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Abstract. We study the process of opinion formation in an Ising social network of scientific collaborations.
The network is undirected. An Ising spin is associated with each network node being oriented up (red)
or down (blue). Certain nodes carry fixed, opposite opinions whose influence propagates over the other
spins, which are flipped according to the majority-influence opinion of neighbors of a given spin during
the asynchronous Monte Carlo process. The amplitude influence of each spin is self-consistently adapted,
and a flip occurs only if this majority influence exceeds a certain conviction threshold. All non-fixed spins
are initially randomly distributed, with half of them oriented up and half down. Such a system can be
viewed as a model of elite influence, coming from the fixed spins, on the opinions of the crowd of non-fixed
spins. We show that a phase transition occurs as the amplitude influence of the crowd spins increases: the
dominant opinion shifts from that of the elite nodes to a phase in which the crowd spins’ opinion becomes
dominant and the elite can no longer impose their views.

1 Introduction

Social networks now exert a significant influence on hu-
man society, and as a result, their properties are actively
investigated by the scientific community (see e.g., [1,2,3]).
Recently their impact has been argued to extend specifi-
cally to opinion formation and even to affect political elec-
tions [4,5]. This very problem of opinion formation in a
group of electors is actively investigated in the field of
sociophysics, using diverse models and methods (see e.g.
[6,7,8,9,10,11,12,13]). Usually in these studies there are
two competing opinions of electors, often modeled as net-
work nodes, governed by a local majority rule whereby an
elector’s opinion is determined by the majority opinion of
its linked neighbors. Thus, each node has red or blue color
(or an Ising spin up or down), and the system represents
an Ising network of spin halves with N nodes and a huge
space of Nconf = 2N configuration states (see e.g., [11]).
An opinion, or spin polarization, of nodes is determined by
an asynchronous Monte Carlo process in a system of spins
described by an Ising Hamiltonian on a network. A similar
Monte Carlo process is used in the models of associative
memory [14,15].

Recently it was proposed that such an opinion forma-
tion process can also describe a country’s preference to
trade in one currency or another (e.g. USD or hypotheti-
cal BRICS currency) [16]. An important new element in-
troduced in [16], and then extended in [17,18], is that the
opinion of certain network nodes is considered to be fixed
(spin always up or down) and not affected by opinions
of other nodes. In addition, in such an Ising Network of
Opinion Formation (INOF) model [17,18] it is assumed
that at the initial stage only fixed nodes have a given
fixed spin polarization, while all other nodes are white

(zero spin) thus producing no influence on the opinions
(spins) of other nodes. However, these white nodes are
getting their spin polarization up or down during the asyn-
chronous Monte Carlo process of opinion formation on the
Ising network. All the above studies have been done for
directed networks with the INOF approach of fixed and
white nodes applied to Wikipedia Ising Networks (WIN)
considering contests between different social concepts [17],
companies, political leaders and countries [18]. When we
consider a contest between two political leaders like Trump
and Putin in WIN, it is rather natural to assume that all
other nodes (Wikipedia articles) have no specific opinion
on these two figures at the initial stage of the Monte Carlo
process of INOF, so that they are considered as white
nodes. However, it may be important to understand the
influence of initial random opinions of non-fixed nodes on
the contest results. Beyond this, the INOF approach can
be applied to social networks, which in many cases are
undirected, such as Facebook. We note that the proper-
ties of the Ising model on complex networks were stud-
ied previously (see e.g. [19,20]), but the opinion formation
process was not studied there.

To this end, in this work we apply the INOF approach
to a social network of scientists studied by Newman [21,22]
with data sets from his database [23,24]. On the basis of
this undirected network we study the process and features
of opinion formation and analyze the effects of randomized
opinions of non-fixed nodes on this process.

The paper is organized as follows: In Section 2 we de-
scribe the data sets and the Generalized INOF (GINOF)
model; Section 3 presents the results, starting with the
original INOF model and then analyzing the phase tran-
sition in the GINOF model; a discussion of the results
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and conclusions are provided in Section 4. Certain data
sets are also available at [25].

