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Quantized escape and formation of edge channels at high Landau levels.
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We present nonlocal resistance measurements in an ultra high mobility two dimensional electron
gas. Our experiments show that even at weak magnetic fields classical guiding along edges leads to a
strong non local resistance on macroscopic distances. In this high Landau level regime the transport
along edges is dissipative and can be controlled by the amplitude of the voltage drop along the edge.
We report resonances in the nonlocal transport as a function of this voltage that are interpreted as

escape and formation of edge channels.

PACS numbers: 73.40.-¢,05.45.-a,72.20.My,73.50.Jt

The investigation of nonlocal effects in electrical trans-
port has provided new insights on non classical conduc-
tion mechanisms. These effects are responsible for the
appearance of a potential difference across a region of the
sample well outside of the classical current paths. They
have been reported in conductors that exhibit quantum
coherence [1-3], ballistic transport [4, 5] or in the quan-
tum Hall effect regime of a two dimensional electron gas
[6-8]. In the latter case the non local resistance appears
due to the formation of edge channels that are isolated
from the bulk and can carry the current to classically non
accessible regions. The propagation of edge channels in
this regime, has attracted a significant interest due to
their potential for quantum computation and interfer-
ometry [9-12]. Here, using non local measurements we
consider the opposite limit of high Landau levels where
the bulk density of states is gap-less. We show that in
this limit the exchange of charges between bulk and edge
states can be controlled by the voltage drop along the
edges, which leads to the formation of resonances in the
non linear transport that allows us to observe directly a
quantization of edge channels at high Landau levels.

We have investigated the magnetic field dependence of
nonlocal transport in a GaAs/Ga;_,Al,As 2DEG with
density n. ~ 3.3 x 10''ecm™2, mobility x4 ~ 107 cm?/Vs
corresponding to transport time 74 ~ 0.4 ns and a mean
free path of ¢, = 100 pym. The Hall bar with a chan-
nel width W = 100 ym was patterned using wet etching.
The non local resistance R,,; was measured in a geometry
illustrated on Fig. 1 where current was injected along the
y axis and the voltage was detected between two probes
distant by D, ~ 50 pm at a distance L > W from
the current injection points. The experimental data on
Fig. 2, show that R,; exhibits an unusual dependence on
magnetic field that in striking difference from p,, behav-
ior. Indeed, in contrast to p,.(B), Rn(B) is a strongly
asymmetric function of the magnetic field that almost
vanishes for negative magnetic fields and exhibits a sharp
onset at low positive magnetic fields reaching a value of
the order of p,, for B > 0.1 Tesla.
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FIG. 1: Sample geometry in our non local transport exper-
iments. Arrows indicate the geometrical parameters in our
experiment, the position of the source and drain electrodes
and the electrodes across which the nonlocal potential drop
Vi is measured. The nonlocal resistance is then defined as
Ry, = Vi /1. The closed black contour highlights the geome-
try of the domain used in our finite element simulations whose
results are displayed in the top panels for & = pgy/pes = —1
and o = —100, the color/gray-scale level indicate the poten-
tial values (source/drain potentials are fixed to £1); the po-
tential gradients are concentrated in the center of the sample.
The curves on the right represent the dispersion relation €, (k)
for edge states for a hard wall potential, k is the wavenumber
and [p is the magnetic length [13].

We have first checked whether this dependence can
be explained using the continuum theory of a Hall bar.
For this purpose, it is convenient to describe our sam-
ple as a 2DEG stripe, and to approximate the current
injection leads by point-like sources. This stripe can
be parametrized by complex numbers z = x + iy with
y € (0,W). The potential V(2) created by a current
source I positioned at © = xo along the top/bottom
edges then reads Vi(z) = Ri(z,20)I (plus/minus sign
for top/bottom edge) where:

Tz — T
Ryi(z,m0) = RP(QXP(W) exp( W 2

The function R, gives the potential created by an unit

J£1). (1)



current source located at the origin in the semi-infinite
2DEG half plane y > 0:

