also
the data points for x > 0.9 are not very reliable.

However, here we do not want to enter deeply in such details and we use this
reconstruction procedure more as a tool to determine and justify optimal values of
a for the RJE model. Globally this procedure is very sensitive to technical details
and parameter choices which give potentially rather different spectra (for x close to
1 beyond a certain critical value xc) but which all reproduce afterwards matching
Lorenz curves to the initial data with good accuracy.

Finally, we note that instead of the above reconstruction procedure it is also pos-
sible simply to fit the value of parameter a in the spectrum Em of Eq.(I.2) in such
a way that the Lorenz curve of the RJE model is closet to the real Lorenz curve
which is done by minimizing a suitable metric to measure the distance between two
curves (parameter ε is fixed as usually to match Gini coefficient). We checked that
the obtained a values by minimizing different variants of such metrics are rather close
to those obtained from the reconstruction procedure. Thus both approaches allows to
obtain very good agreement between the model and real Lorenz curves. The advan-
tage of the reconstruction procedure is related to a more physical understanding of
the origins of spectrum Em.
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Appendix B Additional material for Part II

B.1 Netscience network
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Fig. B.1 Color plot of the eigenvectors ϕ
(m)
n of the matrix H (size 379 × 379) for the netscience

network at κ = 0. The values of the color bar correspond to |ϕ(m)
n |2 at a certain position (x =

Km(n), y = L(m)) in the grid of the color plot. Each row shows a given eigenvector ordered with

decreasing values of |ϕ(m)
n | in the node index n (from left to right) and therefore the x-axis corresponds

to the ordering index Km(n) = 1, . . . , 379 such that |ϕ(m)
n | > |ϕ(m)

ñ | for Km(n) < Km(ñ) (This
index vector is different for each eigenmode m). For each such vector the support length l(m) =

number of nodes n with |ϕ(m)
n | > 10−12 has been computed and the vectors have been ordred with

decreasing values of l(m) (bottom to top; ordering for identical l(m) values is arbitrary) and the y-axis
corresponds therefore to the ordering index L(m) such L(m) < L(m̃) for l(m) > l(m̃) (lowest L(m)
values correspond to the bottom rows). The tics indicate integer multiples of 100 for both index values
Km and L. There are 104 out of 379 eigenvectors with a support length l(m) significantly smaller
than N = 379 visible at the top 104 rows (other eigenvectors have either l(m) = N or l(m) ≈ N
due to the limited numerical precison). The eigenvalues Em of the 104 modes with small l(m) values
correspond to nice fractional values (with denominator ≤ 420) and the majority of them correspond
to the degenerate plateau values visible in the red curves in the bottom panels of Figure II.1. The

scale of the color bar is strongly non-linear to enhance small values of |ϕ(m)
n |2.

In Fig. B.1, we show a color plot of the eigenvectors at κ = 0. Each row represents
an eigenvector with components in node space ordered horizontally according to the

rank index Km of this vector (i.e. with decreasing values of |ϕ(m)
n | with n for fixed m)
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and the eigenvectors themselves are ordered vertically with decreasing values of their
support length l(m) (from bottom to top).

The modes with limited support length l(m) ≤ 48 have energies Em = p/q with
nice rational values (maximal q = 420 and other q ≤ 12). We mention a few examples,
such as the mode E25 = −25/12 with l(25) = ξIPR = 2 localized on the two nodes Kim,

D. and Goh and with values ϕ
(25)
n = ±1/

√
2 for these two nodes. Another example is

the pair of two modes E66 = E67 = −389/420 with l(66) = l(67) = 3 and ξIPR = 2
for both. These two modes are localized on the three nodes Rajagopalan, Raghavan,
Tomkins.
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Fig. B.2 ξIPR(Em) of eigenvector ϕ(m) of H for the case of the netscience network with κ = 0 and
κ = 0.5 versus index m (energy Em) in left (right) panel.

Fig. B.2 shows the IPR of eigenvectors for the netscience network at κ = 0 and
κ = 0.5 versus mode index m and also mode energy Em. The IPR values at κ = 0.5
are roughly a factor 10 larger than the values at κ = 0 and the maximal value of
the IPR is 45.98 (94.94) for κ = 0 (κ = 0.5). However, the boundary modes have
essentially the same (small) IPR values since due to the large energy gaps these modes
are in the quantum perturbative regime even at κ = 0.5 with coupling matrix elements
∼ κ/

√
N = 0.5/

√
379 ≈ 1/40 which is much smaller than the boundary energy gaps.