2 Data sets and model description

For our studies we choose the social collaborative network
of N = 379 scientists (nodes), analyzed in [21,22], taken
from [23]. The network image is available in Fig. 8 at
[22] and in [24], where the network nodes are given with
the names of scientists. This is an undirected network
with weighted symmetric adjacency matrix Aij = Aji

with the number of links Nℓ = 1828; the weight of links
changes from a minimal amin = Aij = 0.125 to a maximal
amax = 4.225 value; there are no isolated communities
in this network. The average number of links per node
is κ = Nℓ/N ≈ 4.8. The effects of nonlinear perturba-
tion and dynamical thermalization in this network were
recently studied in [26]. The full list of network links and
node names is available at [23,24] and [25].

As in [26], we construct the Google matrix of the net-
work defined in a standard way [27,26] as Gij = αSij +
(1 − α)/N where Sij is the matrix of Markov transitions
obtained from Aij by normalizing to unity all matrix ele-
ments in each column. We use here the standard value of
damping factor α = 0.85. There are no dangling nodes in
this network. The PageRank vector Pi is the solution of
the equation GP = λP at λ = 1; its elements are positive
and give a probability to find a random surfer on a node i
[27]. By ordering all nodes by a decreasing order of Pi, we
obtain the PageRank index K changing from K = 1 at the
maximal P (K) to K = 379 at the minimal P (K). The top
10 PageRank nodes from K = 1 to 10 are: Barabasi, New-
man, Sole, Jeong, Pastorsatorras, Boccaletti, Vespignani,
Moreno, Kurths, Stauffer [26]. All links Aij and PageRank
indexes with names are available at [25].

The INOF procedure of opinion formation on Ising net-
works is described in detail in [18]. It assumes that there
is a group of fixed red nodes (spin σi = 1) and another
group of fixed blue nodes (spin σi = −1); all other nodes
are white (σi = 0) at the initial state but can change
their spins to ±1 during an asynchronous Monte Carlo
process. Compared to the INOF model [18], here we ex-
tend the condition of spin flip and the initial state of white
nodes. Thus, to all originally white nodes we attribute vote
power, or amplitude influence, determined by coefficients
Wi which characterize the level of an elector’s conviction
regarding the importance of the election and/or his inter-
est in elections. Initially, all white nodes have the same
Wi = W < 1. For fixed nodes we always have Wi = 1.
Also, all previously white nodes are randomly assigned
spins σi = 1 or σi = −1. Thus, for our network we have
188 red and 188 blue nodes with a random distribution
of colors (1 node remains white due to the odd number
of nodes) and there are also 2 fixed nodes with opposite
spins σ = ±1. With this initial configuration of all node
spins, the spin i flip condition is determined by accumu-
lated influence of the opinions of linked nodes j:

Fig. 1. Evolution of the fraction of red nodes fr for
Nr = 500 random pathway realisations. An initial con-
dition has one red fixed node (Newman) and one blue
fixed node (Barabasi); they remain fixed during an asyn-
chronous Monte Carlo evolution based on the relation
(1); all other nodes are initially white (σj = 0 in (1)).
Here x-axis represents time time τ of Monte Carlo pro-
cess, where each unit of τ marks one complete update of
all nodes/spins following the INOF/GINOF model (here
Zc = 0;W = 0); steady-state configurations are reached
at τ = 20 (or earlier).

Zi =
∑
j ̸=i

σjWjAij (1)

Here the sum runs over all j nodes linked to i with the
contribution of Aij links and vote power Wj . The flip con-
dition of spin i is defined as: for Zi > Zc its σi = 1 and
Wi = 1; for Zi < −Zc its σi = −1 and Wi = 1; for
|Zi| ≤ Zc its spin σi and coefficient Wi remain unchanged.
Thus the parameter Zc has the meaning of opinion con-
viction threshold (OCT) so that if the module of influence
of neighbors |Zi| is less than Zc, then the elector i does
not take into account their opinions. Also, if |Zi| > Zc,
then this elector i becomes convinced in the importance
of this election and its Wi = 1 for all future evolution.

