
Google matrix Recommander ce contenu sur Google

Figure 1: Google matrix  of the network Wikipedia English

articles for Aug 2009 in the basis of nodes ordered by PageRank

index ; matrix indexes are  in  axes with top values

for  in the top left corner (see text for definition of

indexes ) . Left panel shows first  matrix

elements, right panel shows density of all matrix elements

coarse-grained on  cells. Color shows the density of

matrix elements changing from black for minimum value

( ) to white for maximum value via green and yellow;

here the damping factor is , the matrix size is

. (from Ermann, 2015-b)
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  The Google matrix  of a directed network is a stochastic square matrix with nonnegative matrix elements and

the sum of elements in each column being equal to unity. This matrix describes a Markov chain (Markov, 1906-a) of

transitions of a random surfer performing jumps on a network of nodes connected by directed links. The network is

characterized by an adjacency matrix  with elements  if node  points to node  and zero otherwise. The

matrix of Markov transitions  is constructed from the adjacency matrix  by normalization of the sum of

column elements to unity and replacing columns with only zero elements (dangling nodes) with equal elements 

where  is the matrix size (number of nodes). Then the elements of the Google matrix are defined as

where the damping factor  is the

probability that a random surfer follows a link

according to the stochastic matrix  while with

probability  he may jump to any network

node. In this form the Google matrix was

introduced by Brin and Page in 1998 (Brin,

1998-a) for the description of the World Wide

Web (WWW). The right eigenvector of  with

the largest (by modulus) unit eigenvalue is the

PageRank vector whose non-negative elements

correspond to the stationary probability to find a

random surfer on a given node. The product of

two Google matrices is also a Google matrix.

The above construction of  can be directly

generalized to the case of weighted transitions

with the sum of elements in each column of 

equal to unity. The general spectral properties of

 matrix are described below with concrete

examples of various real networks. An example

image of  is shown in Figure 1 for the Wikipedia network. The Google matrix belongs to the class of Perron-

Frobenius operators which appear in the description of dynamical chaotic systems (Brin, 2002-b) and related Ulam
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Figure 2: (a) Example of simple network with directed links

between 5 nodes. (b) Distribution of 5 nodes from (a) on the

PageRank-CheiRank plane , where the size of node is

proportional to PageRank probability  and color of node is

proportional to CheiRank probability , with maximum at

red and minimum at blue; the location of nodes of panel (a) on

PageRank-CheiRank plane is: (2,4), (1,3),(3,1), (4,2), (5,5) for

original nodes 1,2,3,4,5 respectively; PageRank and CheiRank

vectors are computed from the Google matrices  and  shown in

Figure 3 at a damping factor . (from Ermann, 2015-b)

networks (Ulam, 1960-b,Ermann, 2010-a).
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Simple network example

An example of simple directed network with 5 nodes is shown in Figure 2(a), here nodes are numbered from 1 to 5.

The distribution of nodes on the PageRank-CheiRank plane of indexes  is shown in Figure 2(b) (see

definition of  in next Section). The corresponding adjacency matrix  and matrices  are given in Figure

3(a,c,e). In addition it is useful to consider the network with inverted link directions. The corresponding adjacency

matrix  and related matrices  are shown for this case in Figure 3(b,d,f).

PageRank and CheiRank eigenvectors

(K, )K ∗

P(K)
( )P∗ K ∗
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Figure 3: (a) Adjacency matrix  of network of (a) with indexes

used there, (b) adjacency matrix  for the network with inverted

links; matrices  (c) and  (d) corresponding to the matrices

; the Google matrices  (e) and  (f) corresponding to

matrices  and  for  (only 3 digits of matrix elements

are shown. (from Ermann, 2015-b)

According to the Perron-Frobenius theorem all

eigenvalues  of  are distributed inside the

unitary circle . The right eigenvectors

 are defined by the equation

. In the following we

will also use the notation eigenstates for such

eigenvectors in analogy to eigenstates in

quantum Hamiltonian systems. It can be

shown that for  the eigenvalue  is

not degenerate with only one right eigenvector

called the PageRank vector . The positive

elements  of the PageRank vector, when

the sum of them is normalized to unity, give

the probability to find a random surfer on a

node  in the stationary limit of long times.

Only the eigenvectors of  for  (which

may be degenerate) are affected by the damping factor while other eigenvectors of  (with eigenvalues ) are

also eigenvectors of  independent of  due to their orthogonality to the left eigenvector (with identical unit

entries) at  but with rescaled eigenvalues  for  (Langville, 2006-b,Gantmacher, 2000-b). The variation

of  in the range  does not significantly affect the PageRank probabilities so that the results are

usually presented for a typical value  (Langville, 2006-b, Ermann, 2015-b).

The network with inverted link directions is described by the matrix , the PageRank eigenvector of  is called

the CheiRank vector. The statistical properties of the CheiRank vector  have been first studied in (Chepelianskii,

2010-a) for the Linux Kernel network and later extended to the Wikipedia network (Zhirov, 2010-a).

All network nodes can be ordered by monotonically decreasing propabilities of PageRank or CheiRank vectors

providing indexes  and  with the maximal probability at , and mininum probability at

. The PageRank index  is used for the presentation of  in Figure 1: here all nodes are ordered by

the PageRank index  and the strength of matrix elements  is shown by color on a small scale (left panel) and

on the whole matrix scale with coarse-graining (right panel).

The distribution of nodes on the PageRank-CheiRank plane for the simple network example is shown in Figure

2(b).