Fig. B.3 shows the Lyapunov exponent λm for selected initial modes m of the
netscience network at κ = 0.5 and β = 0.05, 0.2, 10. The quantity ∥∆ψ(t)∥ mentionned
in the figure caption is the vector norm of the difference ∆ψ = ψ2(t) − ψ1(t) where
ψ1(t) and ψ2(t) are both solutions of (II.2) with different but close initial conditions
at the initial mode ψ1(t = 0) ≈ ψ2(t = 0) ≈ ϕ(m). In this case the Lyapunov exponent
is defined by λm = limt→∞(ln ∥∆ψ(t)∥)/t and the data in Fig. B.3 has been extracted
by the fit ln ∥∆ψ(t)∥ = a+ b ln(t) + λm t.

The modes at β = 10 are clearly in the chaotic regime while boundary modes at
β = 0.2 and (most) modes at β = 0.05 are in the KAM regime with much smaller
(numerical) Lyapunov exponent (we expect that for these states Lyapunov exponents
become zero in the limit t→ ∞).

Fig. B.4 presents coarse-grained color plots in the m-E plane of the theoretical RJ-
values ρm = T/(Em − µ) where T and µ are determined from the implicit equations
(II.16). The horizontal x-axis corresponds tom/N ∈]0, 1] and the vertical y-axis to the
rescaled energy ε = (E − E1)/(EN − E1) ∈ [0, 1]. The left (right) panel corresponds
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Fig. B.3 Lyapunov exponent λm dependence on Em with m being the index of the initial state for
the netscience network with κ = 0.5 and N = 379. λm has been determined from the fit ln ∥∆ψ(t)∥ =
a + b ln(t) + λm t. Shown are data from 4 data sets: with 32 selected modes at t = 222 for β = 0.05
(red + symbol), β = 0.2 (green × symbol), β = 10 (blue ∗ symbol) and also with 16 selected modes
at t = 224 for β = 10 (pink □ symbol) obtained from a different computation.

to the energy spectrum of H at κ = 0.5 for the netscience network with N = 379
(politician network with N = 5908). One clearly sees a condensation on the modes
with minimal m ∼ 1 (maximal m ≈ N) at E ≈ E1 (E ≈ EN ) while for intermediate
energies the distribution of ρm is more uniform in m.

Fig. B.5 shows the dependence of T and µ on E obtained by solving the implicit
equations (II.16) with ρm = T/(Em − µ). Both curves show the usual behavior with
T > 0 (T < 0) and µ < E1 (µ > EN ) for E < 0 (E > 0) with T → 0 for E → E1

or E → EN . Furthermore, for E → 0 we have |T | → ∞ and |µ| ∼ NT → ∞
corresponding to uniform ρm → 1/N .

It is not very difficult to show that in the limit of large |µ| the chemical potential
is given by the equation

µ ≈ E +

∑
m(E − Em)2∑
m(E − Em)

. (B.1)

Here the denominator has the same sign as E − Ec where Ec = (
∑

mEm)/N =
Tr(H)/N ∼ κ/N ≈ 0 is the critical energy (“energy center of mass”) at which the
chemical potential and the temperature switch their sign. Here the trace of H is
entirely given by the trace of the GOE perturbation κHGOE since Tr(A) = 0 (the
absence of self links implies Ann = 0).
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Fig. B.4 Color plot of the coarse-grained thermalized occupation probabilities ρm = T/(Em−µ) =
(E − µ)/[N(Em − µ)] for the netscience network (politician network) at κ = 0.5 in left (right) panel.
The x-axis corresponds to the fraction m/N ∈ [0, 1] with m = 1, . . . , N being the index of energies
Em (left to right) and the y-axis corresponds to the rescaled energy ε = (E−E1)/(EN −E1) (top to
bottom for increasing values). The tics indicate integer multiples of 0.1 for both quantities. The color
values shown in the color bar correspond to the value of ρm averaged over intervals of size 1/20 (for
m/N on the x-axis) and computed for 21 values ε = i/20, i = 0, 1, . . . , 20 (for the y-axis; the minimal
value ε = 0 has been slightly enhanced and the maximal value ε = 1 has been slightly reduced to have
a stable computation of the thermalized µ-value). To increase visibility of small values a non-linear
color bar scale has been chosen (e.g. green color corresponds to 1/16).
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Fig. B.5 The left (right) panel shows the temperature T (the chemical potential µ) versus the
energy E for the netscience network at κ = 0.5. The dashed black lines in the right panel correspond
to the values of E1 = −6.3829 and EN = 9.7256 showing that either µ < E1 (for T > 0) or µ > EN

(for T < 0).