This asynchronous Monte Carlo procedure of spin flips
is done for all spins (except fixed ones) without repetitions.
When the run over all spins is done, we arrive to the Monte
Carlo time τ = 1, after that the procedure goes to τ = 2
with another random pathway order of spin flips and so
on till τ = 20 when the process converges to a steady-
state. This corresponds to one pathway realisation for a
specific order of spin flips, then the process is repeated
for another pathway realization of spin flips order and the
average fractions of red fr and blue fb nodes (up/down
spins) are determined averaging over all pathway realisa-
tions and all nodes, which gives the total red fraction fr
(by construction fr+fb = 1 since there are no white nodes
in this network at the steady-state). Several examples of
τ−evolution of red fraction fr are shown in Fig. 1. We also
determine the average fraction of red nodes fr(i) for each
node i by averaging over Nr pathway realisations. We use
Nr = 104 and 105 in this work.
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We call the INOF model described above the Gener-
alized INOF model (GINOF). The main new elements of
GINOF are the absence of white nodes at the initial state
and their replacement by non-fixed nodes with a random
spin configuration with half of them spin up and the other
half spin down. However, now each spin of this configu-
ration has an amplitude influence Wi < 1 entering in the
influence score Zi at (1); initially all non-fixed nodes have
Wi = W < 1. A flip of spin i takes place only if its in-
fluence score exceeds the opinion conviction threshold Zc

with |Zi| > Zc, in which case its amplitude influence be-
comes Wi = 1 for all further iterations. Evidently, the
fixed nodes always have their W = 1 and their opinions
remain fixed.

In a certain sense, in the GINOF model the fixed nodes
can be viewed as two competing elite groups with opposite
opinions that try to convince the other members of society
(the crowd of electors) with random opinions (half red and
half blue). These electors, at the initial state of election
process have a weak amplitude influence on the score of
other electors (W < 1). During the election campaign,
modeled as a Monte Carlo process, the crowd nodes, whose
influence score exceeds the opinion conviction threshold
Zc, become active in the election process, acquiring the
maximal amplitude influence Wi = 1. For the case with
Wi = W = 0, the GINOF model is reduced to the original
INOF model studied in [18].

At first glance it seems that the network with N = 379
nodes considered here is much smaller compared to INOF
studies with N ∼ 106 reported in [18]. However, we point
out that even with N = 379, the number of configuration
states of the Ising network is huge, being Nconf = 2N .
Also, in the studies of other spin systems with an asyn-
chronous Monte Carlo process, a similar number of nodes
had been considered with N ≈ 400 − 1000 in [15], and
N ≈ 100 in [28,29].

The results for the GINOF model are presented in the
next Section. They show that there is a transition between
two phases: from a phase where the elite is able to impose
its opinion to a phase where the opinion of the elector
crowd is dominant over the elite opinion.

3 Results

3.1 INOF results with white nodes

We first present the results for the INOF model [17,18]
with initial state, where non-fixed nodes are white. As the
nodes with fixed opinions, we choose the node of Newman
(red, spin up) and the node of Barabasi (blue, spin down)
(see the network with names of scientists at [22,24]). We
use these two fixed nodes for all other network results of
this work. We point out that such an initial condition of
spin polarization also corresponds to the GINOF model at
Zx = 0,Wi = W = 0 as described in the previous section.

The histogram of the probability distribution p(fr) of
red fractions fr, obtained in the steady state (at τ = 20),
is shown in Fig. 2. It is obtained by averaging over Nr =
105 pathway realizations and over all N = 379 nodes.

Fig. 2. Probability distribution p(fr) of red node frac-
tions; the histogram of fr values is obtained with 50 cells
1 ≤ m ≤ 50 with normalization

∑
m fr(m) = 1, average

red value is < fr >= 0.638. Here there are Nr = 105

pathway realizations. Fixed nodes are Newman (red) and
Barabasi (blue), all other nodes are white (spin zero). Ini-
tially all non-fixed nodes are white for the INOF model [or
for the GINOF model at W = 0;Zc = 0]. Vertical dashed
line marks the average red value < fr >.

