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Part | : Introduction



Networks

->Recent field: study of complex networks, tools and models
have been created,;

->Many networks are scale-free with power-law distribution of links
difference between directed and non directed networks

->|mportant examples from recent technological developments:
iInternet, World Wide Web, social networks...

->Can be applied also to less recent objects
In particular, study of human behavior: languages, friendships...




Networks for games

-> Network theory never applied to
games

-> Games are nevertheless a very
ancient activity, with a mathematical
theory attached to the more complex
ones

-> (Games represent a privileged
approach to human decision-making

->Can be very difficult to modelize or
simulate




The game of go

—Game of go: very ancient
Asian game, probably originated
In China in Antiquity (image on
the left from VIlith century)

-> (Go Is the Japanese name;
Weiqgi in Chinese, Baduk in
Korean




The game of go

-> (GO Is a very popular game
played by many parts of the
population (ex. right) on a board
called Goban (see below)
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Rules of go
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->White and black stones A
alternatively put at
Intersections of

19 x19 lines
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->Stones without liberties are e
removed
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->A chain with only one liberty
IS said In atari

->Handicap stones can be
placed

->Aim of the game: construct
protected territories




Beginnings: Fuseki and Josekl




During the game-Ko and ladders
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Endgames-life and death




Player rankings

—There are nine levels (dans) of
professionals (top players) followed
by nine levels of amateurs

->A handicap stone can compensate
for roughly one dan: like in golfing,
players of different levels can play
evenly thanks to handicaps

->There are regular tournaments of
go since very long times
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Computer simulations

-->\While Deep Blue famously beat the world chess champion
Kasparov in 1997, We had to wait March 2016 for Go with
Alphago a computer program wich has beaten one of best go
player. Why is this game so difficult to simulate?

->Total number of legal positions 10172, vs “only” 10°9 for chess
-> Not easy to assign positional advantage to a move
-> Alphago uses Monte Carlo Go: play random games starting

from one move and see the outcome until a value can be assigned
to the move, and deep Learning techniques by neural networks




Databases

->\We used databases of expert and amateur games in order to
construct networks from the different sequences of moves,
and study the properties of these networks

->\Whole available record, from 1941 onwards, of the
most important historical professional Japanese go tournaments:
Kisel (143 games), Meijin (259 games), Honinbo (305 games),
Judan (158 games)

Contains also 135 000 amateur games played online

->|evel of players is known, mutually assessed according to
games played

->We compare databases from human players to networks
constructed from computer-generated games (program Gnugo)



http://www.u-go.net/

->"plaquette”

Vertices of the network |

. square of 3 x3 intersections

->We identify plaquettes related by symmetry
->We identify plaquettes with colors swapped
->1107 nonequivalent plaguettes with empty centers
->vertices of our network
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Vertices of the networks II

->"plaquette” : square of 3 x3 intersections + atari status of
nearest-neighbors

->\We still identify plaquettes related by symmetry

->Because of rules restrictions, only
2051 legal nonequivalent plaquettes with empty centers
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Vertices of the networks Il

->"plaquette” : diamond of 3 x3 +4 intersections
->\We still identify plaquettes related by symmetry

->193995 nonequivalent plaquettes with empty centers
(96771 actually never used in the database)
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Zipf’'s law

->/Zipf's law: empirical law
observed in many natural
distributions (word
frequency, city sizes...)
->|f items are ranked
according to their
frequency, predicts a
power-law decay of the
frequency vs the rank.

->integrated distribution of % ! o 3 6
three network nodes clearly S e
follows a Zipf's law Normalized integrated frequency

with exponent close to 1 distribution of three types of nodes.
Thick dashed line is y=-x.




Links of the network

->\We connect vertices corresponding to moves a and b if
b follows a in a game at a distance < d.

->Each choice of d defines a different network. The
choice of d determines the distance beyond which two
moves are considered nonrelated.

->Sequences of moves follow Zipf's law (cf languages)
Exponent decreases as longer sequences reflect
iIndividual strategies

->move sequences are well hierarchized by d=5
->amateur database departs from all professional ones,
playing more often at shorter distances




Sizes of the three networks

-> Total number of links including degeneracies is 26 116 006,
the same for all networks

->Network I: 1107 nodes, 558190 links without degeneracies
->Network Il: 2051 nodes, 852578 links without degeneracies

->Network Ill: 193995 nodes, 7405395 links without
degeneracies

->Very dense networks, especially the smallest ones

-> Very different from e.g. the World Wide Web




Part Il : Networks from human
games



Link distribution

->Talls of link distributions
very close to power-law
for all three networks

->network displays the -
scale-free property

->symmetry between

iIngoing and outgoing links

IS a peculiarity of this

network Normalized integrated
distribution of links for the
three networks




Matrix for directed networks

Weighted adjacency matrix
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Google algorithm

Ranking pages {1,..., N} according to their importance.
|dea:
e The importance of a page / depends on the importance of the pages
pointing on it

e If a page has many outgoing links the importance it transmits is inversely
proportional to the number of pages it points to.