60



Note that Figs. B.4 and B.5, which simply provide a generic illustration of the basic
properties of RJ-thermalization, are rather similar to Figs. A.2 and A.1 of Appendix
A obtained from a different simple uniform spectrum Em = m/N .
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Fig. B.6 Entropy Sq versus energy E for the netscience network with κ = 0, β = 10, N = 379.
Shown are 64 selected modes at t = 224 (red + symbols) and t = 220 (green × symbols). The blue
line shows the energy dependence of the theoretial thermalized entropy. Sq has been computed by
Equation (II.17) using ρm values obtained as the time average ρm = ⟨|Cm(t̃)|2⟩ for t/2 < t̃ ≤ t (for
t = 224 or t = 220 according to the selected data in this figure).

For the case of the netscience network with κ = 0 and β = 10, we show in Fig. B.6
the energy dependence of Sq. Here the agreement with the theoretical curve is similar
as for the case with κ = 0.5 but for this longer iteration time scales t = 224 are
required.

In Fig. B.7, we present two examples of nicely thermalized states for the netscience
network with κ = 0.5 and β = 4, Due to the smaller coupling value of β the fluctuations
at the shorther time t = 222 are stronger than for similar states at β = 10.

Fig. B.8 shows some results for the intial condition localized on the nodes of
Barabasi or Newman (top two PageRank nodes for the netscience network). In its
first two top panels we see the time dependence of Sq(t) and SB(t)/N for both cases
and the two values β = 4 and β = 10. All eight curves saturate to the corresponding
theoretical thermalized entropy values which are obtained from the usual value for
E = ⟨E⟩ = ∑

mEmρm(t = 224) to determine T and µ and with the numerical final
values of ρm(t = 224). For the case β = 4 the onset of thermalization is somewhat
delayed in the initial phase with smaller entropy values for t < 214 (in comparison to
the case β = 10). For such states the conserved energy in (II.3) is given by the simple
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Fig. B.7 As Figure II.3 for the netscience network with κ = 0.5, β = 4, N = 379 and the two initial
modes m0 = 8, 54. The blue curve shows the RJ theoretical curve ρRJ(E) = T/(E − µ). The values
of T , µ and ⟨E⟩ for the 2 initial modes m0 = 8, 54 are T = 0.008006, 0.01461, µ = −6.4,−6.574 and
⟨E⟩ = −3.366,−1.038.

formula E = H = Hn0,n0 + β/2 ≈ β/2 since Hn0,n0 ∼ 1/
√
N (absence of self links

with An0,n0 = 0 and small diagonal matrix element from the GOE perturbation).
The 6 panels in the bottom three rows of Fig. B.8 show, in the same style as

Fig. II.3, for different states the dependence of ρm on Em for the largest iterations
times t = 224 (β = 10, 4) or t = 225 (β = 1) (red + symbols) and at a shorter
time t/100 (green × symbols). Furthermore, each panel also presents the theoretical
curve ρRJ(Em) = T/(Em − µ) (blue line) where T and µ are obtained by solving the
constraints (II.16) at E = ⟨E⟩ =

∑
mEmρm(t) for the numerical data of ρm(t) at

the largest available value of t. The obtained values of T , µ and ⟨E⟩ for the 3 cases
β = 10, 4, 1 of Barabasi are T = −0.01322,−0.02075,−0.02822, µ = 9.754, 9.853, 11.2
and ⟨E⟩ = 4.744, 1.99, 0.5012. For Newman these values (at same β-order) are T =
−0.01292,−0.02074,−0.02811, µ = 9.753, 9.853, 11.16 and ⟨E⟩ = 4.855, 1.991, 0.5069.
The negative values of T are coherent with the positive energy values above the critical
value Ec ≈ 0 for the transition from positive to negative T (see also Eq. (B.1) and the
discussion of Fig. B.4 above).