It is known that on average the PageRank probability is proportional to the number of ingoing links, characterizing

how popular or known a given node is (Langville, 2006-b). Real networks are often characterized by power law

distributions for the number of ingoing and outgoing links per node  with typical exponents

 and  for the WWW (Donato, 2004-a,Dorogovtsev, 2010-b,Newman, 2010-b). Assuming that

the PageRank probability decays algebraically as  we obtain that the number of nodes  with

PageRank probability  scales as  with . Thus for the typical above values of  we

have  for PageRank  and  for CheiRank  which is proportional to the number

of outgoing links due to the inversion of direction. Examples of the probability decay of  are shown in Figure
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Figure 4: Dependence of probabilities of PageRank  (red curve)

and CheiRank  (blue curve) vectors on the corresponding rank

indexes  and  for networks of Wikipedia Aug 2009 (top

curves) and University of Cambridge (bottom curves, moved down

by a factor 100). The straight dashed lines show the power law fits

for PageRank and CheiRank with the slopes 

respectively, corresponding to  for Wikipedia,

and  for Cambridge. (from Ermann, 2015-b)

4 for networks of Wikipedia and University of Cambridge. It should be noted that the decay is only approximately

described by a power law. WWW networks of larger sizes (about 3.5 billions) also only approximately described by

an algebraic decay (Meusel, 2015-a).

For the case of the simple network visible in

(a) the distribution of nodes on the PageRank-

CheiRank plane is shown in (b). The

distributions for Wikipedia and Linux Kernel

networks are shown in Figure 5. It is

convenient to characterize the network by the

PageRank-CheiRank correlator

(Chepelianskii, 2010-a) which takes different

values depending on internal network

properties even if the decay of PageRank and

CheiRank probabilities is approximately the

same in these networks. Thus we have

 for panels (a;b) of Figure

5. At small correlators the density is

homogeneous along the line 

while for large positive values it is more

concentrated along the line .

More correlator values for different networks

are given in (Ermann, 2015-b)]]).

It is also useful to rank network nodes by a 2DRank using a combination of PageRank and CheiRank: for this one

considers a sequence of squares on the PageRank-CheiRank plane with the left bottom corner at  and

increasing size placing nodes in 2DRank  in order of their appearance on square sides (see more detail at (Zhirov,

2010-a)).

The characterization of a directed network by both PageRank and CheiRank probabilities allows to characterized in

a better way the information flow on the network taking into account ingoing flows, related to PageRank, and

outgoing flows, related to CheiRank (see more detail in Ermann, 2015-b).

The density distribution of nodes on the PageRank-CheiRank plane is shown in Figure 5 for Wikipedia (a) and

Linux (b) networks. The density  is computed on logarithmic-equidistant greed (cells)

so that  is given by the number  of network nodes appearing in a given cell divided by the cell area on

 plane.

Numerical methods for  matrix

Usually scale-free networks have algebraic distributions of ingoing and outgoing links with a relatively small
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Figure 5: Density distribution of network nodes

 shown on the plane of PageRank and

CheiRank indexes in log-scale  for all

, density is computed over equidistant grid in

plane  with  cells; color shows

average value of  in each cell for the unit normalization condition

for all nodes. Density  is shown by color with blue for

minimum in (a),(b) and white (a) and yellow (b) for maximum

(black for zero). Panel (a): data for Wikipedia Aug (2009),

, green/red points show top 100 persons from

PageRank/CheiRank, yellow pluses show top 100 persons from

(Hart, 1992-b). Panel (b): density distribution for Linux Kernel

V2.4 network with . (from Ermann, 2015-b)

average number of links  per node (see

e.g. Dorogovtsev, 2010-b,Newman, 2010-b)

corresponding to a very sparse adjacency

matrix. For example for the networks of

Figure 1, Figure 4, Figure 5 we have

. Therefore the PageRank

vector can be efficiently computed by the

power method which consists of multiplying

repeatedly the matrix G to a random initial

(sum normalized) vector. Each such matrix

vector multiplication can be implemented by a

loop over the link index and has therefore a

complexity  which is much smaller than the

matrix size . The particular contributions

due to the dangling nodes or the damping

factor in the Google matrix correspond to a

complexity  and do not increase the overall

complexity. Due to the presence of a gap

between  and the next eigenvalue with

 the convergence of the PageRank

vector is exponential (e.g. after about 150

iterations the variation of the vector norm

becomes less than  for the Wikipedia network of Figure 1).

For typical networks the whole set of nodes can be decomposed in invariant subspace nodes and fully connected

core space nodes leading to a block structure of the matrix  (Frahm, 2011-a):

The core space block  contains links between core space nodes and the coupling block  may contain links

from certain core space nodes to certain invariant subspace nodes. In contrast there are no links from subspace

nodes to the nodes of core space (block with zero elements). By construction there are no links from nodes of

invariant subspaces to the nodes of the core space. The subspace-subspace block  is actually composed of many

diagonal blocks for different invariant subspaces whose number can generally be rather large. Each of these blocks

corresponds to a column sum normalized matrix with positive elements of the same type as  and has therefore at

least one unit eigenvalue. This leads to a high degeneracy  of the eigenvalue  of , for example 

for the case of UK universities (see below). For each initial node one can iteratively determine a limit set of nodes

that can be reached by a chain of non-zero matrix elements of  from the initial node. This set extends either over

(nearly) the full network or it is limited, e.g. less than 10% of all network nodes. In the first case the initial node is

attributed to the core space and in the second case the limit set defines an invariant subspace. For example for the

WWW networks of UK universities, all invariant subspaces typically represent about  of the whole
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network.