PageRank p; should thus verify

D
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n;= number of outgoing links of page ;.
With the (stochastic) matrix H introduced above,

p = Hp




Computation of PageRank

p = Hp = p= stationary vector of H:
can be computed by iteration of H.

To remove convergence problems:

Replace columns of O (dangling nodes) by %: H — matrix S
(0 0 7 000 0)
% o1 0000
;01 1 000
In our example, H = % 0 % o 1 1 1
005 ;000
01 1 0000
\ 0 0 1 000 0)

To remove degeneracies of the eigenvalue 1, replace S by

1
G=aS+(1-a)y e




PageRank and ChelRank

e The PageRank algorithm gives the PageRank vector, with amplitudes p;,
with 0 < p; < 1

o All webpages can then be ordered according to their PageRank value

e The PageRank value of a webpage can be understood as the average
time a random surfer will spend there

e It ranks websites according to the number of links pointing to them which
come from high-PageRank sites.

->PageRank is associated to the largest eigenvalue of the matrix G. It
Is based on ingoing links

->CheiRank corresponds to the PageRank of the network obtained by
inverting all links. It can be associated to a new matrix G*, and is
based on outgoing links



Ranking vectors: network |

->PageRank: ingoing links

->CheiRank: outgoing links

->HITS algorithm:Authorities

(ingoing links) and Hubs
(outgoing links)

| Hgﬁgéizfv¥EHR  PageRank |
->Ranking vectors follow an z thelRa ‘
algebraic law g e Sy
->Symmetry between S N

distributions of ranking o

vectors based on ingoing
links and outgoing links.

2000 4000
n




Ranking vectors: other networks

->Still symmetry
between distributions
of ranking vectors
based on ingoing links
and outgoing links.

->Power law different
for the largest network

Loglo K,K#*

->Ranking vectors of G and G* for the three networks
red: size 1107, green: size 2051, blue: size 193995.



Ranking vectors: correlations

->Strong correlations
between PageRank and
CheiRank

->Strong correlation between
moves which open many
possibilities of new moves
and moves that can follow g
many other moves.
->However, the symmetry is
far from exact.

->Correlation less strong for
largest network

500

0
0 500 1000 1500 2000

5000 10000 15000 20000

Figure: K* vs K where K (resp. K*) is the rank of a vertex when ordered
according to PageRank vector (resp CheiRank) for the three networks (sizes
1107, 2051, 193995)



Ranking vectors vs most common moves
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Figure: Top 30 most common
moves of network lll; right: top
30 PageRank and CheiRank
for same network




Ranking vectors vs most common moves

->There are correlations between PageRank, CheiRank, and
most common moves

->However, there are also many differences, which mark the
Importance of specific moves in the network even if they are
not that common

->Genuinely new information, which can be obtained only from
the network approach -

Figure: frequency rank vs
PageRank (blue) and
CheiRank (red) for network Ill

frequency rank 1

0 200 400 600 800 1000
K, K*



Ranking vectors vs most common moves

-> In the World Wide Web, frequency count corresponds to
ranking by e. g. indegree

->PageRank takes into account indegree but weighted by
Importance of nodes from where the links are coming

-> Here PageRank underlines moves to which converge many
well-trodden paths in the database

->CheilRank does the same in the reverse direction,
highlighting moves which open many such paths

-> Could be used to bias or calibrate the Monte Carlo Go



Spectrum of the Google matrix

->For second and third networks, still
gap between the first eigenvalue and
next ones

->Radius of the bulk of eigenvalues
changes with size of network

->More structure in the networks with
larger plaquettes which disambiguate
the different game paths and should
make more visible the communities of
moves

Figure: Eigenvalues of G in the
complex plane for the networks with
1107, 2051 and 193995 nodes
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What is the meaning of
eigenvectors of the Google matrix ?

