Classical and quantum aspects
of higher-dimensional systems

Arnd Backer, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick



Classical and quantum aspects
of higher-dimensional systems

Arnd Backer, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick

Motivation
» Helium atom



Classical and quantum aspects
of higher-dimensional systems

Arnd Béacker, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick

Motivation
» Helium atom

» Particle accelerators

CERN



Classical and quantum aspects
of higher-dimensional systems

Arnd Béacker, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick

Motivation
» Helium atom

» Particle accelerators

CERN
» Solar system

NASA



Classical and quantum aspects
of higher-dimensional systems

Arnd Backer, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick

Motivation
» Helium atom

» Particle accelerators

CERN
» Solar system

NASA

» 3D billiards




Classical and quantum aspects
of higher-dimensional systems

Arnd Backer, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick

Motivation
» Helium atom

» Particle accelerators

CERN
» Solar system

NASA

» 3D billiards

Simplest case: 4D area-preserving maps



Classical and quantum aspects
of higher-dimensional systems

Arnd Béacker, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick

q2

¥
P Y 0
> Y er
- Y LAYy
s 4
g\ 4
A



Classical and quantum aspects
of higher-dimensional systems

Arnd Béacker, Technische Universitat Dresden
Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick

F S » Visualization
/”/’ Fa P » 3D Phase-Space Slice
A » Organization

5 Y b
>‘/ Y gk
- N %y

B AS s
%



Classical and quantum aspects

of higher-dimensional systems

Arnd Béacker, Technische Universitat Dresden

Joint work with: S. Lange, F. Onken, M. Richter, R. Ketzmerick
o

== » Visualization
Pt » 3D Phase-Space Slice

7 A\, » Organization
r/ 4
V7 A —
Y i i » Applications
7 yi - » Power-law trapping
—‘11//7 7 T~n Dynamical tunneling
Spectral statistics

Entanglement
Husimi functions

</
vV v vy



2D map: Standard map [Chirikov 1969]
Mapping: T? — T?

q=q+p
; _ﬁ( /)
Pr=p-5.0

with V(q) = K cos(q)




2D map: Standard map [Chirikov 1969]
Mapping: T? — T?

q=q+p
; _g( /)
Pr=p-5.0

with V(q) = K cos(q)

Structures
T » Periodic orbits
p
0
—qr



[Chirikov 1969]

2D map: Standard map

Mapping: T? — T?

q=q+p

)

/

q

8V(

p=p

K cos(q)

with V(q)

Structures

K =

» Periodic orbits

» Regular tori (KAM)

2.25

doey!

A T

PR

i Ry :
LAGEERRN RS

Q

o




[Chirikov 1969]

2D map: Standard map

Mapping: T? — T?

q=q+p

)

/

q

8V(

P =p

K cos(q)

with V(q)

Structures

K =

» Periodic orbits

» Regular tori (KAM)

» Chaotic motion

2.25

doey!

A T

PR

| .-.
A RN

R

Q

o




4D map: Coupled standard maps

a

=aq1+ p1

Vi(g1) = Ki cos(an)

[Froeschlé 1972]
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4D map: Coupled standard maps [Froeschié 1972]
Mapping: T4 — T4

Uncoupled:
9 = Gr + P
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Strong coupling: &2 = 1.0

Regular region in 4D map?
Organization of phase space? How to visualize?
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Ketzmerick:

For higher-dimensional systems a direct visualization of
phase space is not possible.! Starting with the pioneering work
of Froeschlé [43,44], several methods have been introduced to
obtain a reduction to understand the dynamics. For example,
two-dimensional plots of multisections [44,45] or projections
totwo [2,43,46,47] or three [48-50] dimensions, also including
color to indicate the projected coordinate [51,52], frequency
analysis [53-56], and action-space plots [57] . Further tools
to investigate higher-dimensional phase spaces are chaos
indicators to distinguish regular from chaotic motion, like
finite-time Lyapunov exponents [58-60], fast Lyapunov indi-
cator (FLI) [45,61,62], and many more; see, e.g., Refs. [63-65]
and references therein.
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For higher-dimensional systems a direct visualization of
phase space is not possible.! Starting with the pioneering work
of Froeschlé [43,44], several methods have been introduced to
obtain a reduction to understand the dynamics. For example,
two-dimensional plots of multisections [44,45] or projections
totwo [2,43,46,47] or three [48-50] dimensions, also including
color to indicate the projected coordinate [51,52], frequency
analysis [53-56], and action-space plots [57] . Further tools
to investigate higher-dimensional phase spaces are chaos
indicators to distinguish regular from chaotic motion, like
finite-time Lyapunov exponents [58-60], fast Lyapunov indi-
cator (FLI) [45,61,62], and many more; see, e.g., Refs. [63-65]
and references therein.

"You’re just not thinking fourth dimensionally! — Right, right. I have
a real problem with that. (Quote from Back to the Future Part III).

2-1 ©2014 American Physical Society
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Orbit: (p1, P2, G1, ). Plot (p1, ¢1, g2) when |pp| <e=10"*
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3D Phase-Space Slices for |p> — p3| < ¢, variation of pj;
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0 Invariant objects

» 2D tori

» 1D tori

» 0D: Elliptic-Elliptic
fixed points/p.o.

Further aspects
» Hierarchy
» Bifurcations of 1D tori
» Hyperbolic objects
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Applications

» Power law trapping

[Ding, Bountis, Ott 1990;
Altmann, Kantz 2007;
Shepelyansky 2010; ...]

» Tunneling
10°
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-
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h
» Experimental observation of resonance-assisted tunneling
Gehler, Léck, Shinohara, AB, Ketzmerick, Kuhl, Stéckmann, arxiv:1502.04263
» Complex Paths for Resonance-Assisted Tunneling

Fritzsch, Mertig, Lébner, AB, Ketzmerick (in prep. 2015)



Applications

» Power law trapping
[Ding, Bountis, Ott 1990;

Altman

Shepelyansky 2010; ...]
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» Visualization of eigenstates
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Quantum eigenstates on the phase-space slice

Confirms localization of eigenstates on invariant objects
in a higher dimensional system
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Summary and Outlook
Phase space of 4D maps

» 3D phase space slices:
global view of regular dynamics

» Organization:
Skeleton of 1D—tori

Applications

» Power-law trapping

» Regular to chaotic tunneling

» Spectral and eigenvector statistics

» Husimi representation of eigenstates
Outlook

» Hyperbolic structures
» Chaotic transport
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