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Outline
• Broad question: What happens to Anderson localization in presence 

of interactions?
«Many-body localization» (MBL)

A new distinct dynamical phase of matter, which does not thermalize

• Present in simple toy models
• Distinct features from a «thermal» state, and Anderson insulator

• Many open questions...

Part 1 : Mini-Review on Many-Body localization

Part 2 : «Large»-scale numerics on a MBL Hamiltonian

• Energy-resolved phase diagram
• Computational issues



Part 1 : Mini-Review on Many-
Body Localization

Reviews on MBL :
Nandkishore & Huse, arxiv:1404.0686

 Altman & Vosk,  arxiv:1408.2834

my current understanding of 



Thermalisation & ETH
• Initial wave-function                                  expressed in the eigenbasis of  | 0i =

X
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• Time-evolved observable (generic Hamiltonian)
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• Eigenstate thermalization hypothesis (ETH)

in the thermodynamic limit and for local observable

hn|O|ni ' hn0|O|n0i = O(E)

hn|O|n0i vanish

in the same energy shell

Deutsch, Srednicki, Rigol & many authors

|ni, |n0i

«Diagonal ensemble»

• ETH + (some other minimal assumptions) implies thermalisation 

hO(t ! 1)i = O(E) = O(T )
E = h 0|H| 0i
E = hHiT

H =
X

n

En|nihn|



Consequences
• Each eigenstate is thermal, «knows» equilibrium

⇢(0) = |nihn| = ⇢(t) = ⇢eq(Tn) En = hHiTn

• ETH is a «justification» of the microcanonical ensemble at the invididual eigenstate level
• Memory of initial conditions is lost

many authors...
• Integrable systems : May have their own ETH, relaxation to a Generalized Gibbs Ensemble

• Many-Body Localized systems

t ! 1

• Localized systems : single-particle localization

• ETH seems to work (analytics+numerics) for most many-body quantum systems, except 



Many-body localization

• Beyond perturbation : numerics (including this talk) indicate that the localized phase survives

• Crucial to work in the «eigenstate ensemble», not (micro-)canonical ensemble

• Old problem                              revived by an enormous amount of contributions!

Nandkishore, Huse, arxiv:1404.0686,
 Altman, Vosk 1408.2834

• Infinite disorder : eigenstates are fully localized product-states, no entanglement

• Typical example : XXZ chain with random fields
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• Branch small interaction : perturbative calculations                                  indicate that 

thermalization does not occur: states keep localized, no spin or energy transport

Gornyi et al.
Basko et al.

MBLThermal, «ergodic»
h

0

Anderson, Fleishmann, 
Shepelyansky...

Phase transition (?) is dynamical 
can’t be seen in thermodynamics

hc



Phenomenology of MBL systems
• Consider only fully MBL systems (all eigenstates are localized)
• Exact results              , phenomenology                , perturbative results,       strong disorder RG

Ji1,...,ik

• Idea: Quasi-local unitary transform can «diagonalize» the Hamiltonian

Imbrie Huse. Oganesyan, 
Abanin et al. 

Ros, Müller
Scardicchio

Altman, Vosk
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decay exponentially

• Other sets of local integrals of motion can be constructed, which may have a better physical 
interpretation Ros, Müller

Scardicchio
Abanin et al. 

• Useful to describe properties of MBL, to detect MBL through spin-echo experiments
Serbin et al. 

• Set of localized bits:

•                     =  complete set of local integral of motionsU⌧zi U
†

⌧zi ' Ẑi(h)�
z
i + tail



Entanglement & MBL
• ETH : Entanglement entropy of eigenstates is extensive : Volume law

System is its own bath: B acts a thermal bath for A

A

B

NA
⇢A = TrB⇢ = ⇢eqA (Tn)

SA = �TrA⇢A log ⇢A / NA Tn 6= 0if

Can be understood with the 

localized-bits picture

• Entanglement spreads logarithmically

FIG. 1. (a) Intuitive picture for t linear entanglement growth in clean systems. Quasi-particles

prepared in a localized initial state propagate as a superposition of a right and left moving particle,

thus generating entanglement when the light-cone crosses the subsystem boundary. (b) Entangle-

ment growth in a many-body localized system showing delayed logarithmic growth. Inset shows

scaled plots with time measured in units of 1/J
z

, indicating that the delay is set by the interaction

scale. (c) Saturated value of the entropy shows area law for the non-interacting system (J
z

= 0),

and volume law for the system with interactions. The inset shows the time evolution up to the sat-

uration value. Panels (b) and (c) are reproduced from Ref. [19], copyright (2012) by The American

Physical Society.

XXZ spin-1/2 chain with a random field:
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This Hamiltonian (10) can be mapped, using a Jordan-Wigner transformation, to an in-

12

Bardarson et al.