Ry (2) = P22 (log |2| + avarg 2) (2)

where we introduced the notation a = pgy/pes-

Subtracting these two expressions we find the potential
V =(R4(z,0)— R_(z,0))I created by a current between
point-like source and drain located opposite to each other
along the channel. Using these equations for the partic-
ular case of the potential generated along the top edge
z = W, far from the sources |z| > W, we find the fol-
lowing expression for the non local resistance:

2030 D L
Ry = % exp <—7;V) (3)

where D, is the spacing between the voltage probes and
L is their distance from the source along the channel
(for simplicity we have assumed D, < W). The geo-
metrical parameters in our experiment are L ~ 500 pm,
W ~ 130 pm and D, ~ 50 pm (see Fig. 1), which lead
to a numerical estimation R,; ~ 4.4 X 10*6pm. Thus
according to this point source model the nonlocal resis-
tance is proportional to p, with an exponentially small
damping factor which is independent of the magnetic
field. This conclusion however is in strong disagreement
with the experimentally observed dependence. In order
to check the validity of this analytical estimation in our
more complex experimental geometry, we have performed
a finite element simulation of the potential which (see
Fig. 1) confirms the exponential decay of the field ampli-
tudes away from the current polarization contacts.

Thus even at small magnetic fields (< 0.1 Tesla), our
experiments indicate a large non local resistance that
cannot be described within the continuum theory. Due
to the macroscopic dimensions of our sample (channel
width W ~ 130 pum) quantum coherence effects cannot
explain the origin of the non local resistance in our mea-
surements. An explanation relying solely on the forma-
tion of Landau levels is also unlikely since we observe
Ry ~ pze even at weak magnetic fields B ~ 0.1Tesla
where Shubnikov-de Haas oscillations are absent. We
thus propose guiding along sample edges as a possible
explanation for the observed behavior and attempt to in-
clude the physics of skipping orbits within the continuum
model. The formation of skipping orbits occurs due to
the bending of the Landau levels at the edge of the 2DEG
[13] which is represented on Fig. 2. It can lead to notice-
able effects even when individual Landau levels are not
resolved [14].

In presence of skipping orbits, electrons can propagate
along the edges before being injected into the bulk of
the 2DEG. This gives rise to edge currents I, I_ along
the top and bottom edges of the sample. Due to the
influence of disorder electrons will progressively detach
from the edges causing a progressive drop of the edge
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FIG. 2: Dependence of the non local resistance Ry; (as de-
fined in Fig. 1) and of the longitudinal resistance Rzq ~ pgs
on the magnetic field B. The longitudinal resistance R, is
almost a symmetric function of B whereas R,;(B) is strongly
asymmetric and almost vanishes for B < 0. The insets il-
lustrate typical classical electron orbits for a capture and an
escape event due to the parallel electric field E, for B > 0
where electrons propagate along the upper edge in the posi-
tive x direction. Capture occurs for V,,; < 0 and escape occurs
for V,,; > 0.

current in the direction of propagation of the electrons.
The drop in the current carried by the edges dI /dx and
dI_/dx creates a distributed current source for the bulk
of the 2DEG. The equations Egs. (1) derived within the
continuum model, allow us to find the potential created
by this distributed current source:

B dly(x) dl_(x)
V= —/R+(z,x):;xdx—/R(z,x)dxdxM)

We will assume that the edge currents are non zero only
in the direction of propagation of the electrons and decay
exponentially with a characteristic length-scale A, that
we will call the mean free path along edges, this leads to:

Li(x) = I(~x) = sple”*#*/ ey (spx) (5)

where sp = +1 for positive/negative magnetic fields and
7 is the Heaviside function. It is straightforward to check
that the total current — f dlgim(x)dm, injected into the bulk
2DEG from the top electrode is I. Assuming |a| > 1 and
combining Egs. (4),(5) we find the following approxima-
tion for the non local resistance:

Ry = Par?y)\K exp (7;\L> n(sp) (6)