Fig. 3. Same as Fig. 2, but with initial state of node Sole
being blue; < fr >= 0.326

The total average fraction of red nodes is < fr >= 0.638,
favoring Newman. The average polarization of all spins is
µ0 =< fr > − < fb >= 2 < fr > −1 = 0.276.

It is interesting to note that the distribution p(fr) can
be significantly affected if in the initial state one replaces
a certain white node by initial node with spin up or down
(red or blue), which, however, is not fixed and can be
flipped during the Monte Carlo process. We show an ex-
ample of such a striking influence in Fig. 3, where the
initial white node Sole (see network with names at [24]) is
replaced by a blue node (all other nodes are the same as in
Fig. 2). We see that such a one-node change gives a com-
plete modification of the distribution p(fr) with the total
average probability < fr >= 0.326, favoring Barabasi.
The reason for such a strong effect is the fact that the
Erdös number NE [2] of Sole with respect to Newman is
NE = 1 (direct link between them) and also that the right
part of the whole network (see [24]) is linked with Newman
mainly via node Sole. In a certain sense, such a specific
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Fig. 4. Dependence of the red fraction of nodes fr(K) on
PageRank index K for the case of Fig. 2 (K is obtained
at damping factor α = 0.85).

Fig. 5. Same as Fig. 2 but for the GINOF model at
Zc = 0, W = 0.005; here Nr = 105.

placement of a blue node in the initial configuration of col-
ored nodes represents the Erdös barrage, which was also
shown to be very efficient in the case of fibrosis disease
propagation in the MetaCore network of protein-protein
interactions [30].

In the framework of the GINOF model, we obtain not
only the average value of red opinion < fr > but also the
average red opinion for each node fr(K), with K being
the PageRank index. The dependence fr(K) is shown in
Fig. 4 for the top 40 PageRank nodes with K = 1, · · · , 40
(all fr(K) values are available at [25]). For the top 10
PageRank nodes we have fr(K) values: 0.000, 1.000, 0.991,
0.000, 0.913, 0.913, 0.913, 0.913, 0.913, 0.954 for K =
1, · · · , 10 (see the corresponding 10 names above). Usually
the nodes with an Erdös number NE = 1 with respect to
Newman have fr = 1 or very close to 1 and similarly for
nodes at NE = 1 from Barabasi, with fr ≈ 0. However,
there are cases with NE = 5 and fr(K = 9) = 0.913
(Kurths), indicating that the competition of colors on this
social network has a rather complex structure. It is also
clear that there is no simple correlation between the top
PageRank index and the top values of the probability of
red or blue colors.

Fig. 6. Same as Fig. 2 but for the GINOF model with the
opinion conviction threshold Zc = 0.1 at W = 0.05 (top);
0.015 (middle); 0.005 (bottom), and respectively < fr >=
0.540; 0.689; 0.637 from top to bottom; here Nr = 105.

3.2 Effects of opinion conviction threshold in GINOF

One of the important elements of the INOF model is the
presence of white nodes in the initial state. This can be
considered as a natural choice for Wikipedia and some
other directed networks [17,18,30]. However, for the mod-
els of election votes on social networks it may be more con-
sistent to assume that the elite members of society have
fixed opposite opinions of the leaders of two parties while
the crowd of people (electors) have random red and blue
opinions with a low initial interest in elections, and hence
a low amplitude influence of their votes W < 1 (e.g. be-
cause only a small fraction of such electors participate in
an election). Thus, we suppose that the GINOF model is
more adequate for modeling elections on social networks.

At first glance, it seems that it is sufficient to consider
the GINOF model with the opinion conviction threshold
Zc = 0 taking a certain moderate value of vote ampli-
tude influence W . However, in the framework of GINOF
at Zc = 0 even a very small value W = 0.005 produces a
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complete change of the probability distribution compared
to the INOF case with white nodes or the GINOF case at
Zc = 0,W = 0 (see Fig. 5 and Fig. 2). The reason for this
drastic change in the distributions is that at Zc = 0, even
a very small value of W ≪ 1 leads to the process where the
crowd electors easily convince their neighbors to adopt a
red or blue opinion that rapidly increase their vote ampli-
tude influence up to W = 1; subsequently, the elite influ-
ence becomes weak and fr values are distributed around
fr ≈ 0.5, corresponding to the initial fractions of red and
blue opinions of non-fixed nodes (see Fig. 5). In this Fig. 5,
the elite influence is still present with < fr >= 0.575 but
we see that even such a small value as W = 0.005 gives a
qualitative change of the probability distribution p(fr) of
Fig. 2.