• MBL states have low entanglement SA/NA ! 0

Eisert et al. Abanin, Vidal et al. • MBL states efficiently represented as matrix-product states 

Znidaric et al.

Pekker, Clark



Summary of MBL

• MBL in systems with no disorder? 

• Many-body mobility edge: Griffiths effects? sub-diffusive ergodic phase?

• Nature of many-body localization transition?

Thermal phase Single-particle localized Many-body localized

Memory of initial conditions Some memory of local initial Some memory of local initial

‘hidden’ in global operators conditions preserved in local conditions preserved in local

at long times observables at long times observables at long times.

ETH true ETH false ETH false

May have non-zero DC conductivity Zero DC conductivity Zero DC conductivity

Continuous local spectrum Discrete local spectrum Discrete local spectrum

Eigenstates with Eigenstates with Eigenstates with

volume-law entanglement area-law entanglement area-law entanglement

Power-law spreading of entanglement No spreading of entanglement Logarithmic spreading of entanglement

from non-entangled initial condition from non-entangled initial condition

Dephasing and dissipation No dephasing, no dissipation Dephasing but no dissipation

TABLE I: A list of some properties of the many-body-localized phase, contrasted with properties

of the thermal and the single-particle-localized phases. The spreading of entanglement is discussed

further in Sec.IV-C. Local spectra are discussed further in Sec.IV-D.

fermions in a random potential. An analogous argument can be constructed for objects

with more than two states, but we stick to this two-state example for specificity. Let us

further assume that the p-bits are governed by a Hamiltonian with quenched disorder and

strictly short-range interactions. For strong enough disorder, such a Hamiltonian can be

in the fully many-body localized (FMBL) regime, wherein all the many-body eigenstates of

the Hamiltonian are localized. It was argued in [21–24] that in this FMBL regime, one can

define a set of localized two-state degrees of freedom, with Pauli operators {~⌧
i

}, henceforth

called ‘l-bits’ (l=localized) such that the Hamiltonian when written in terms of these new

variables takes the form
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where the sums are restricted so that each term appears only once, and E0 is some constant

energy o↵set which may be zero and which has no relevance for the closed system’s dynamics.

The typical magnitudes of the interactions J
ij

and K(n)
i{k}j fall o↵ exponentially with distance,

as do their probabilities of being large.

19

from Nandkishore, Huse
arxiv:1404.0686,

• MBL also found in quasi-periodic systems

• MBL states can host «forbidden» (discrete-symmetry breaking, topological) order, in 1d at finite E

• Coupling with a bath: MBL physics can still be detected

Some open questions
Müller et al., Grover & Fisher; De Roeck & Huveneers, 

Garrahan et al., Yao et al.

Agarwal et al.



 Experimental realization Schreiber et al., arXiv:1501.05661
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the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator
(see Fig. 1C).

U/J=4.7(1)
U/J=10.3(1),   
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed

2

To characterize the dependence of the localization transition on U
and �, we focus on the stationary value of I, plotted in Fig. 3 for non-
interacting atoms and in Fig. 4 for interacting atoms. For non-interacting
atoms (Fig. 3), the measured imbalance is compatible with extended
states within the finite, trapped system for �/J . 2. Above the critical
point of the homogeneous Aubry-André model at �/J = 2 [37], how-
ever, the measured imbalance strongly increases as the single-particle
eigenstates become more and more localized. The observed transition
agrees well with our theoretical modeling including the harmonic trap
[36].
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Figure 5: Growth of entanglement entropy and corresponding slope. A:

DMRG results of the entanglement entropy growth for various interaction
strengths and �/J = 5. For long times, logarithmic growth characteristic of
interacting MBL states is visible. The experimentally used evolution times indi-
cated by the yellow shaded region are found to be in the region of logarithmic
growth. B: The slope of the logarithmic growth, extracted using linear fits up to
the longest simulated time (50 ⌧ ) in A, shows a non-monotonic dependence on
the interaction strength, which tracks the inverse of the steady state CDW value
(red line). Error bars reflect different initial starting times for the fit.