The largest eigenvalues of  (taken by their modulus) can be efficiently obtained by the powerful Arnoldi method

[1] (https://en.wikipedia.org/wiki/Arnoldi_iteration) (see also Stewart, 2001-b,Ermann, 2015-b). The main idea of

this method is to construct, by an iterative scheme of matrix vector multiplication and orthogonalization, an

orthonormal basis on a subspace of modest dimension , called Krylov space, and to diagonalize the representation

matrix of G on this subspace which provides typically good approximations for the largest eigenvalues of G (taken

by their modulus). Also the corresponding eigenvectors are available by this method.

For the particular case of networks with a nearly triangular adjacency matrix the effects of numerical and round-off

errors on the precision of eigenvalues may become very important and require high precision computations for the

Arnoldi method or other particular special methods (Frahm, 2014-a,Ermann, 2015-b).

Spectrum of  matrix

Typical complex eigenvalue spectra of  are shown in Figs.6,7 for examples of UK universities and Wikipedia

networks.

The spectra of  of universities of Cambridge and Oxford in 2006 are shown in Figure 6. These networks have a

size . All subspace eigenvalues and  core eigenvalues with maximal  are shown. There

is a strong degeneracy of the unit eigenvalue (about  of all eigenvectors). The global spectral structure has visible

similarities with the spectra of random orthostochastic matrices of small size  analyzed numerically and

analytically in (Zyczkowski, 2003a). The spikes visible at certain angles  for  correspond to

approximate cycles of length  for the links between particular nodes ("close friends") that appear in top rank

positions of the corresponding eigenstates of such eigenvalues.

The spectrum of the core space of  for the Wikipedia network (Aug 2009) is shown in Figure 7. The eigenstates

with maximal values of  correspond to certain quasi-isolated communities, they are marked by the most frequent

words appearing in largest amplitudes of the corresponding eigenvectors.The results show that the eigenvectors of

 clearly identify interesting specific communities of the network.

Fractal Weyl law

In quantum mechanics the Weyl law (1912) gives a fundamental relation between the number of states and the

phase volume of a Hamiltonian closed system of dimension . The generalization to operators of open quantum

systems, appearing in the problems of quantum chaotic scattering with complex eigenenergies (Gaspard, 2014b),

has been done relatively recently by (Sjostrand,1990a). The spectrum of corresponding operators has a complex

spectrum . The spread width  of eigenvalues  determines the life time of a corresponding eigenstate.

According to the fractal Weyl law the number of eigenvalues , which have escape rates  in a finite band width

, scales as

Scc
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G
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Figure 6: Panels (a) and (b) show the complex eigenvalue spectrum

 of the matrix  for the University of Cambridge 2006 and Oxford

2006 respectively.The spectrum  of the matrix  for Cambridge

2006 and Oxford 2006 are shown in panels (c) and (d). Eigenvalues

 of the core space are shown by red points, eigenvalues of isolated

subspaces are shown by blue points and the green curve (when

shown) is the unit circle. Panels (e) and (f) show the fraction  of

eigenvalues with  for the core space eigenvalues (red

bottom curve) and all eigenvalues (blue top curve)from top row

data for Cambridge 2006 and Oxford 2006. (from Ermann, 2015-b)

where  is a fractal dimension of a classical

strange repeller formed by classical orbits

nonescaping in future and past times,  is the

Planck constant. In the context of eigenvalues

 of the Google matrix we have .

As usual the Planck constant is inversely

proportional to the number of states, which is

determined by the matrix size, so that

.

The fractal Weyl law of open systems with a

fractal dimension  leads to a striking

consequence: only a relatively small fraction

of eigenvalues

 has

finite values of  while almost all eigenstates

of the matrix operator of size  have

. The eigenstates with finite  are

related to the classical fractal sets of orbits

non-escaping neither in the future neither in

the past. The fractal Weyl law for the Ulam

networks is discussed in next Section. This

law has been shown to be valid for the Linux

Kernel network with  (see Figure 8

and related Section). For the Physical Review

network it is found that Frahm,

2014-a).

There is an expectation that the eigenstates

with large , forming the fractal Weyl law,

capture certain hidden interesting

communities. It is qualitatevely confirmed by

the analysis of eigenvectors of Wikipedia

matrix  (see Figure 7 and Frahm, 2014-a).

Mathematical aspects of the fractal Weyl law are reviewed in (Nonnenmacher, 2014b).

Ulam networks

By construction the Google matrix belongs to the class of Perron-Frobenius operators which naturally appear in

ergodic theory and dynamical systems with Hamiltonian or dissipative dynamics (Brin, 2002-b). In 1960 Ulam
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Figure 7: Complex eigenvalue spectrum of the matrices  for

English Wikipedia Aug 2009. Highlighted eigenvalues represent

different communities of Wikipedia and are labeled by the most

repeated and important words following word counting of first

1000 nodes. Panel (a) shows complex plane for positive imaginary

part of eigenvalues, while panels (b) and (c) zoom in the negative

and positive real parts. (from Ermann, 2015-b)

(Ulam, 1960-b) proposed a method, now

known as the Ulam method, for a construction

of finite size approximants for the Perron-

Frobenius operators of dynamical maps. The

method is based on discretization of the phase

space and construction of a Markov chain

based on probability transitions between such

discrete cells given by the dynamics. Using as

an example a simple chaotic map Ulam made

a conjecture that the finite size approximation

converges to the continuous limit when the

cell size goes to zero. Indeed, it has been

proven that for hyperbolic maps in one and

higher dimensions the Ulam method

converges to the spectrum of the continuous

system. The probability flows in dynamical

systems have rich and nontrivial features of

general importance, like simple and strange

attractors with localized and delocalized

dynamics governed by simple dynamical

rules. Such objects are generic for nonlinear

dissipative dynamics and therefore they can have relevance for actual WWW structure. The analysis of Ulam

networks, generated by the Ulam method, allows to obtain a better intuition about the spectral properties of Google

matrix.