From the physical point of view, we see that globally for all cases the states ther-
malize well to the theoretical curve for (nearly) all values ρm. The data points for the
shorter time value t/100 show stronger fluctuations as expected and for β = 1 the
quality of convergence is also a bit reduced, probably larger iterations times are still
needed here.

B.2 Politician network

Fig. B.9, shows the IPR values of eigenmodes for the politician network at κ = 0 and
κ = 0.5 (in the same style as Fig. B.2). For a significant number of boundary modes
the IPR is very small with sames values between κ = 0 and κ = 0.5. Due to the large
boundary energy gaps the states are essentially the same for both κ values. Modes in
the bulk have a quite large distribution of IPR values between localized states (IPR
∼ 10) and maximal values IRP ∼ 1200 (for both κ values). There is also a signifiant
reduction of typical IPR values for energies Em ≈ 0 by a factor 3 (2) for κ = 0
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Fig. B.8 Results for the netscience network with κ = 0.5 and two initial states localized either on
the node of Barbasi or Newman. Top panels show the time dependence of Sq and SB/N for β = 4
(left) and β = 10 (right). The two top (bottom) curves correspond to SB(t)/N (Sq(t)) and dashed
lines indicate the theoretical thermalized values for each case. The 6 bottom panels show ρm versus
mode energy Em for both initial conditions and β = 10, 4 (t = 222, 224) and β = 1 (t = 223, 225). See
text and captions of Figs. II.3-II.5 for more technical details.
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Fig. B.9 ξIPR(Em) of eigenvector ϕ(m) of H for the case of the politician network with κ = 0 and
κ = 0.5 versus index m (energy Em) in left (right) panel.

(κ = 0.5). Furthermore, the probability (density of data points) to find very small IPR
values (for center modes) is strongly reduced for κ = 0.5 in comparison to κ = 0.
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Fig. B.10 Entropy Sq (SB/N) versus energy E in left (right) panel for some initial modes of
the politician network with κ = 0.5, N = 5908, β = 10. For each case three data points for the
three longest time values are shown to illustrate the thermalization. The first four modes (m0 =
8, 16, 32, 128) were computed with the time step dt = 1/32 for the symplectic integrator up to t = 219.
For other modes Sq and SB were computed with dt = 1/16 (for 128 < m0 ≤ 600) or dt = 0.1
(for 600 < m0) both up to t = 220. The blue line shows the energy dependence of the theoretical
thermalized entropy for both entropy quantities.

In Fig. B.10, we show for a selected number of modes with initial energies in the
interval −14 < Em0 < 0 the dependence of both entropy values Sq and SB/N on the
final (linear) energy E = ⟨E⟩ =

∑
mEmρm (which is typically very close to Em0).

For each data point the values for three successive time values t = 2l−2, 2l−1, 2l (with
either l = 19 for m0 ≤ 128 or l = 20 for m0 > 128) are shown indicating a clear
tendency for convergence to the theoretical curve. For three of the four modes with
m0 ≤ 128 and Sq the last data points are actually already very close to the theoretical
curve and the remaining mode at E ≈ −12 shows a strong increase of Sq between the
last two time values indicating a potential convergence at later times.
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B.3 Entropy in the RMT model
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Fig. B.11 Time dependence of Sq for the case of a GOE matrix (N = 64, semicircle radius 1) using
the data of [17]. The full lines correspond to Sq(t) for the cases of Figure S1 of [17] and the dotted
lines indicate the theoretical thermalized RJ values (using the color for the cases with β = 1). This
figures is very similar to Figure S1 of [17]. It is shown here for convenience.

Figs. B.11 and B.12 show the time dependence of Sq(t) and SB(t)/N respectively
for a pure GOE matrix (corresponding to A = 1 and κ = 1 for N = 64) for the
cases already shown in Fig. S1 of [17] which is actually very similar to Fig. B.11 (the
latter shows more theoretical values as well). For Sq we have a nonmonotonic time
dependence for the initial states at m0 = 2, 3 at intermediate times. However, at large
times these modes are well thermalized and close to the RJ condensate phase. For SB

the time dependence is always monotonic in the chaotic regime.