The addition of moderate interactions slightly reduces the degree
of localization compared to the non-interacting case, i.e. they decrease
the imbalance I and hence increase the critical value of � necessary to
cross the delocalization-localization transition (Fig. 4A and B). Impor-
tantly, we find that localization persists for all interaction strengths. For
a given disorder, the imbalance I decreases up to a value of U ⇠ 2�

before increasing again. For large |U |, the system even becomes more
localized than in the non-interacting case. This can be understood qual-
itatively by considering an initial state consisting purely of empty sites
and sites with two atoms (doublons): for sufficiently strong interactions,
isolated doublons represent stable quasiparticles as the two atoms cannot
separate and hence only tunnel with an effective second-order tunneling

rate of JD =

2J2

|U| ⌧ J [44, 45]. This strongly increases the effective
disorder / �/JD � �/J and promotes localization. In the experi-
ment, the initial doublon fraction is well below one [36] and the density
is finite, such that we observe a weaker effect. We find the localization
dynamics and the resulting stationary values to be symmetric around
U = 0, highlighting the dynamical U $ �U symmetry of the Hubbard
Hamiltonian for initially localized atoms [46]. The effect of interactions
can be seen in the contour lines (Fig. 4A, dotted white lines) as well
as directly in the characteristic ‘W’ shape of the imbalance at constant
disorder (Fig. 4B), demonstrating the re-entrant behaviour of the sys-
tem [22]. This behaviour extends to our best estimate of the localization
transition, which is shown in Fig. 4A as the solid white line.
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Figure 6: Stationary imbalance I as a function of interaction strength dur-

ing loading. Data taken with disorder �/J = 3. The loading interactions of
aload = �89(2) a

0

(attractive, where a
0

denotes Bohr’s radius), 0(1) a
0

(non-
interacting) and 142(1) a

0

(repulsive) correspond to initial doublon fractions of
51(1)%, 43(2)%, and 8(6)%, respectively [36]. Each I value is the average of the
same 12 parameters as in Fig. 3. Error bars show the standard deviation of the
mean. Solid lines are guides to the eye. The grey shaded area spans the limiting
cases of 0 and 50% doublons, simulated using DMRG for a single homogeneous
tube.

We can gain additional insight into how localization changes with
interaction strength by computing the growth of the entanglement en-
tropy between the two halves of the system during the dynamics, as
shown in Fig. 5A. For long times, we observe a logarithmic growth of
the entanglement entropy with time as S(t) = S

o↵set

+ s⇤ ln(t/⌧),
which is characteristic of the MBL phase [12, 13]. The slope s⇤ is
proportional to the bare localization length ⇠⇤, which in a weakly in-
teracting system in the localized phase corresponds to the single particle
localization length. In general, ⇠⇤ is the characteristic length over which
the effective interactions between the conserved local densities decay
[17, 18] and connects to the many-body localization length ⇠ deep in the
localized phase. In contrast to ⇠, however, ⇠⇤ is expected to remain finite
at the transition [23]. We find s⇤ to exhibit a broad maximum for inter-
mediate interaction strengths (Fig. 5B), corresponding to a maximum
in the thus inferred localization length. This maximum in turn leads to
a minimum in the CDW value. The characteristic ‘W’ shape in the im-
balance is thus directly connected to the maximum in the entanglement
entropy slope, as both are consequences of the maximum in localization
length. Equivalent information on the localization properties as obtained
from the entanglement entropy can be gained in experiments by moni-
toring the temporal decay of fluctuations around the stationary value of
the CDW [36]. While we do not have sufficient sensitivity to measure
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• Cold-atomic gas realization of interacting Aubry-André model:

the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator
(see Fig. 1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed
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the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian
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ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
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Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator
(see Fig. 1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed
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• (Non-)Equilibration of a quenched initial state measured by imbalance

the other side quantum correlations persist indefinitely. Hence the MBL
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tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
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Ne +No
, (1)
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in spin state � 2 {", #} on site i. The second term describes the quasi-
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sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
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datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.

2 4 6 8
¨/J

0.2

0.4

0.6

Im
ba

la
nc

e 

0.0

Experiment

ED - incl. trap
ED - no trap

Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
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mean.
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Part 2 : «Large»-scale numerics on a 
MBL Hamiltonian

• How to detect MBL states in numerics?

• Presence of a many-body mobility edge?

• Nature of the MBL transition? First fingerprints of universality class...

• Is MBL a true localization in Hilbert space?

Phys. Rev. B 91, 081103 (2015)



MBL & Numerics
• Prototypical MBL Hamiltonian : Heisenberg S=1/2 spin chain in a random field

hi 2 [�h, h]H =
LX

i=1

Si · Si+1 �
X

i

hiS
z
i

• Total magnetization       is conserved, no other symmetriesSz

• Almost no symmetries, average over disorder

• MBL physics is located at high-energy: eigenstates in the middle of the spectrum

• Ground-state methods are not well adapted 

• A tough computational problem

DMRG, power method, Lanczos, T=0 series expansion, etc

Quantum Monte Carlo, high-T series expansion ...
• We want eigenstates of a closed system: cannot impose a bath ! 

