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WORK IN THERMODYNAMICS

T = Ty constant 4+ second principle :

> Wmin = AF(To, V)



JARZYNSKI APPROACH

Thermodynamics is intrinsically statistical and
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Jarzynski states that, if the initial state is a thermal state, then
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[ Jarzynski 1996]



SOME DEFINITIONS
Time perturbation of a Hamiltonian :

Hi(x) =Ho— @ - q
with @ = ®g =0, x = (p, q) and D is a force.
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Integration by parts
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GENERAL SCHEME OF THE PROOFS ([ Jarzynski PRE 1997])
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Thermal equilibrium state T, = % verifies detailed balance :

(1)

X=X
JKT(X,XI)HT(X/) dx' =0

Hence %HT(X) is a solution of (1) and
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QUANTUM PROBLEM
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=>» Problem in defining a single work operator for the whole
process.

=>» Work as the difference between final and initial energy in an
adiabatical process.

=>» Work as a difference between final and initial energy of the
operator ?

=>» Master equation approach to generalize the notion of classical
path in a non-adiabatical process



MASTER EQUATION APPROACH
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as L is time dependent, l:[t is not solution, that is
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m Find a superoperator Wy such that
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m  With the assumption that ﬁt is "balanced” by L, that is

then a brute force solution is then




EXPANSION IN W¢

To obtain a Jarzynski-like equation one uses a Schwinger-Dyson
expansion in Wy of the solution to the modified master equation
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QUANTUM WORK CORRECTIONS

From Baker-Campbell-Hausdorff
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From Moyal expansion in Weyl representation
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HARMONIC OSCILLATOR
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In Weyl representation
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QUANTUM TRAJECTORY

v

during a time step 0t the state [{») can chose between
m a jump with Lindblad operator (proba pdt)
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m or a pseudo-unitary evolution (proba 1 — pdt) with effective
non-Hermitian Hamiltonian H{
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QUANTUM TRAJECTORY FOR THE THERMAL STATE
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Modify H% so that quantum trajectory follows ﬁt
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QUANTUM WORK OF THE TRAJECTORY

m A possible expression is
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m First term makes evolution of |n), and second term makes
evolution of E,, ¢. Third term is normalization.



PERSPECTIVES

Find a more natural proof
Unify the different approaches
Treat a realistic system where work is an accessible quantity

Give an experimental meaning to the "quantum work”



A SIMPLE PROOF

() = [[polxe) e8I axg

thermal initial state and adiabatic Hamiltonian system :
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GENERAL SCHEME OF THE PROOFS

Transport of the real state :
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p<(xt) = po(xo)

Invariance by transport for the thermal equilibrium state :
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FLUCTUATION RELATIONS
Jarzynski relation allows to derive some fluctuation relations
ﬂt = ﬁo + ?\t\7
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QUANTUM WORK

Wy interpreted as some work rate operator.

A brute force solution is
~ d ~ ~\ 1
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So that



QUANTUM TRAJECTORY
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with
[y] = number of jumps in trajectory y

The natural quantum trajectory is combined by episodes which
track the thermal state
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ADIABATICAL CASE

where o, (t) is Berry's phase.

A=) e Po Y oY Ty T myml (1.

n y(m)

with
[Y] = number of jumps in trajectory y