The Ulam method works as following: the phase space of a dynamical map is divided in equal cells and a number of

trajectories  is propagated by a map iteration. Thus a number of trajectories  arriving from cell  to cell  is

determined. Then the matrix of Markov transition is defined as . By construction this matrix belongs to

the class of Perron-Frobenius operators which includes the Google matrix. The physical meaning of the coarse grain

description by a finite number of cells is that it introduces in the system a noise of cell size amplitude. More details

can be found at (Ermann, 2015-b).

Examples of eigenstates of the Ulam approximate of Perron-Frobenius operators (UPFO) of two Ulam networks are

shown in Figure 9. The networks are generated by the Ulam method applied to the dynamical map

Here bars mark the variables after one map iteration and we consider the dynamics to be periodic on a torus so that

;  is a dimensionless parameter of chaos. At  we have the area-preserving

symplectic map, known as the Chirikov standard map (Chirikov, 2008-b), for  we have a dissipative

dynamics with a strange attractor. At  the absorption is introduced so that all orbits leaving the interval

 are absorbed after one iteration. Thus the UPFO has the maximal eigenvalue  with a

S

Nc Nij j i
= /Sij Nij Nc

= ηy + sin(2πx) , = x + (mod 1) .ȳ
Ks

2π x̄ ȳ
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Figure 8: Panel (a) shows distribution of eigenvalues  in the

complex plane for the Google matrix  of the Linux Kernel version

2.6.32 with  and ; the solid curves represent

the unit circle and the lowest limit of computed eigenvalues. Panel

(b) shows dependence of the integrated number of eigenvalues 

with  (red squares) and  (black circles) as a

function of the total number of processes  for versions of Linux

Kernels. The values of  correspond (in increasing order) to Linux

Kernel versions . The

power law  has fitted values 

and . Inset shows data for the Google

matrix  with inverse link directions, the corresponding

exponents are  and

. (from Ermann, 2015-b)

strange repeller of orbits remaining in the

system after many map iterations. For the

dissipative case at  the orbits drop on a

strange attractor (see Figure 9). The fractal

dimension  of these strange sets depends on

the system parameters that allows to vary it in

a large range . The spectral

analysis of UPFO in these systems confirms

the validity of the fractal Weyl law for

variation of the exponent  in the interval

 (Ermann, 2010-a).

Linux Kernel networks

Modern software codes represent now

complex large scale structures and analysis

and optimization of their architecture become

a challenge. An interesting approach to this

problem was proposed in (Chepelianskii,

2010-a) on the basis of directed network

analysis. Thus the Procedure Call Networks

(PCN) are constructed for the open source

programs of Linux Kernel written in the C programming language. In this language the code is structured as a

sequence of procedures calling each other. Due to that feature the organization of a code can be naturally

represented as a PCN, where each node represents a procedure and each directed link corresponds to a procedure

call. For the Linux source code such a directed network is built by its lexical scanning with the identification of all

the defined procedures. For each of them a list keeps track of the procedures calls inside their definition.

It is found that the PageRank and CheiRank probabilities in this network decay as a power law with the approximate

exponent values  respectively. For V2.6.32 the top three procedures of PageRank are printk, memset,

kfree, while at the top of CheiRank we have start_kernel, btrfs_ioctl, menu_finalize. These procedures perform

rather different tasks with printk reporting messages and start_kernel initializing the Kernel and managing the

repartition of tasks. This gives an idea that both PageRank and CheiRank order can be useful to highlight different

aspects of directed and inverted flows on our network. Of course, in the context of WWW ingoing links related to

PageRank are less vulnerable as compared to outgoing links related to CheiRank, which can be modified by a user

rather easily.

For the Linux Kernel network the correlator  between PageRank and CheiRank vectors is close to zero. This

confirms the statistical independence of these two vectors. The density distribution of nodes of the Linux Kernel

network, shown in Figure 5(b), has a homogeneous distribution along  lines demonstrating

once more absence of correlations between  and . Indeed, such homogeneous distributions appear

if nodes are generated randomly with factorized probabilities .
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Figure 9: Phase space representation of eigenstates of the Ulam

approximate of the Perron-Frobenius operator (UPFO)  for

 cells (color is proportional to absolute value 

with red for maximum and blue for zero). Panel (a) shows an

eigenstate with maximum eigenvalue  for the Chirikov

standard map with absorption at , the space

region is ( , ), the fractal

dimension of the strange repeller set nonescaping in future is

. Panel (b) shows an eigenstate at  of

the UPFO of the map without absorption at , the

shown space region is ( ) and the

fractal dimension of the strange attractor is . (from

Ermann, 2015-b)

The physical reasons for absence of

correlations between  have been

explained (Chepelianskii, 2010-a) on the basis

of the concept of separation of concerns in

software architecture. It is argued that a good

code should decrease the number of

procedures that have high values of both

PageRank and CheiRank since such

procedures will play a critical role in error

propagation since they are both popular and

highly communicative at the same time. For

example in the Linux Kernel, do_fork, that

creates new processes, belongs to this class.