• We are left with
• Time evolution after a quench: time-dependent DMRG, TEBD ... (but no eigenstates)

• Brute-force methods: Full diagonalization, or (slightly better) spectral transforms
• Real Space Renormalization Group: for excited states, only in the strong disorder limit



Computational details
• Obtain eigenstates in the middle of the spectrum with shift-invert

�

H R = (H � �I) R�1

• Extremal eigenvalue problem for           (Lanczos-like methods ...)R�1

«Simple» linear equations

Bottleneck !

• LU decomposition done by the massively parallel solver Mumps

• We cannot compute           ! However just need to know how to apply R�1 R�1a = b

‣ LU decomposition R = LU
c a = Lc

• Three steps method:

‣ Solve for     in
‣ Solve for     inb c = Ub



Computational details
• Obtain eigenstates in the middle of the spectrum with shift-invert

�

H R = (H � �I) R�1

• Further details:

‣ Method typical for Anderson localization, however LU much more difficult here !

‣ L=22  (matrix size                  ) instead of L=16 (matrix size                 )⇠ 700.000 ⇠ 12.000

‣ Obtain            eigenstates for                  disorder realizations for each field, energy, L⇠ 1000

‣ All results in terms of 

⇠ 50

✏ = (E � E
max

)/(E
min

� E
max

)

‣ Strong correlations between eigenstates of the same disorder sample!

✏ = 0

✏ = 1



Gap ratios
• Level statistics: natural tool to check for localization

• Thermal (ETH) phase: expect Random Matrix Theory (in particular GOE) to correctly 
capture highly-excited eigenvalues 

• MBL phase: expect Poisson statistics (no correlation, no level repulsion)

• However, unfolding necessary due to d.o.s. effects
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FIG. 1. We look at a one-dimensional Heisenberg model with random on-site magnetic field of the form H =
P

i(XiXi+1 + YiYi+1 +
ZiZi+1 +µiZi), where µi is drawn uniformly from the interval [�h, h]. a Shown is the number of eigenstates for 14 sites as a function of the
discretised energy for h = 1 averaged over 100 realisations and the variance of this averaging is indicated by vertical error bars. The resulting
function is close to a Gaussian. b Here, the integrated density of states of this model with the same parameters is shown. The corresponding
error bars are too small to appear. This quantity is related to the number of states ⇥ by an exponential factor 2N . This plot indicates that
indeed the number of states will have small tails and thus few states at low energies. c Depicted is the (von Neumann) entanglement entropy
of the eigenvectors as a function of the energy. The results were obtained for the disorder strength h = 4 on a system of 12 sites and for each
individual state an average over the different cuts through the 1D chain was taken. This plot corroborates the intuition that the entanglement
entropy and thus the associated bond dimension of the corresponding MPS increase with the energy.

b If the Hamiltonian has a mobility edge at energy E
mob

,
and its spectrum fulfils assumptions AI and AIII, then
the statement holds for all eigenvectors below this en-
ergy E

mob

and the bond dimension is given by

D = poly (⇥(Ek + ), N) ,

for any fixed  which enters in the precise form of the
polynomial.

The proof is a direct consequence of our main theorem
together with the fact that exponential clustering in one di-
mension implies strong bounds on entanglement entropies be-
tween any bipartite cut of the chain [32]. Using techniques
from [33] this leads to an efficient MPS approximation with
the above bounds on the bond dimension (see Appendix F for
details).

Summary & outlook. Despite considerable progress in
understanding the effects of random potentials on quantum
many-body systems, a precise definition of the phenomenon
of many-body localisation continues to be elusive. Attempts
to capture the phenomenology can largely be classified into
two complementary approaches: One of them puts character-
istic properties of the eigenfunctions into the focus of atten-
tion and asks for a lack of entanglement and a violation of the
ETH. The other one takes the suppression of transport as the
basis, which seems closer to being experimentally testable.

In this work, we have established a clear link between
these two approaches, by showing that dynamical localisa-
tion implies that eigenvectors cluster exponentially. This re-
sult, together with the existence of an approximating MPS de-
scription in one dimension, reminds of the definition of Ref.
[5], that defines many-body localisation in terms of matrix-
product state approximations of eigenstates. In contrast, in
our work, this feature is shown to follow from an absence of

transport. For future research, it would be interesting to fur-
ther explore this connection and to address the converse direc-
tion, namely to establish that an area-law for all eigenvectors
implies that excitations cannot travel through the system.