B.4 Wealth inequality and Lorenz curves

Fig. B.13 shows the density of state for the netscience network and a set of Lorenz
curves for the case of a very strong value of κ. Now, the density of states is rather close
to the semicercle law with radius κ = 6 and the behavior for h > h0 (h0 = maximal
value at which w(h) = 0) corresponds more to a smooth curve instead of a straight
line as for the case κ = 0.5 shown Fig. II.8.
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[29] H. Fröhlich, Long-range coherence and energy storage in biological systems, Int.
J. Quantum Chemistry II, 641 (1968).

[30] S. Dorogovtsev, Lectures in Complex Networks, Oxford University Press, UK
(2010).

[31] M. Newman, Networks, Oxford University Press, UK (2018).

68



[32] T. Piketty, Capital in the Twenty-First Century, Belknap Press of Harvard
University Press, Cambridge, MA (2014).

[33] L. Chancel, T. Piketty, E. Saez, G. Zucman et al. World Inequality Report 2022,
World Inequality Lab https://wir2022.wid.world (Accessed on 8 June 2025).

[34] B. Roach, P. J. Rajkanikar, N. Goodwin, and J.Harris, Social and Economic
Inequality, An ECI Teaching Module on Social and Environmental Issues, Eco-
nomics in Context Initiative, Global Development Policy Center, Boston Univer-
sity (2023), https://www.bu.edu/eci/files/2023/05/Inequality-Module-2023.pdf
(Accessed 8 June 2025).

[35] M.O. Lorenz, Methods of measuring the concentration of wealth, Quarterly Publi-
cations of the American Statistical Association, 9, (New Series, No. 70), 209–219
(1905); https://doi.org/10.1080/15225437.1905.10503443 (Accessed 8 June 2025).

[36] C. Gini, Sulla misura della concentrazione e della variabilit‘a dei caratteri, Atti
del Reale Istituto Veneto di Scienze, Lettere ed Arti, 73, 1203–1248 (1914);
English translation in Metron - Int. J. Statisrics, 63, 3–38 (2005); https://www.
dss.uniroma1.it/RePec/mtn/articoli/2005-1-1.pdf (Accessed 8 June 2025).

[37] Wikipedia, List of sovereign states by wealth inequality, (Accessed 8 June 2025).

[38] E.M. Lifshitz and L.P. Pitaevskii, Physical kinetics, Pergamon Press N.Y. (1995).

[39] J. Angle, The surplus theory of social stratification and the size distribution of
personal Wealth, Soc. Forces 65, 293 (1986).

[40] S. Ispolatov, P. L. Krapivsky, and S. Redner, Wealth distributions in asset
exchange models, Eur. Phys. J. B. 2, 267 (1998).

[41] A. Dragulescu, and V. Yakovenko, Statistical mechanics of money, Eur. Phys. J.
B. 17, 723 (2000).

[42] J.-P. Bouchaud, and M. Mezard, Wealth condensation in a simple model of
economy, Physica A 282, 536 (2000).

[43] V. M. Yakovenko, and J. B. Rosser, Colloquium: Statistical mechanics of money,
wealth, and income, Rev. Mod. Phys. 81, 1703 (2009).

[44] B. K. Chakrabarti, A. Chakraborti, S.R. Chakravarty, and A. Chatterjee, Econo-
physics of income and wealth distributions, Cambridge University Press, N.Y.
(2013).

[45] B. M. Boghosian, A. Devitt-Lee, M. Johnson, J. Li, J. A. Marcq, and H. Wang,
Oligarchy as a phase transition: the effect of wealth-attained advantage in a
Fokker–Planck description of asset exchange, Physica A 476, 15 (2017).

69

https://wir2022.wid.world
https://www.bu.edu/eci/files/2023/05/Inequality-Module-2023.pdf
https://doi.org/10.1080/15225437.1905.10503443
https://www.dss.uniroma1.it/RePec/mtn/articoli/2005-1-1.pdf
https://www.dss.uniroma1.it/RePec/mtn/articoli/2005-1-1.pdf


[46] B. M. Boghosian, The inescapable casino, Sci. American, November, 71 (2019).

[47] N. V. Von Bibow, and J.L. Perotti, Study of the Extended Yard Sale model
of wealth distribution on Erdos-Renyi random networks, arXiv:2505.04032[cond-
mat.stat-mech] (2025).