Such critical procedures may introduce subtle

errors because they entangle otherwise

independent segments of code. The above

observations suggest that the independence

between popular procedures, which have high

 and fulfill important but well defined

tasks, and communicative procedures, which

have high  and organize and assign

tasks in the code, is an important ingredient of well structured software.

The different Linux versions from V1.0 to V2.6 provide a network size variation in a range 

allowing to demonstrate the validity of the fractal Weyl law with the fractal dimension  (see Figure 8).

Linux network data sets are available at (FETNADINE, 2015-e).

WWW networks of UK universities

The WWW networks of certain UK universities for the years between 2002 and 2006 are publicly available at (UK

universities, 2006-e; selected networks are given at EU-FET-NADINE site FETNADINE, 2015-e). The universal

emergence of PageRank, properties of PageRank and CheiRank vectors and the spectral properties of  are

analyzed in detail at (Frahm, 2011-a, see also Figs.4,6). It is estableshed that the rescaled distribution of sizes  of

invariant subspaces of university networks is described by a univerrsal function  with

, where  is an average subspace dimension computed for a WWW of a given university. This

is related with a universal power law decay of PageRank probability  emerging at . It is shown

that for certain universities the maximal eigenvalue of the core space is enormously close to unity (e.g

); the corresponding eigenstates are localized on a small node subset. More results are available at

(Frahm, 2011-a,Ermann, 2015-b).

Wikipedia networks

S
N = 110 × 110 | |ψi

= 0.756λ1
= 7, a = 2, η = 1Ks

−a /4π ≤ y ≤ a /4πKs Ks 0 ≤ x ≤ 1

= 1 + d/2 = 1.769de λ = 1
= 7, η = 0.3Ks

−1/π ≤ y ≤ 1/π, 0 ≤ x ≤ 1
d = 1.532

P(K), ( )P∗ K ∗

P(K(i))

( (i))P∗ K ∗

2752 ≤ N ≤ 285510
d ≈ 1.3

G,G∗

di
F(x) = 1/(1 + 2x)3/2

x = / < d >di < d >
P ∝ 1/K 2/3 α → 0

λc
1 − <λc 10−16
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The free online encyclopedia Wikipedia is a huge repository of human knowledge. Its size is growing permanently

accumulating a enormous amount of information. The hyperlink citations between Wikipedia articles provide an

important example of directed networks evolving in time for many different languages.

The decay of probabilities of PageRank and CheiRank are shown in Figure 4 for English Wikipedia edition of

August 2009 (Zhirov, 2010-a). They are satisfactory described by a power law decay with exponents

.

The density distribution of articles over the PageRank-CheiRank plane  is shown in Figure 5(a).

The density is very different from those generated by the product of independent probabilities of  and  which

gives the distribution similar to the case of the Linux Kernel network shown in Figure 5(b) where the correlator 

between PageRank and CheiRank vectors is almost zero (while for Wikipedia ).

The difference between PageRank and CheiRank is clearly seen from the names of articles with highest ranks. At

the top of PageRank there are 1. United States, 2. United Kingdom, 3. France while for CheiRank one finds 1.

Portal:Contents/Outline of knowledge/Geography and places, 2. List of state leaders by year, 3.

Portal:Contents/Index/Geography and places. Clearly the PageRank selects first articles on a broadly known

subject with a large number of ingoing links while the CheiRank selects first highly communicative articles with

many outgoing links. The 2DRank combines these two characteristics of information flow on directed network. At

the top of 2DRank  one has 1. India, 2. Singapore, 3. Pakistan. Thus, these articles are most known/popular and

most communicative at the same time. Results of ranking of the Wikipedia Aug 2009 edition for various categories

are available at (Wiki2009, 2010-e).

The complex spectrum of eigenvalues of  for this Wikipedia network is shown in Figure 7 (due to symmetry of

eigenvalues  only the upper plane of  is shown). As for university networks, the spectrum also has some

invariant subspaces resulting in degeneracies of the leading eigenvalue  of . However, due to the

stronger connectivity of the Wikipedia network these subspaces are significantly smaller compared to university

networks.

It is expected that the eigenstates with large values of  select certain specific communities. If  is close to unity

then the relaxation of probability from such nodes is rather slow and we can expect that such eigenstates highlight

some new interesting information even if these nodes are located in the tail of the PageRank. The important

advantage of the Wikipedia network is that its nodes are Wikipedia articles with a relatively clear meaning allowing

to understand the origins of appearance of certain nodes in one community. The frequency analysis of words

appearing at the largest amplitudes of eigenvectors with large modulus of  confirms this expectation (see Figure 7

and Ermann, 2015-b).

Top 100 historical figures of Wikipedia

There is always significant public interest to know who are the most significant historical figures, or persons, of

humanity. The Hart list of the top 100 people who, according to him, most influenced human history is available at

(Hart, 1992-b). Hart “ranked these 100 persons in order of importance: that is, according to the total amount of

influence that each of them had on human history and on the everyday lives of other human beings.” Of course, a

human ranking can always be objected arguing that an investigator has his or her own preferences. Also

= 1/( − 1) = 0.92; 0.58βPR,CR μin,out
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P P∗

κ
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G
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investigators from different cultures can have different viewpoints on the same historical figure. Thus it is important

to perform a ranking of historical figures on purely mathematical and statistical grounds which exclude any cultural

and personal preferences of investigators.