->Next to leading eigenvalues are important, may indicate the
presence of communities of moves with common features

->Indeed, eigenvectors of G for large eigenvalues correspond
to parts of the network where the random surfer gets stopped
for some time before going elsewhere

-> Correspond to sets of moves which are more linked
together than with the rest of the network

-> Should indicate communities of moves which tend to be
played together



3% e 3 5§ Top 30 moves

W8N £ £ 8 7th, 11th, 13th and
s e e e B[ e . 21t eigenvectors
- o0 ot et dae G SO of G (Ieft)

% B @ e e b 7th, 11th, 13th and
——— . 21th eigenvectors
e L D g B of G* (right)

I % % [mpression:
530 e b @ i different groups
T T mixed in the same
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Networks for different game phases

->Eigenvectors are
different from those of full
game network, showing
specific communities

->Bias toward more
empty plaquettes for
beginnings, more filled
plaquettes towards the
end

Figure: fourth
eigenvector of G for 50
first moves (top), middle
50 (middle) and last 50
(bottom)




Part Il : Networks from Computer-
generated games



Databases

Gnugo 19X19:
7000 Independent
Games

72 hours = 1000
Games

U-go 19x19:
18 000 amateurs
Games

Gnugo 9X9:

20 000 Normal
Games

20 000 Games with
Monte-Carlo

10 hours = 1000
Games




Link distribution

Gnugo 19X19 4000 parties Gnugo Monte-Carlo 9X9 20 000 parties 19 x 19

Log®, (K)). Log(F ()
b [ .

L S E— T T T T 1 T T T T T T

\ 7 1 \ CERZE[L human and
T — Gnugo

! . | seemtobe
: the same,
a=-1

Log(®, K, Log®, (K))
; o .

[ "‘ . - %T:t:lincm a=-0.84 - 9 X 9
I — different

1 N A from 19X19
T ' a=-0.8 ->
more filled

—— T plaguettes

U-go 19X19 4000 parties amateurs Gnugo 9X9 20 000 parties played



PageRank/CheiRank: Network |
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Ohter Ranking Vector: Network |

-> Difference between Monte-Carlo

Gnugo and not Monte-Carlo Gnugo
starting from 4th Right Eigenvector
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Spectrum for Gnugo

->For Gnugo Network, still gap between
the first eigenvalue and next ones
->Radius of the bulk of eigenvalues
changes with Computer-generated
games wich is more exploded

Gnugo 20 000 Games 9x9 No MC

U-go 4?221 Stgumg)s 19x19 :_ | | | T 1 | | I. | [
->More L
structure in
every spectrum — —
from Gnugo I '
databases by

1 n 1 1
-03 0 03
Real part of eigenvalues

Gnugo 4000 Games 19x19 Gnugo 20 000 Games 9x9 MC



Histogram of Spectrum

->Density for
Eigenvalues inside
bulk decreases
faster with human
than computer-
generated games

logl0# de valeurs propres)

-0.65 vs-0.11 I 1|[:-.."' T R

divisions de pas 0,023

Figure 32: Plot des courbes normalisées et non normalisées pour 4000 parties

#}\' Grugo,/U-go 19 % 19 on peut voir les pentes des courbes normalisées antour de
. <vr. ] ] P P
rl—l <| |}\'| |—T'l 0.11 pour Gnugo et -0.65 pour U-go

2Tr; Figure: radius from 0.05 to 0.5
square: Human

diamond: Gnugo
Red/black: Normalized/Not Normalized



Inverse Participation Ration

->Difference
beetween
Gnugo and
Human

-> Red dots
cloud
(Human)
shifted to
the right
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Go turing test

->\What Iif we f _
could distinguish £ %It % £§ %;L 3‘}5 %ﬁ }é H’Si }I
uman om 16155 1 1 15 15 1 15 . &
t % : _
players? 1 E -*é EEETET
Fic 17 l l wid et en has Je trodsién

groupe de l

->We used
3x4000 games



Conclusion

->We have studied the game of go, one of the most ancient and
complex board games, from a complex network perspective.

->Ranking vectors highlight specific moves which are pivotal but
may not be the most common

->Preliminary results: Networks built from human games and
computer-generated games show some clear differences at
various levels

->Computer seems to play differently from humans

->Can we construct estimators which will allow to distinguish
human from computer at go? (go Turing test)



Thank you for your
attention!!




Networks for different levels of play

->The presence of handicaps means that the winner may not be
the best player
-> However, the level of players is known (number of dans)
-> One can construct networks for 1d vs 1d and compare
with 9d vs 9d. We look at

T3 = Zi(—j ki — Kil/ D ki

which quantifies the difference in outgoing links between two
networks :

Figure: red is for 1d/1d vs ]
9d/9d, blue for 6d/6d Network
with 193995 vertices. 3

Is this difference significant?

0 500 1000 1500



Networks for different levels of play

-> We compared different samples of 6d/6d to the 1d/9d and
computed 7 = <7°j> In each case

-> Result: statistically significant difference between 1d/9d and
the 6d/6d samples

1.4

->Differences can be

seen between the 135
networks built from
moves of players of -

different levels

1.25

1.2




Networks for different game phases

->0ne can separate the
games into beginning,
middle, and end

->The three networks
are different, with
markedly different
Spectra and
eigenvectors

Figure: spectrum for all
moves (black), 50 first
moves (red), middle 50
(green) and last 50
(blue), Network with
193995 vertices.