[48] K. Krupa, A. Tonello, A. Barthelemy, B.M. Shalaby, A. Bendahmane, G. Millot
and S. Wabnitz, Observation of geometric parametric instability induced by the
periodic spatial self-imaging of multimode waves, Phys. Rev. Lett. 116, 183901
(2016).

[49] C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, Condensation
of classical nonlinear waves, Phys. Rev. Lett. 95, 263901 (2005).

[50] K. Baudin, A. Fusaro, K. Krupa, J. Garnier, S. Rica, G. Millot, and A. Picozzi,
Classical Rayleigh-Jeans condensation of light waves: observation and thermody-
namic characterization, Phys. Rev. Lett. 125, 244101 (2020).

[51] E.V. Podivilov, F. Mangini, O.S. Sidelnikov, M. Ferraro, M. Gervaziev,
D.S. Kharenko, M. Zitelli, M.P. Fedoruk, S.A Babin, and S. Wabnitz, Thermal-
ization of orbital angular momentum beams in multimode optical fibers, Phys.
Rev. Lett. 128, 243901 (2022).

[52] H. Pourbeyram, P. Sidorenko, F.O. Wu, N. Bender, L. Wright,
D.N. Christodoulides, and F. Wise, Direct observations of thermalization to a
Rayleigh–Jeans distribution in multimode optical fibres, Nature Phys. 18, 685
(2022).

[53] K. Baudi, J. Garnier, A. Fusaro, N. Berti, C. Michel, K. Krupa, G. Millot. and
A. Picozzi, Observation of light thermalization to negative-temperature Rayleigh-
Jeans equilibrium states in multimode optical fibers, Phys. Rev. Lett. 130, 063801
(2023).

[54] A. Aladangady, and A. Forde, Wealth Inequality and the Racial Wealth
Gap, FEDS Notes Oct 22 (2021); https://www.federalreserve.gov/econres/notes/
feds-notes/2021-index.htm, (Accessed 8 June 2025).

[55] E. Chamberlain, Wealth in Great Britain Wave 4. Chapter 2: Total
wealth, Wealth in Great Britain, 2012 to 2014, 18 Dec 2015; https://www.
ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/
incomeandwealth/compendium/wealthingreatbritainwave4/2012to2014/
chapter2totalwealthwealthingreatbritain2012to2014 (Accessed 8 June 2025).

[56] F. Cowell, B. Nolan, J.Olivera, and Ph. Van Kerm, Wealth, Top Incomes and
Inequality, p.175, in National Wealth, Eds. K. Hamilton, and C. Herburn, Oxford
Univ. Press, Oxford UK (2017),

70

https://www.federalreserve.gov/econres/notes/feds-notes/2021-index.htm
https://www.federalreserve.gov/econres/notes/feds-notes/2021-index.htm
https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/compendium/wealthingreatbritainwave4/2012to2014/chapter2totalwealthwealthingreatbritain2012to2014
https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/compendium/wealthingreatbritainwave4/2012to2014/chapter2totalwealthwealthingreatbritain2012to2014
https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/compendium/wealthingreatbritainwave4/2012to2014/chapter2totalwealthwealthingreatbritain2012to2014
https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/compendium/wealthingreatbritainwave4/2012to2014/chapter2totalwealthwealthingreatbritain2012to2014


[57] Holdings SPDR S&P500 ETF Trust of June 16 (2025); https://www.ssga.com/
us/en/intermediary/etfs/spdr-sp-500-etf-trust-spy

[58] London stock exchange data of capitalization of companies, December 31
(2024), https://www.londonstockexchange.com/reports?trkcode=lsehomstats&
tab=issuers (Accessed 19 June 2025).

[59] Hong Kong stock exchange data of capitalization of companies, June
19 (2025), https://www.hkex.com.hk/Market-Data/Securities-Prices/Equities?
sc lang=en (Accessed 19 June 2025).

[60] M. E. J. Newman, Network data, http://www.umich.edu/∼mejn/netdata,
(Accessed 12 September 2025).

[61] M. E. J. Newman, Scientific collaboration networks. II. Shortest paths, weighted
networks, and centrality, Phys. Rev. E 64, 016132 (2001).

[62] M. E. J. Newman, Finding community structure in networks using the eigenvec-
tors of matrices, Phys. Rev. E 74, 036104 (2006).