A detailed two-dimensional ranking of persons of the English Wikipedia August 2009 was done by (Zhirov,

2010-a). Earlier studies had been done in a non-systematic way without any comparison with established top 100

lists. The distribution of the top 100 PageRank, CheiRank, and Hart’s persons on PageRank-CheiRank plane is

shown in Figure 5(a). For the PageRank top 100 list the overlap with the Hart list is at 35% (PageRank), 10%

(2DRank), and almost zero for CheiRank. This is attributed to a very broad distribution of historical figures on the

2D plane, as shown in Figure 5(a), and a large variety of human activities. The distribution of the top 100 persons of

the Wikipedia August 2009 remains stable and compact for PageRank and 2DRank for the period 2007–2011 while

for CheiRank the fluctuations of positions are large (Ermann, 2015-b). This is due to the fact that outgoing links are

easily modified and fluctuating.

However, it is important to take into account not only the view point of English Wikipedia but also to consider

viewpoints of other language editions of Wikipedia representing other cultures. Thus the ranking of world historical

figures was done on the basis of 24 editions (Eom, 2015-a). In 2014 these 24 languages cover 59 percent of world

population, and the corresponding 24 editions cover 68 percent of the total number of Wikipedia articles in all 287

available languages. Also the selection of people from the rank list of each edition is now done in an automatic

computerized way. For this a list of about 1.1 million biographical articles about people with their English names is

generated. From this list of persons, with their biographical article title in the English Wikipedia, the corresponding

titles in other language editions are determined using the inter-language links provided by Wikipedia. The rank

score of each persons is averaged over all 24 editions thus equally taking into account the opinions of these 24

cultures.

For PageRank the top global three historical figures are Carl Linnaeus, Jesus, and Aristotle. All other ranks are

available at (TopWikiPeople, 2014-e). The overlap of top 100 PageRank and Hart's lists have 43 common persons.

The fact that Carl Linnaeus is the top historical figure of the Wikipedia PageRank list came as a surprise for media

and the broad public (see Refs. in Ermann, 2015-b). This ranking is due to the fact that Carl Linnaeus created a

classification of world species including animals, insects, herbs, trees, etc. Thus all articles of these species point to

the article Carl Linnaeus in various languages. As a result Carl Linnaeus appears on almost all top positions in all 24

languages. Hence, even if a politician, like Barak Obama, takes the second position in his country language EN

(Napoleon is at the first position in EN) he is usually placed at a low ranking in other language editions. As a result

Carl Linnaeus takes the first global PageRank position. More details, including the distribution of historical figures

over world countries and 35 centuries of human history, can be found at (Eom, 2015-a,Ermann,

2015-b,TopWikiPeople, 2014-e). The results of other research groups for ranking of historical figures of Wikipedia

are referenced in (PantheonMIT, 2015-e, StonyBrookranking, 2015-e, see more Refs. in Eom, 2015-a, Ermann,

2015-b).

Wikipedia ranking of world universities
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Figure 10: Geographical distribution of universities appearing in

the top 100 universities of all 24 Wikipedia editions given by

PageRank algorithm. The total number of universities is 1025.

Colors range from dark blue (small number of universities) to dark

red (maximum number of universities, here 118 for US). Countries

filled by dashed lines pattern have no university in the top 100 lists

of 24 editions. (from Lages, 2016-a)

The ranking of universities for the English

Wikipedia edition Aug 2009 was done in

(Zhirov, 2010-a) giving at the top of PageRank

list: University of Harvard, University of

Oxford, University of Cambridge with the

overlap of 70% for the top 100 list of

Academic ranking of world universities of

Shanghai in 2009 (Shanghai, 2015-e). All

results of ranking of universities are available

at (Wiki2009, 2010-e). However, it is

important also to take into account the

opinions of other cultures and not only of the

English edition to determine the university

ranking.

Thus, the above appoach for ranking of

historical figures is also used for the

Wikipeida ranking of world universities, using

the same datasets of 24 Wikipedia editions.

The combined results (Lages, 2016-a)

obtained from top 100 universities of each edition give total global lists of 1025, 1379, 1560 universities for

PageRank, CheiRank, and 2DRank algorithms respectively. All these results are available at (TopWikiUniversities,

2015-e). The distribution of 1025 PageRank universities over the world countries is shown in Figure 10. For the

global PageRank list the top three positions are taken by University of Cambridge, University of Oxford, Harvard

University. The overlap of top 100 PageRank list with top 100 of Academic ranking of world universities of

Shanghai (Shanghai, 2015-e) is equal to 62 universities (English, French, German editions have overlaps of 65, 41,

35 universities respectively; the comparison is done for the year 2013).

The time evolution of the geographical distribution of leading world universities over 10 centuries is given in

(TopWikiUniversities, 2015-e). Before the 19th century universities of Germany dominate this ranking (thus among

the top universities of PageRank list with 139 universities, founded before year 1800, the main part of 25

universities is located in Germany, see Fig.10 in (Lages, 2016-a)). However, already for the universities founded

before the 20th century (before year 1900) the lead is taken by the USA (see Fig.9 in (Lages, 2016-a)). The analysis

of the university ranking evolution through ten centuries shows that Wikipedia highlights significantly stronger

historically important universities whose role is reduced in the Shanghai ranking. Nowadays the PageRank

algorithm gives the top 5 countries: USA, UK, Germany, Sweden, and France, while the Shanghai ranking gives

USA, UK, Canada, Switzerland, and Japan.

The Wikipedia ranking provides a sound mathematical statistical evaluation of world universities which can be

viewed as a new independent ranking being complementary to already existing approaches. A comparison of

various web-based rankings of world universities is reported in (Pagell, 2016-a). In the view of the importance of

university ranking for higher education (Hazelkorn, 2015-b) it is possible to expect that the Wikipedia ranking of
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Figure 11: Country positions in PageRank-CheiRank plane 

for the world trade in all commodities in 2008. Each country is

shown by circle with its own flag. (from Ermann, 2015-b)

world universities will also find a broad usage together with other rankings.