A different approach towards approximating the individual
eigenstates with a matrix-product state could potentially be
provided by constructing meaningful local constants of mo-
tion that give a set of local quantum numbers [34]. It seems
likely that tools using energy filtering will again prove use-
ful in this context, a prospect that we briefly discuss in Ap-
pendix C. On the practical side, further numerical effort will
be needed to understand the behaviour of individual models
and to fully understand the transport properties for different
energy scales. Our work could well provide a first stepping
stone for further endeavours in this direction: Showing that
eigenstates are well approximated by matrix-product states
implies that not only ground states, but in fact also excited
states can efficiently be described in terms of tensor networks.
Our result as such does not yet provide an efficient algorithm
to find the respective matrix-product states: this reminds of
the situation of the existence of lattice models for which the
ground states are exact matrix-product states, but it amounts
to a computationally difficult problem to find them [35]. Still,
this appears to be a major step in the direction of formulat-
ing such numerical prescriptions of describing the low-energy
sector of many-body localizing systems. Eventually, the lead-
ing vision in any of these endeavours appears to be a rigorous
proof of many-body localisation in the spirit of the original
results by Anderson. For this, creating a unifying framework
and linking the possible definitions seems a key first step.
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Gap ratios
• Energy-resolved data
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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eraged over target packets and disorder realizations for
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for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
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entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
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scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
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the data onto a single universal curve (see inset), yield-
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tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
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constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
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argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
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line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be
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strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Eigenstate correlations
• Beyond level statistics: correlations between eigenstates

• Thermal (ETH) phase: expect eigenstates to be «similar» 

• MBL phase: expect eigenstates to be «different» 

• Kullback-Leibler divergence quantify similarity between eigenstates (in a basis)

KL =
X

i

pi ln(pi/qi)
pi = |hn|ii|2

qi = |hn0|ii|2
{|ii} = {Sz} basis

• Identical states :                 , GOE :                  , diverges for very different statesKL = 0 KL = 2
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scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Phase diagram (1)
• Energy-resolved phase diagram
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Entanglement entropy
• Area vs. volume law scaling of entanglement entropy distinguishes the two phases
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be
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ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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scaleswithL.Weuseatleast1000disorderrealizations
foreachL(exceptforL=22whereweaccumulatedbe-
tween50and250samples).Foreach✏,observablesare
calculatedfromthecorrespondingeigenvectorsandav-
eragedovertargetpacketsanddisorderrealizationsfor
eachvalueofthedisorderstrengthh.Aseigenvectorsof
thesamedisorderrealizationarecorrelated,wefoundit
crucial[50]tobinquantitiesoveralleigenstatesofthe
samerealization,andthencomputethestandarderror
overthesebinaverages,inordernottounderestimate
errorbars.Investigatingnumerousquantitiesallowsto
checktheconsistencyofouranalysisandconclusions.
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transitionbetweenGOEandPoissonstatistics,firstus-
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1/⌫(h�hc)]whichallowsacollapseof
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procedureanderrorbarsestimatesinSup.Mat.).
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be
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by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be
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Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Memory of initial magnetization
• Consider relaxation of an initial spin inhomogeneity M̂ =

X

r

Sz
r e

i2⇡r/L

• Prepare the initial state
⇢0 = (1 + xM̂

†)/Z

• Initial spin polarization hM̂i0 = Tr⇢0M̂ =
x
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• Final spin polarization

following Pal & Huse
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Fig. 8 represents the disorder-average f as a function
of disorder strength for di↵erent system sizes L in the
spectrum center ✏ = 0.5, where a crossing point can
be observed. Assuming a finite-size scaling of the form
g[(h�hc)L1/⌫ ] allows to collapse all data (see inset), pro-
ducing best-fit values of ⌫ and hc (see inset) compatible
with other estimates (see details of fitting procedure in
first part of this Sup. Mat.).
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Figure 8. f as a function of disorder strength for di↵erent
system sizes L in the center of the spectrum ✏ = 0.5.
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Phase diagram (4)
• Energy-resolved phase diagram
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Localization in Hilbert space ?

= ln (IPR)

• How much a many-body wave-function is localized in a given basis?

Participation entropies

pi = |hn|ii|2 {|ii} = {Sz} basis|ni =
X

i

ni|ii

Sp
1 = �

X

i

pi ln(pi) Sp
q =

1

1� q
ln

X

i

pqi

• Scaling of participation entropy

4

Figure 4. Bipartite fluctuations of half-chain magnetization as
a function of disorder strength at ✏ = 0.3. Inset: data collapse
using the best estimates for the critical disorder strength hc =
3.09(7) and ⌫ = 0.77(4).

a half-chain L/2) have a similar behavior. Being sim-
ply the Curie constant of the subsystem, we also ex-
pect thermal extensivity (subextensive response) in the
ergodic (localized) regime. This is clearly checked in
Fig. 4 for ✏ = 0.3 where F/L has a crossing point at the
disorder-induced MBL transition. A data collapse (inset
of Fig. 4) is also possible for F/L = g[L1/⌫(h � hc)]),
giving hc = 3.09(7) and ⌫ = 0.77(4), consistent with es-
timates from other quantities (Fig. 1). Finally, we also
performed an analysis of the dynamic fraction f of an
initial spin polarization [27], and obtained similar consis-
tent scaling (see Supp. Mat. and Fig. 1).