Thus, it is more adequate to introduce the opinion con-
viction threshold Zc > 0 as described in Section 2. We
choose Zc = 0.1 so that it is close to the minimum value
amin = 0.125 of the matrix elements of the weighted ad-
jacency matrix Aij (excluding zero elements). The evo-
lution of the probability distribution with an increase in
the vote amplitude influence W is shown in Fig. 6. For
small W ≤ 0.005, the initial distribution p(fr) at Fig. 2
remains practically unchanged; then, with an increase to
W = 0.015, it starts to be modified, and at W = 0.05, the
initial structure of Fig. 2 is completely washed out, with
p(fr) being close to that of Fig. 5.

The results of Fig. 7 are obtained for one specific initial
random configuration of up-down spins of non-fixed nodes,
but we have verified that the same results hold for other
random configurations.

3.3 Phase transition of opinion formation

The results of Fig. 6 indicate that there is a phase transi-
tion from the regime at W < Wcr, where the elite imposes
its opinion, to a regime at W > Wcr where the elite in-
fluence is weak and the elections are mainly affected by
votes from crowd electors. This transition is illustrated in
Fig. 7, which gives the critical vote amplitude influence
Wcr ≈ 0.022. We argue that this critical Wcr value is de-
termined by the condition that the votes of all neighbors
can exceed the opinion conviction threshold so that

Wcr ≈ Zc/κ. (2)

In our case, the average number of neighbors is κ = Nℓ/N ≈
4.8 so that for Zc = 0.1, which gives Wcr ≈ 0.021, which is
close to the above numerical value of Fig. 7. It is possible
that for networks with a high number of links per node
κ ≫ 1 a more accurate estimate may be required.

Thus, the obtained results for the GINOF model demon-
strate that in the presence of an opinion conviction thresh-
old, the elections on social networks are characterized by
a transition from a phase where elections are dominated
by the elite opinion to a phase dominated by the votes
of crowd electors. This transition takes place when the
vote amplitude influence W exceeds the critical value Wcr

given by the relation (2).

Fig. 7. Probability of red nodes p(fr) shown by color as
the function of x = fr (taken for 40 columns in the range
0 ≤ fr ≤ 1) and y = W (taken for 17 W equidistant values
in the range 0 ≤ W ≤ 0.08) for the case with the opinion
conviction threshold Zc = 0.1 in the GINOF model (there
are in total Ncell = 680 cells). Data are obtained with
Nr = 104 pathway realizations for each W value.

4 Discussion

In this work, we have generalized the model of opinion
formation on directed Ising networks (INOF) introduced
in [17,18]. This generalized GINOF model is applied to an
undirected social network of scientific collaboration stud-
ied by Newman in [21,22,23,24]. The new elements of the
GINOF model compared to the INOF one are as follows: in
addition to fixed-opinion nodes, considered as the society’s
elite, all non-fixed nodes are initialized with random opin-
ions—half red and half blue. Furthermore, these non-fixed
nodes initially have a weak amplitude influence (W ≪ 1),
which self-consistently increases during the asynchronous
Monte Carlo process that simulates an election campaign.
In addition, any change of opinion of a given spin node
(a spin flip) takes place only if the modulus of the major-
ity score of a given node’s neighbors’ opinions is above a
certain opinion conviction threshold.

We show that for the GINOF model of elections on
undirected social networks there is a phase transition from
elections dominated by the elite opinion to a phase where
the elite cannot affect the elections and the vote results
are determined by opinions of electors. We also demon-
strate that the Erdös barrage can significantly affect the
probability distribution of red and blue nodes.

At present, there are numerous undirected networks
functioning in human society and various scientific fields,
such as Facebook [31], VK [32] and the protein-protein in-
teraction network STRING [33]. We hope that the GINOF
model will find useful applications in these domains.
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