€ €
Since this equation was derived assuming that electrons
were guided only in one direction, it predicts a vanishing
non local resistance for negative magnetic fields, in qual-
itative agreement with the experiment. We note however
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FIG. 3: Dependence of the differential non local resistance
dVpni/dI on magnetic field B and on the DC current ampli-
tude I for positive and negative magnetic fields (top/bottom
panels). The data at negative magnetic fields is displayed as
a function of —B and —I. Temperature was 1.2 K.

that for B < —0.5 Tesla, a finite non local resistance of
oscillating sign appears that is not expected within this
model. A possible origin of this effect, could be from
electrons that are recaptured by the edges after mov-
ing through the bulk of the samples and that are not
accounted for in the present model. At positive mag-
netic fields, this equation can be used to estimate A, from
the experimental data, which yields for B > 0.1 Tesla,
Ae >~ 90 um. Weak variations of A\, as a function of the
magnetic field (at most 10%) can explain the presence of
Shubnikov-de Haas oscillations in R,;(B). We note that
the obtained value A. is very close to mean free path in
the sample £, ~ 100 pm.

Even if the proposed model describes qualitatively the
observed non local resistance, it is based on a phenomeno-
logical assumption on the distribution of the edge cur-
rents I.(z), and a microscopic theory is needed to de-
termine self consistently, the potential inside the device
and the distribution of the edge currents. Several ap-
proaches have been proposed to treat the interaction be-
tween bulk and edge transport in the quantum limit at
low filling factors [6, 15-17] and do not directly apply
to the present case. Indeed, the propagation along edge
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FIG. 4: Dependence of the differential non local resistance
dVyi/dI (in arbitrary units) on the dimensionless quantity
z = |eVui|/hwe at magnetic fields between 0.3 and 0.9 Tesla,
a voltage offset was applied to fix the position of the first
resolved peak at x = 1. The period, of the oscillations is
plotted as a function of magnetic field in the inset for positive
and negative V,,;. It corresponds to the distance between
the first resolved peaks at magnetic fields where only a few
oscillations could be resolved.

channels has mainly been studied at an integer Quantum
Hall effect plateau, where the transport is non dissipative
R,, = 0 and a gap in the density of states opens in the
bulk [10, 12].

In our case, due to the low magnetic fields the gap is
not present and electrons can escape to the bulk or on the
contrary approach towards the edge. To look for signa-
tures of the escape and creation of edge channels, we have
measured the differential nonlocal resistance dV,,;/dI as
a function of magnetic field and DC excitation current
I. At positive magnetic fields, when the potential V,;
is positive electrons lose an energy |e|V,,; as they cross
the separation distance between the voltage probes, thus
some electrons will escape from the edge, because their
Larmor radius becomes smaller as they propagate. If the
potential V,,; is negative, electrons in the bulk will tend
to drift towards the edge under the action of the elec-
tric field E, = V,,;/D, and new edge channels may be
formed. The typical trajectories for a capture and an



escape event are represented on Fig. 2. We thus expect
that the transport properties along the edge will strongly
depend on the sign of V,;.

In agreement with our heuristic arguments, the ex-
perimental results displayed on Fig. 3 exhibit a striking
asymmetry between positive and negative currents. For
positive currents (at B > 0.5 Tesla) we measure positive
dVy/dI for I > 0 whereas for I < 0, dV,,;/dI drops and
exhibits sharp oscillations around zero. To ensure that
this difference is not related to some asymmetry of the
sample, we have also measured dV;,;/dI at negative mag-
netic fields. Except for the region around I = 0 where the
differential resistance almost vanishes in agreement with
our guiding model, we find that after the transforma-
tion I — —1I, results are very similar to those obtained
at B > 0. This observation confirms that our findings
cannot be attributed to a geometrical asymmetry which
would not depend on the sign of the magnetic field. To
understand, the origin the approximate symmetry ob-
served in Fig. 3, we note that a mirror symmetry around
the Hall bar channel changes, I — —I and B — —B
and inter-exchanges top and bottom edges. The non lo-
cal voltage across the bottom edge is therefore expected
to be V, (=B, —1I), the electrons emitted from the bot-
tom edge can then be recaptured at the top edge where
dV,;/dI is measured, giving a contribution proportional
to dVy/dI at B > 0 and current —I damped by the
propagation through the bulk. Hence from now on we
will focus on the analysis of the data obtained at B > 0.