The disordered many-body system can be mapped
onto a single particle problem on the complex graph
spanned by the Hilbert space whose dimH vertices are
the basis states, which are connected by spin-flip terms
in Eq. (1). The average coordinance of each node is
z ⇠ L and the random potential has a gaussian distri-
bution of variance �h ⇠ h

p
L, meaning that the e↵ective
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a2 =0.00±0.07, l2 =1.66±0.60

Figure 5. Participation entropy as a function of SP
0 =

ln(dimH) for q = 1, 2 and ✏ = 0.4. In the ergodic phase
(h = 1.8), SP

q grows linearly with SP
0 while the linear scaling

term vanishes within our error bars in the localized regime
(h = 4.8). Our fits (solid lines, see text) constrain aq 2 [0, 1]
and yield a logarithmic scaling prefactor lq ⇡ 2(1) at h = 4.8,
consistent with a (slow) growth of SP

q with system size in the
localized phase.

connectivity grows faster than the disorder strength. Us-
ing recent results on Anderson localization on Bethe lat-
tices at large connectivity [58], we do not expect genuine
Hilbert space localization at any finite disorder. This
argument is corroborated by our numerical results for
the PE SP

q (Fig. 5) which are always found to increase
with SP

0 ⌘ ln(dimH), albeit much more slowly in the
localized regime. Analysis of various fits of the form
SP

q = aqS
P
0 + lq ln(SP

0 ) + o(SP
0 ) indicate that aq ' 1

8q in the ergodic regime (with possibly small negative lq
corrections) as seen in the color scale of Fig. 1. In the lo-
calized regime, we obtain essentially similar fit qualities
with aq ⌧ 1 (see typical numbers in Fig. 5), or aq = 0
and lq > 0 (the slow growth of SP

q and our limited sys-
tem sizes do not allow to separate these two possibilities).
Both of these forms indicate that the localized phase has
a non-trivial generic multifractal behavior [32] (see re-
lated discussion [59] for the Bethe lattice).
Discussions and conclusions— Using various indica-

tors of the MBL transition, our large-scale energy-
resolved ED results indicate the existence of a many-
body mobility edge in the phase diagram (Fig. 1) of the
random field Heisenberg chain, with an apparent slight
asymmetry with respect to the spectrum center. Further-
more, we have indications through PE that the ergodic
regime has full features of a metallic phase (with aq = 1),
and that the localized states do not show signs of true
Hilbert-space localization (within the available system
sizes up to dimH ⇠ 7 ·105). Our detailed finite-size scal-
ing analysis (Sup. Mat.) provide a consistent estimate
of a characteristic length diverging as |h � hc|�⌫ with
⌫ = 0.8(3) through the full phase diagram (a slight vari-
ation of ⌫ with ✏ cannot be however excluded, see Sup.
Mat.). We are left with the puzzle (see also Ref. [31])
that, taken at its bare value, ⌫ appears to violate the
Harris-Chayes [60, 61] criterion ⌫ � 2/d: this may in-
dicate that the finite-size scaling and corrections at the
MBL transition may not follow [26, 27] standard forms.
Besides these results for the particular model Eq. 1, we

believe that the numerical techniques (massively paral-
lel energy-resolved diagonalisation) and new indicators of
the ergodic-localized transition (eigenstates correlations
or bipartite fluctuations) introduced here will be useful
in a large number of contexts related to MBL or ETH. In
particular, the obtention of exact eigenvectors on fairly
large systems will be crucial to quantify the e↵ectiveness
of encoding localized states as matrix product states, as
recently advocated [62–64].
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and CALMIP for generously providing access to the
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We present a large scale exact diagonalization study of the one dimensional spin 1/2 Heisenberg
model in a random magnetic field. In order to access properties at varying energy densities across
the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can
be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation
of the many body localization transition including the existence of a many-body mobility edge.
The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-law
entanglement, and a full delocalization in the Hilbert space. Conversely, the localized (non-ergodic)
regime displays Poisson statistics, area-law entanglement and signs of multifractality in the Hilbert
space where a true localization never occurs. We perform finite size scaling to extract the critical
edge and exponent of the localization length divergence.

The interplay of disorder and interactions in quan-
tum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following pre-
cursors works [1–4], Basko and co-workers have estab-
lished [5] within a perturbative approach that the cele-
brated Anderson localization [6] can survive interactions,
and that for large enough disorder, many-body eigen-
states can also “localize” (in a sense to be precised later)
and form a new phase of matter commonly referred to as
the many-body localized (MBL) phase.