Multiproduct world trade network

The Google matrix of the world trade network

was constructed in (WTN, 2011-e) on the

basis of the United Nations Commodity Trade

Statistics Database (UNCOMTRADE, 2015-e)

for all UN countries and various trade

commodities for all available years from 1962

to 2009. The trade flows on this network are

classified with the help of the PageRank and

CheiRank algorithms and the distribution of

countries on the PageRank-CheiRank plane is

shown in for the trade in all commodities (or

all products). This ranking treats all countries

on equal democratic grounds independent of

country richness but this method still puts at

the top a group of industrially developed

countries, reproducing about 75% of G20

members. The matrix  is obtained by column

normalization of the monetary trade flow

matrix  available for each year at

(UNCOMTRADE, 2015-e) for countries 

and product  ( ). Then the matrix  is obtained by the general rule (1).

The case, when the trade is considered for all commodities, gives a typical distribution visible in with concentration

of countries in a vicinity of the diagonal . This is due to the economic trade balance which each country

tries to equilibrate roughly. In a certain sense the PageRank corresponds to country import (ingoing links) and

CheiRank to export (outgoing links). However, the import and export take into account only one link trade between

countries while the Google matrix analysis takes into account multiple links and significance of nodes. In general

the country distribution on the PageRank-CheiRank plane is quite similar to the distribution on the Import-Export

plane (see WTN, 2011-e). However, there are also some exceptions with noticible differences such as Singapore (it

improves its position from 15 in export rank to  in CheiRank) showing the stability and broadness of its

export trade in 2008. On the other hand Canada and Mexico have a lower ("better") position in export rank than in

CheiRank due to a too strong orientation of their export to the USA.

The time evolution of PageRank and CheiRank indexes captures correctly known crises at certain years for certain

countries (e.g Russia in 1998, Argentina in 2001) which typically lead to a strong increase of the country's

PageRank index  related to the drop of its import during a crisis.
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S
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Figure 12: Geographical distribution of the derivative of

probabilities balance  of world countries over petroleum

price  for the year 2008. The country balance is determined

from CheiRank and PageRank vectors as

. (from Ermann, 2015-a)

The aproach developed in (WTN, 2011-e) allows to perform the Google matrix analysis for one specific product or

for all commodities counted together. In this way the matrix size is always restricted to the number of countries 

being significantly smaller than the total number of nodes  for a trade with  products.

The Google matrix of the muliproduct world

trade was constructed in (Ermann, 2015-a).

This construction treats all countries on equal

democratic grounds independently of their

richness and at the same time it considers the

contributions of trade products proportionally

to their trade volume. This is achieved by the

introduction of a personalized vector in the

term of  with , that makes the

contribution of products being proportional to

their trade volume, while all countries are

treated on equal grounds. This analysis was

done for  products and up to

 countries. The obtained results

show that the trade contribution of products is asymmetric: some of them are export oriented while others are

import oriented even if the ranking by their trade volume is symmetric in respect to export and import after

averaging over all world countries. The construction of the multiproduct Google matrix allows to investigate the

sensitivity of the trade balance with respect to price variations of products, e.g. petroleum and gas, taking into

account the world connectivity of trade links. An example of the country sensitivity to the petroleum price increase

 is shown in Figure 12. It shows that the dimensionless trade balance  is increased

for petroleum producing countries like Russia and Saudi Arabia while the trade balance of China drops significantly

(  are PageRank and CheiRank probabilities of a country  after summation over all products).

The Google matrix analysis of multiproduct world trade allows to establish hidden dependencies between various

products and countries and opens new prospects for further studies of this interesting complex system of world

importance.

This approach was successfully extended to the analysis of the world network of economic activities from the

OECD-WTO TiVA database (Kandiah, 2015-a). This network describes the exchange of 37 activity sectors of 58

countries in years 1995 - 2008. In contrast to the UN COMTRADE these datasets contain also exchange between

different sectors. The exchange balance  allows to determine economically rising countries with a robust network

of economic relations. The sensitivity of  to price variations and labor cost in various countries determines the

hidden relations between world economies being not visible for the usual export-import exchange analysis. The

analysis of financial network transactions between various bank units can be also well suited for the Google matrix

approach.

The Google matrix analysis can be considered as a further extention of the matrix analysis of Input-Output

transactions broadly used in economy (Miller, 2009-b), starting from the fundamental works of Leontief (Leontief,

Nc

N = NcNp Np

d /dBc δ33
δ33

= ( − )/( + )Bc P∗
c Pc P∗

c Pc

G (1 − α)

= 61Mp
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1953-a, Leontief, 1986-b).

Other networks

The Google matrix approach allows to obtain interesting and useful results for a variety of directed networks:

network of integers and citation network of Physical Review with nilpotent (triangular or nearly triangular)

adjacency matrices, networks of game go (Kandiah, 2014-a) , the entire Twitter network of 41 million size in 2009,

network of business process management, neural network of a large-scale thalamocortical model (Izhikevich,

2008-a), neural network of C.elegans, networks of word transitions in DNA sequences, gene regulation networks

(see Refs. in Ermann, 2015-b).