The dependence on I displayed in Fig. 3, exhibits sev-
eral intriguing features. To gain an understanding on
their physical origin, we will concentrate on the region of
weak magnetic fields (B between 0.2 and 0.9 Tesla). In
this region dV;,; /dI exhibits smooth oscillations as a func-
tion of I, integrating on current we find the dependence
V() and display the differential resistance as a function
of eV, /hw, (see Fig. 4), where hw,. is the spacing between
Landau levels. After this transformation, the origin of
the oscillations becomes more conspicuous, at low mag-
netic fields an oscillation dV,,;/dI occurs whenever eV,
is changed by approximately fiw.. The dependence of the
period AV,,; on the magnetic field is displayed on the in-
set of Fig. 4. For V,;; < 0 where we expect formation of
new edge channels due to drift of bulk electrons towards
the edge, AV, is almost equal to Aw./e (we attribute
the 20% difference, to the aspect ratio between the dis-
tance between voltage probes and their width). However
for V,,; > 0, when electrons loose energy as they propa-
gate and edge channels progressively escape to the bulk,
the ratio eAV,,;/fiw. progressively increases with mag-
netic field. Our interpretation is that at V,; < 0, we are
probing the outermost edge channels that have an energy
spacing close to fuw., while for V,,; > 0 edge channels es-
cape progressively and only the inner channels with an
energy spacing larger than hw, are still propagating (see
level diagram in Fig. 1).

As the magnetic field increases the following trends can
be noted, for I > 0 the smooth oscillations develop into
sharp resonances at certain values of V,,;, while for neg-
ative currents dV,,;/dI start to change sign as function
of I rendering our analysis as a function of V,,; impossi-
ble. Experiments with a larger separation between volt-
age probes D, ~ 500 pm, did not display the described
oscillation and resonances, which suggests that their ob-
servation is possible only when D, is smaller than the
mean free path. In a control sample with wide voltage
probes of around 300 pm, a zero differential resistance
plateau was observed at I < 0, indicating that in this
regime the electrostatic potential oscillates as a function
of the distance along the edge and averages to zero when
voltage is measured on a large length scale [18]. A van-
ishing differential resistance has previously been reported
in local measurement geometries [19, 20] where bulk and
edge contributions are intermixed; our experiments show
that a zero differential resistance state can be created by
edge effects alone. Additional experimental and theoret-
ical investigations are needed to fully understand edge
transport at high Landau levels in the nonlinear regime.
It would also be interesting to perform similar experi-
ments under microwave irradiation where stabilization of
edge channels is expected [21] and where non local effects
can also be present [22].

To summarize, we have demonstrated through non
local resistance measurements that guiding effects can
strongly modify the potential distribution in ultra high
mobility samples even in the limit of weak magnetic fields
B < 0.1 Tesla. In the linear transport regime, our obser-
vations are consistent with a spreading of the distribu-
tion of the current source in the direction of propagation
along edges. As opposed to the quantum Hall regime
where transport in the bulk is suppressed, an exchange
between edge and bulk conduction paths takes place in
our experiments. We show that this exchange can be con-
trolled by the amplitude of the potential drop along the
edge. Additional edge channels can be formed if the elec-
trons gain energy as they propagate along the edge, in the
opposite case when electron loose energy the edge chan-
nels can escape to the bulk. We propose that oscillations
in non linear transport when the amplitude of the voltage
drop along the edge is changed by the spacing between
Landau levels are a signature of quantized escape and
formation of edge channels. Thus edge transport in the
limit of high filling factors allows to explore a rich phys-
ical regime that may have deep implications in our un-
derstanding of electron transport in ultra clean systems.
We thank M. Polianski and I.A. Dmitriev for fruitful dis-
cussions and acknowledge support from St. Catharine
college and Toshiba Research Europe.
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The supplementary materials describe the evolution of the non-linear transport in non-local ge-
ometry, from a series of resonances corresponding to escape and creation of edge channels (presented
in the main article) towards a zero differential resistance state when the voltage drop is measured on
length scales much larger than the mean free path. The magnetic field (B — —B) and DC current
(I — —1I) symmetry properties of the reported zero-differential state strongly supports its edge
transport origin. Finally we provide a more detailed derivation for the equations of the continuum