The enormous boost of interest for this topic over the
last years can probably be ascribed to the fact that the
MBL phase challenges the very foundations of quan-
tum statistical physics, leading to striking theoretical
and experimental consequences [7, 8]. Several key fea-
tures of the MBL phase can be highlighted as follows.
It is non-ergodic, and breaks the eigenstate thermaliza-
tion hypothesis (ETH) [9–11]: a closed system in the
MBL phase does not thermalize solely following its own
dynamics. The possible presence of a many-body mo-
bility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite tem-
perature range in a MBL system [5]. Coupling to an
external bath will eventually destroy the properties of
the MBL phase, but recent arguments show that it can
survive and be detected using spectral signatures for
weak bath-coupling [12]. This leads to the suggestion
that the MBL phase can be characterized experimen-
tally, using e.g. controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [13–
16]. Another appealing aspect (with experimental con-
sequences for self-correcting memories) is that MBL sys-
tems can sustain long-range, possibly topological, order
in situations where equilibrated systems would not [17–
21]. Finally, a striking phenomenological approach [22]
pinpoints that the MBL phase shares properties with in-
tegrable systems, with extensive local integrals of mo-
tion [23–25], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates

Figure 1. Disorder (h) — Energy (✏) phase diagram of the
disordered Heisenberg chain Eq. (1). The ergodic phase
(dark region with a participation entropy volume law co-
e�cient a1 ' 1) is separated from the localized regime
(bright region with a1 ⌧ 1). Various symbols (see leg-
end) show the energy-resolved MBL transition points ex-
tracted from finite size scaling performed over system sizes
L 2 {14, 15, 16, 17, 18, 19, 20, 22}. Red squares correspond to
a visual estimate of the boundary between volume and area
law scaling of entanglement entropy SE .

at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.
Going beyond perturbative approaches, direct numer-

ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [13, 16, 20, 26–41]. The MBL
transition dealing with eigenstates at high(er) energy,
ground-state methods are not well adapted. Most nu-
merical studies use full exact diagonalization (ED) to ob-
tain all eigenstates and energies and are limited to rather
small Hilbert space sizes dimH ⇠ 104 [42].
In this Letter, we present an extensive numerical study

of the periodic S = 1
2 Heisenberg chain in a random
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• Evidence for a many-body localization edge
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Critical exponent ?
• Systematic study of fit qualities to finite-size scaling ansätze

• Different quantities

• Different fit windows
• Starting from minimal size

• Including or not corrections to scaling ...
Lmin6

Supplementary material

Details on fitting procedures and estimates of

critical exponents and fields

In order to estimate the value of the critical disorder
strength hc and the critical exponent ⌫, we have per-
formed a systematic scaling analysis using the scaling
ansatz g[(h � hc)L1/⌫ ] for the disorder averaged gap ra-
tios r, the dynamical spin fraction f , the entanglement
entropy per site SE/L and the bipartite fluctuations per
site F/L. We model the universal function g in a win-
dow of size 2w centered at hc by a polynomial of degree
three and have performed fits varying the size of the fit
window and excluding system sizes smaller than Lmin for
Lmin 2 {12, 14, 16} in order to estimate the stability of
our results. We have also tried to include drift terms in
the universal function but concluded that they are not
needed to obtain a very good fit quality. The results
of our stability analysis is displayed in Figures 6 and 7,
where we show the results of scaling fits for all quantities
and fit windows. The scattering of the results can be
understood as a measure of the true error bar.

Figure 6. Systematic analysis of the influence of fit windows
in h and L on the critical disorder strength hc. Only results
for the targets 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are
shown and the symbols were slightly shifted in ✏ for better
readability.

Generally, our results are all consistent and nearly all
of the outliers stem from fits including only the largest
system sizes L � 16, where the analysis starts to become
di�cult due to the reduced range in L. In particular, the
analysis for the entanglement entropy per site is prob-
lematic in this case, as we only use even system sizes.

Additionally, at the low and high end of the spectrum,
the density of states is very low, thus rendering the anal-
ysis of the gap ratios particularly problematic [26].

Based on this stability analysis, we find that the fit
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Figure 7. Systematic analysis of the influence of fit windows
in h and L on the critical exponent ⌫, the horizontal lines
correspond to the mean value and the error bounds of our
estimate for the critical exponent ⌫ = 0.8(3). Only results
for the targets 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are
shown and the symbols were slightly shifted in ✏ for better
readability.

window with Lmin = 14 (for the gap ratios, we use
Lmin = 15) and w = 0.8 seems to provide the most stable
results and is therefore used for all results presented in
the rest of this Letter. With the fixed fit window, we
have performed a bootstrap analysis in order to estimate
the statistical error of the fit parameters, in particular hc

and ⌫, indicated in the plots. Clearly, one has to keep in
mind that on top of this error, there will be a systematic
error that is of the order of the spread of the results in
the stability analysis shown in this paragraph.