Outlook

In physics, the Random matrix theory was introduced by Wigner (Wigner, 1967-b) to explain spectral properties of

complex nuclei, atoms and molecules. This theory, developed for Hermitian and unitary matrices, captures universal

spectral properties and find numerous applications in atomic, mesoscopic and nuclear systems (Guhr, 1998-b,

Mehta, 2004-b, Fyodorov, 2011-b). This approach also describes the spectral properties of quantum chaotic systems

which are characterized by matrices of a relatively simple structure (Haake, 2001-b). It is interesting to note that the

quantum algorithm for computations with the Google matrix on a quantum computer has been also analyzed

recently (Paparo, 2014-a). The development of a random matrix theory for Markov chains and Google matrix

ensembles still remains a challenge. Some attempts in this direction are described below. It is

Random matrix theory for G ?

On a first glance there are various preferential attachment models generating complex scale-free networks

(Dorogovtsev, 2010-b, Newman, 2010-b). A well known example is the Albert-Barabasi procedure (AB) which

builds networks by an iterative process. Such a procedure has been generalized to generate directed networks with

an expectation that such networks can generate spectra of Google matrices being close to real cases (see Refs. in

Ermann, 2015-b). However, it has been found that the spectrum of  of the AB model has all  (except one

unit eigenvalue). Thus, even if the decay of PageRank probability is well described by the relation , the

spectrum of  for the AB model is drastically different from real cases of WWW and other networks described

above.

A class of random matrix models of  has been analyzed in (Frahm, 2014-a). These models have  positive

random elements at random positions per column whose sum is normalized to unity. For this case it was shown that

all eigenvalues (except the unit one) are concentrated inside a circle around zero with radius . Therefore

these models are not suitable as well to reproduce spectral features of real networks.

The class of orthostochastic matrices of size  (Zyczkowski, 2003-a) approximately reproduces triplet and

cross structures well visible for real networks (see Figs.6,7,8), but their size is too small to be used for real systems.

G | | < 0.4λi
P ∼ 1/K

G

G Q

R ∼ 1/ Q‾‾√
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Anderson localization for Google matrix eigenstates

The phenomenon of Anderson localization appears in a variety of quantum physical systems including electron

transport in disordered solids and waves in random media (see Refs. in Guhr, 1998-b, Ermann, 2015-b, Zhirov,

2015-a). It is usually analyzed in the framework of Hermitian or unitary matrices. The possibilities of Anderson like

localization and delocalization for matrices belonging to the class of Markov chains and Google matrices are

considered in (Ermann, 2015-b, Zhirov, 2015-a). It was shown that certain matrix models, composed of blocks of

orthostochastic matrices of size  (Zyczkowski, 2003-a), can have an algebraic decay of PageRank

probability with the exponent  (for the case ) which is related to the existence of an Anderson

transition of eigestates and a mobility edge in the complex plane. A further development of such models can

allow to establish a closer link between the Anderson delocalization phenomenon in disordered solids and of

delocalization of eigenstates for the Google matrix of directed networks.

Reduced Google matrix

In many cases the real directed networks can be very large. However, in certain cases one may be interested in the

particular interactions among a small reduced subset of  nodes with  instead of the interactions of the

entire network. The interactions between these  nodes should be correctly determined taking into account that

there are many indirect links between the  nodes via all other  nodes of the network. This leads to

the problem of the reduced Google matrix  with  nodes which describes the interactions of a subset of 

nodes. The matrix  has the form (Frahm, 2016-a):

where  and  are sub blocks of the matrix  with respect to the decomposition of nodes in the

reduced and the complementary subset of nodes:

The matrix  takes into account effective interactions between subset nodes by all their indirect links via the

whole network. It belongs to the class of Google matrices and its PageRank vector has the same probabilities as the

 nodes of matrix  (after rescaling due to noramlization). The numerical methods of computation of  are

described in (Frahm, 2016-a). This approach provides new possibilities to analyze effective interactions in a group

of nodes embedded in large directed networks. An example of application of this approach to recovery of hidden

links between political leaders is given in (Frahm, 2016b-a).

Historical notes

Starting from the work of Markov (Markov, 1906-a) many scientists contributed to the development of spectral
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ranking of Markov chains. Research of Perron (1907) and Frobenius (1912) led to the Perron-Frobenius theorem for

square matrices with positive entries (see e.g. Brin, 2002-b). A detailed historical description of spectral ranking

research is reviewed by (Franceschet, 2011-a and Vigna, 2015-a). As described there, important steps have been

done by researchers in psychology, sociology and mathematics including J.R.Seeley (1949), T.-H.Wei (1952),

L.Katz (1953), C.H.Hubbell (1965). In the WWW context, the Google matrix in the form (1), with regularization of

dangling nodes and damping factor , was introduced by (Brin, 1998-a).

The PageRank vector of a Google matrix  with inverted directions of links has been considered by (Fogaras,

2003-a, Hrisitidis, 2008-a), but no systematic statistical analysis of 2DRanking was presented there. An important

step was done by (Chepelianskii, 2010-a) who analyzed  eigenvectors of  for directed network and of 

for network with inverted links. The comparative analysis of the Linux Kernel network and WWW of the

University of Cambridge demonstrated a significant difference in the correlator  for these networks and different

functions of top nodes in  and . The term CheiRank was coined in (Zhirov, 2010-a) to have a clear distinction

between eigenvectors of  and . We note that top PageRank and CheiRank nodes have certain similarities with

authorities and hubs appearing in the HITS algorithm (Kleinberg, 1999-a). However, the HITS is query dependent

while the rank probabilities  and  classify all nodes of the network.

Lectures about Google matrix

Video lectures about Google matrix are available at (Frahm, 2014-v,Georgeot, 2014-v,Shepelyansky, 2014-v).
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