theory.

PACS numbers: 73.40.-¢,05.45.-a,72.20.My,73.50.Jt

I. NON LOCAL DIFFERENTIAL RESISTANCE
WITH DISTANT VOLTAGE PROBES

We have measured the non local differential resis-
tance (NLDR) dV,,;.r/dI in a geometry where the voltage
probes were separated by a distance D, = 500 pym larger
than the mean free path ¢, = 100 pym in the sample. The
experiment was performed on the same sample as in the
main text but with a different arrangement of voltage and
current probes, the current sources were located 500 pm
away from the voltage probes. In the linear response
regime the dependence of R,;.p = dVy,r/dI(I = 0) on
the magnetic field, was very similar to the data shown
on Fig. 2 (from main article). The quantity R,;.r was
finite for positive magnetic fields and almost vanished for
B < 0. The dependence of dV,,;,r/dI on the magnetic
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FIG. 1: Dependence of the non local differential resistance
dVpi,r/dI on magnetic field and DC current amplitude, this
quantity was measured in a geometry where the separa-
tion between voltage probes was D, ~ 500 pum on the
p = 107 cm? /Vs sample from the main text. Temperature
was T'=1.2 K.
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FIG. 2: Dependence of NLDR dV,;;./dI on magnetic field
and DC current amplitude for the g = 3 x 10 ¢cm?/Vs mo-
bility sample. NLDR was measured in the geometry sketched
in the top panel, temperature was 7' = 0.3 K.

field B and on the DC current amplitude [ is represented
on Fig. 1 for B > 0. The oscillating features as function
of the DC current I are not resolved contrarily to mea-
surements where D, was smaller than the mean free path
(see data on Fig. 3 from main article). Negative values
of dVy,r/dI at negative current I are still observed in
this geometry.



II. FORMATION OF ZERO DIFFERENTIAL
RESISTANCE STATES IN A MACROSCOPIC
SAMPLE

We have also studied NLDR in a macroscopic geometry
with geometrical parameters larger than the mean free
path. The sample was made in a lower mobility 2DEG,
with mobility ¢ = 3x 10° cm?/Vs and a carrier density of
ne = 3.2 x 101 em =2, The geometry of the measurement
is sketched in in Fig. 2. This figures summarizes our
results on the NLDR in this sample, for positive magnetic
fields for which the non local resistance is non-vanishing.

The strong asymmetry between positive and negative
currents is also observed in this lower mobility 2DEG,
however the characteristic magnetic field where the asym-
metry appears is around a factor three stronger as com-
pared to the u = 107 c¢cm?/Vs sample, this difference
is consistent with the ratio between the mobilities of
the two samples. As in Fig. 1, the separation between
the voltage probes was larger than the mean free path
l. = 30 pm and the oscillations as a function of the
DC current cannot be resolved. However, in the present
experiment NLDR is almost zero in a large region of neg-
ative currents which contrasts with previous data where
NLDR could be negative for I < 0 (see Fig. 2 from the
main article and Fig. 1).