Dynamical spin fraction

For completeness, we show here additional data for the
dynamical spin fraction f , which has been introduced in
Ref. 27. This quantity gives a measure of how much
memory of an initial spin density is lost after a long time
evolution. It is 1 (corresponding to no memory) in the
ergodic phase and decays to zero in the localized phase.
It can be defined by introducing an initial spin density

defined by the longest wavelength operator

M =
X

j2[1,L]

Sz
j exp(i2⇡j/L). (2)

After evaluating the long time remainder of this spin
density, one finds for the dynamic fraction for an eigen-
state |ni

fn = 1� hn |M†|nihn |M |ni
hn |M†M |ni . (3)

⌫ = 0.8(3)

• Violation of Harris criterion                      ??⌫ � 2/d
• Wrong form of ansätze ?? • Rare events ??•               too small ??L = 22

• Effective models find ⌫ ' 3 Vosk et al., Potter et al.



Conclusions & outlooks

• Message 2 : MBL is a computational challenge

• Message 1: MBL is an active interesting field!  Revisits usual stat-mech, 
connections to different fields (quantum chaos, information...)

• Message 3 : Many open questions

MBL in translation-invariant systems? 

Many-body edge: Griffiths effects? sub-diffusive ergodic phase?

Nature of the transition? 
New type of fixed point?

 Experiments?

• Based on improved numerics, evidence for:

• Presence of a many-body localization edge

• No true localization in Hilbert space

• Finite-size signatures of many-body localization

• Apparent violation of Harris criterion (?) 
within our system sizes
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We present a large scale exact diagonalization study of the one dimensional spin 1/2 Heisenberg
model in a random magnetic field. In order to access properties at varying energy densities across
the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can
be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation
of the many body localization transition including the existence of a many-body mobility edge.
The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-law
entanglement, and a full delocalization in the Hilbert space. Conversely, the localized (non-ergodic)
regime displays Poisson statistics, area-law entanglement and signs of multifractality in the Hilbert
space where a true localization never occurs. We perform finite size scaling to extract the critical
edge and exponent of the localization length divergence.

The interplay of disorder and interactions in quan-
tum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following pre-
cursors works [1–4], Basko and co-workers have estab-
lished [5] within a perturbative approach that the cele-
brated Anderson localization [6] can survive interactions,
and that for large enough disorder, many-body eigen-
states can also “localize” (in a sense to be precised later)
and form a new phase of matter commonly referred to as
the many-body localized (MBL) phase.

The enormous boost of interest for this topic over the
last years can probably be ascribed to the fact that the
MBL phase challenges the very foundations of quan-
tum statistical physics, leading to striking theoretical
and experimental consequences [7, 8]. Several key fea-
tures of the MBL phase can be highlighted as follows.
It is non-ergodic, and breaks the eigenstate thermaliza-
tion hypothesis (ETH) [9–11]: a closed system in the
MBL phase does not thermalize solely following its own
dynamics. The possible presence of a many-body mo-
bility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite tem-
perature range in a MBL system [5]. Coupling to an
external bath will eventually destroy the properties of
the MBL phase, but recent arguments show that it can
survive and be detected using spectral signatures for
weak bath-coupling [12]. This leads to the suggestion
that the MBL phase can be characterized experimen-
tally, using e.g. controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [13–
16]. Another appealing aspect (with experimental con-
sequences for self-correcting memories) is that MBL sys-
tems can sustain long-range, possibly topological, order
in situations where equilibrated systems would not [17–
21]. Finally, a striking phenomenological approach [22]
pinpoints that the MBL phase shares properties with in-
tegrable systems, with extensive local integrals of mo-
tion [23–25], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates

Figure 1. Disorder (h) — Energy (✏) phase diagram of the
disordered Heisenberg chain Eq. (1). The ergodic phase
(dark region with a participation entropy volume law co-
e�cient a1 ' 1) is separated from the localized regime
(bright region with a1 ⌧ 1). Various symbols (see leg-
end) show the energy-resolved MBL transition points ex-
tracted from finite size scaling performed over system sizes
L 2 {14, 15, 16, 17, 18, 19, 20, 22}. Red squares correspond to
a visual estimate of the boundary between volume and area
law scaling of entanglement entropy SE .

at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.
Going beyond perturbative approaches, direct numer-

ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [13, 16, 20, 26–41]. The MBL
transition dealing with eigenstates at high(er) energy,
ground-state methods are not well adapted. Most nu-
merical studies use full exact diagonalization (ED) to ob-
tain all eigenstates and energies and are limited to rather
small Hilbert space sizes dimH ⇠ 104 [42].
In this Letter, we present an extensive numerical study

of the periodic S = 1
2 Heisenberg chain in a random
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