[63] M. E. J. Newman, Community Centrality, http://www.umich.edu/∼mejn/
centrality (Accessed 12 September 2025).

[64] B. Rozemberczki, R. Davies, R. Sarkar and C. Sutton, Graph Embedding with
Self Clustering, arXiv:1802.03997 (2018); GEMSEC: graph embedding with self
clustering, ASONAM ’19: Proceedings of the 2019 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining, page 65, (2020),
https://doi.org/10.1145/3341161.3342890

[65] L. Backstrom, P. Boldi, M. Rosa, J. Ugander and S. Vigna, Four degrees of
separation, WebSci 2012: Proceedings of the 4th Annual ACM Web Science Conf.,
pafe 33, https://doi.org/10.1145/2380718.2380723

[66] E. Forest and R.D. Ruth, Fourth-order symplectic integration. Physica D. 43:
105 (1990); https://cloudfront.escholarship.org/dist/prd/content/qt35h9v2k9/
qt35h9v2k9.pdf (Accessed Dec 2022).

[67] R.I. McLachlan and G.R.W. Quispel, Splitting methods, Acta Numerica 11, 341
- 434 (2002).

[68] S. MacNamara and G. Strang, Operator splitting/ In: R. Glowinski, S. Osher,
W. Yin (Eds) Splitting methods in Communication, Imaging, Science, and Engi-
neering, Scientific Computation. Springer, Cham. pp.95-114 (2016); https://doi.
org/10.1007/978-3-319-41589-5 3

[69] Ermann L., Frahm K. M. and Shepelyansky D. L., Google matrix analysis of
directed networks, Rev. Mod. Phys. 87 (2015) 1261.

71

https://www.ssga.com/us/en/intermediary/etfs/spdr-sp-500-etf-trust-spy
https://www.ssga.com/us/en/intermediary/etfs/spdr-sp-500-etf-trust-spy
https://www.londonstockexchange.com/reports?trkcode=lsehomstats&tab=issuers
https://www.londonstockexchange.com/reports?trkcode=lsehomstats&tab=issuers
https://www.hkex.com.hk/Market-Data/Securities-Prices/Equities?sc_lang=en
https://www.hkex.com.hk/Market-Data/Securities-Prices/Equities?sc_lang=en
http://www.umich.edu/~mejn/netdata
http://www.umich.edu/~mejn/centrality
http://www.umich.edu/~mejn/centrality
https://arxiv.org/abs/1802.03997
https://doi.org/10.1145/3341161.3342890
https://doi.org/10.1145/2380718.2380723
https://cloudfront.escholarship.org/dist/prd/content/qt35h9v2k9/qt35h9v2k9.pdf
https://cloudfront.escholarship.org/dist/prd/content/qt35h9v2k9/qt35h9v2k9.pdf
https://doi.org/10.1007/978-3-319-41589-5_3
https://doi.org/10.1007/978-3-319-41589-5_3


[70] F. Evers and A.D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).

[71] B.V. Chirikov and D.L. Shepelyanskii, Dynamics of some homogeneous models
of classical Yang-Mills fields, Sov. J. Nucl. Phys. 36(6), 908 (1982).

[72] M. Mulansky, K. Ahnert, A. Pikovsky and D.L. Shepelyansky, Strong and weak
chaos in weakly nonintegrable many-body Hamiltonian systems, J. Stat. Phys.
145, 1256 (2011).

72


	Introduction
	Part I: Wealth Thermalization Hypothesis
	Prologue I
	RJ thermalization and condensation
	RJ thermalization and universality
	Overview of wealth thermalization results

	Part II: Dynamical thermalization in social networks
	Prologue II
	Model description and numerical methods
	Theoretical elements of RJ thermalization
	Netscience network model
	Politician network model
	Entropy in the RMT model
	Wealth inequality and Lorenz curves
	Overview of social networks results

	Discussion and conclusion
	Acknowledgements

	Additional material for Part I
	General features of the thermalization in the RJS model
	Additional data
	Analytical results for RJS model
	Data for companies of stock exchange at New York, London, Hong Kong
	Spectral reconstruction procedure

	Additional material for Part II
	Netscience network
	Politician network
	Entropy in the RMT model
	Wealth inequality and Lorenz curves