In order to highlight the presence of a zero differential
resistance state (ZDRS), we have calculated the depen-
dence of V,,;,;, on current by integrating the experimen-
tal differential resistance data. The results obtained after
this procedure are represented on Fig. 3 which shows that
the voltage V,,;;1, exhibits a plateau at negative I where it
is almost independent on current in a wide range of mag-
netic fields while for positive currents the voltage depen-
dence is almost ohmic. The inset in Fig. 3, shows the de-
pendence of the voltage on the magnetic field for several
values of current inside the ZDRS plateau. These results
confirm that the voltage saturates to a constant value
independent on current in this regime, the value of the
saturation voltage grows almost linearly with magnetic
field with weak oscillations that are probably related to
the Shubnikov-de Haas oscillations in the longitudinal re-
sistance.

The observed zero-differential state possesses the sym-
metry of an edge effect. It appears only for the sign of
magnetic field which ensures guiding towards the voltage
probe electrodes from the distant current sources, and
for a specific sign of the DC current that creates a volt-
age drop along the edge tending to stabilize propagation
along edges. Therefore it seems likely that an edge trans-
port related mechanism is leading to the formation of
ZDRS in this case. On the higher mobility sample where
the dimension of the voltage probes were smaller than the
mean free path, negative values of NLDR were observed
(see Fig. 3 from main article and Fig. 1), this suggests
that ZDRS is formed due to the clamping of the poten-
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FIG. 3: Non local voltage/current characteristics V., (1) for
the p = 3 x 10% cm? /Vs mobility sample at several magnetic
fields (for resemblance with data from ZDRS experiments in
local geometries, we have shown —V,;;; as function of —I
in this figure). The inset shows the voltage as a function of
magnetic field for several currents inside the plateau regime.
Temperature was T' = 0.3 K.

tial on large length scales by the voltage probe electrodes.
On the contrary, if the electrodes are not invasive the po-
tential exhibits sharp variations whenever the energy of
the electrons propagating along the edge is changed by an
amount close to fw,. (see main text). These voltage oscil-
lations are probably indicative of a spatially modulated
charge density distribution, and could explain the obser-
vation of oscillating/negative differential resistances in
our experiments. It would be highly interesting to under-
stand the role played by the edge mediated ZDRS mech-
anism in ZDRS experiments realized in the conventional
longitudinal resistance measurement geometry. However
due to the absence of a reliable theoretical framework to
describe the edge effects reported in this article, it is not
possible to estimate the amplitude of their contribution
in the measurement of longitudinal resistance.

III. CONTINUUM THEORY

In this section we provide a mode detailed derivation
of formulas from continuum theory that we used in the
main article.

We start our calculations from the potential created
by a point source of current I located at z = 0 in a semi-
infinite two dimensional electron gas. It is convenient to
represent points in the 2DEG as complex numbers z =
x + 1y where (x, y) are the point Cartesian coordinates,
and the half plane fills the space y > 0. In this case we
find the potential V,(z) = R,(z)I with:

Ry(2) = P22 (log || + aarg 2) (1)



where we have introduced the Hall angle o = 5’—"”.
Ty

A stripe geometry described by z = x + iy with
y € (0,W) can be mapped onto this half plane using
the conformal mapping z = exp (%) This allows to find
the potential V_(z,z0) = R_(z,x0)I created by a point
source located on the bottom edge of the stripe at z = g
(xg real):

—TXo

Zyexp(—Y) = DI (2)

V_(2,0) = Ry(exp(

The potential V4 (z,20) = R4(z,20)] created by a
source on the top edge of the stripe at z = x¢ + iW
reads:

—TXo
w

Vi (z,20) = Ry(exp(75) exp(—2) + DL (3)

Subtracting these two expressions we find the potential
V =V,(2,0)V(%,0) created by a current between point-

like sources and drains located opposite to each other
along the channel (respectively at z = i{WW and z = 0).
For the particular case of the potential generated along
the top edge y = «W | far from the sources |z| > W, we
find the following expression:

V(z) = %Ipww exp (W) — payIn(—2) (4)

where n(x) is the Heaviside function. This gives the
expression for the nonlocal resistance given in the main

text:
2 D L
Ry = pa;:/ i €xXp (_W> (5)

where D, is the spacing between the voltage probes
and L is their distance from the source along the channel
(for simplicity we have assumed D, < W).



