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Aim: Modelling high-frequency wave dynamics including
noise, interference and multiple reflections

Applications:
-Electromagnetic Compatibility
Spurious emissions from cirucits and cables in confined environment.

-Wireless Communication
multiple antenna arrangements in mobile phones, WLAN etc, but also for
future technologies (on-chip and chip-to-chip communication)

-Noise and vibration issues in mechanical engineering.

Partners: inuTech GmbH — Niirnberg
Nottingham Trent University CDH AG - Ingolstadt

TU Miinchen CST AG — Darmstadt
University of Nice Sophia Antipolis IMST GmbH - Duisburg

University of Maryland NXP Semiconductors
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Aim: Modelling high-frequency wave dynamics including
noise, interference and multiple reflections

Outline of the talk

Introduction: correlations, Green functions and classical dynamics.

I) Correlation functions: free propagation in the Wigner-Weyl
picture.

II) Correlation functions: multiple reflections - a semiclassical
treatment.

IIT) Propagating the classical flow — Discrete Flow Mapping.
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Stochastic source — consider correlation function in plane parallel to z = 0.

L. (p1,p2) = (¥ (p1,2) Y™ (P2, 2))

here in momentum space; <.>denotes, for example, time average.

Idea: 2-0 Planar circuit, PCB
* Near-field correlation = far-field

. ¥ (P2, 2)
correlation;

: : X /l Detector
* Wigner transform to describe waves .
in phase-space (position, momentum); Y
* Derive efficient propagation schemes
in phase-space; - z=D
* Retrieve field-field correlation in configuration space.

Can we predict I'z over the whole domain including reflections?
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Stochastic source — consider correlation function in plane parallel to z = 0.

L. (p1,p2) = (¥ (p1,2) Y™ (P2, 2))

here in momentum space; <.>denotes, for example, time average.

Previous work:

* Connection between correlation function and (imaginary part of) Green function
* (Creagh and Dimon (1997);
*  Hortikar and Srednicki (1998);
Weaver and Lobkis (2001 ),
Urbina and Richter (2006)

* Connection between correlation function and phase space propagation
e  Marcuvitz (1991)
 Optics: Littlejohn and Winston (1993), ..., Alonso (2011)
Dittrich, Viviescas and Sandoval (20006)

* Propagation of correlation function as numerical tool:
*  Russer and Russer (2012)

and many more ...



Source Distribution: -

UNITED KINGDOM - CHINA - MALAYSIA

Stochastic source — consider correlation function in plane parallel to z = 0.

I, (p1,p2) = (¢ (p1,2) Y™ (P2, 2))

here in momentum space; (.}denotes, for example, time average.

Planar circuit, PCB

Detector
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Measurement of source correlation function
Chris Smartt et al - GGIEMR

Cavity with aperture — single probe, single frequency
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Source Distribution:
Measurement of source correlation function

Chris Smartt et al - GGIEMR

Arduino Galileo PCB

;‘llig

Memory. transfer event

/

Arduino PCB - two-probe 1D time measurement
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Measurement of source correlation function
Chris Smartt et al - GGIEMR j UL 2 e

100 MHz 233 MHz

Arduino PCB - two-probe 1D time measurement
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Propagation into free space: Huygens principle — Green’s identity

' - / 2 1 . / 2
@D(p,z): l 6zkz 1—p V(p,Z:O)—I——QZk'Z 1—p (p’Z:(D

\2]{ 1 - p2 P \2 - 7
Go e
v(p,0) = oY : normal derivative
\Na\]e“? on

T (p) = +/1—p? = cosa : normal component

Solution of Helmholtz Eqn.

:O Lz
z ¥ (p,2) = "1 (p,0)
I, (p1,p2) = X TP=T P2 (py po)
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Using Wigner Transform (in plane z = const):

ENY [ ke q q
Wz(ajap):(%) /equz(p+§,p—§)dq

... and back-transformation:

I, (p+ g,p— g) — /e_ikx/qu (z',p) da’

Note — spatial correlation function can be recovered:

kO N S S
W, (z,p) (277) /e x + 5% 5 ds
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The WF is propagated in phase space (x,p) according to
W, (z,p) = / / G (z,p;a’,p's2) Wo (2/,p') da'dp/

with propagator:

G (z,p, 2, p;2) =

S — ) (ﬁ)d/éik(x_x/)qeikz(\/l—(p—l-%)Q—\/1—(10—%)2*) da

2T

This propagator acts in phase space — see Dietrich et al (2006)
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Radiation into free space: Forbenius Perron !’n'
Operator _—

. . q 2 q 2*
Taylor expanding exponential AT (p, q) = \/ 1 — (p + _> _ \/ 1 — <p _ _>
to first order 1n q:

¢ ' "Vq—ikz —=L
Q(az,a:’,z;p) I~ ( K > / ezk(x_"” )q k V/1_p2 1 dq

o

D Ray-tracing /
=N I e Z Frobenius-Perron

\/ 1 — p2 approximation

(Ray) densities are propagated along classical rays:

Valid for quasi-

p
W, (:Evp) ~Wolz—2 \/1 — p2 » P homogeneous sources
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(a)
Exact Wigner Approximate
0-4 Wigner
Exact Approximate
Correlation g Correlation
Function — Function
wn

z=10 A
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Radiation into free space: Forbenius Perron !"
Operator + corrections

. . q 2 q 2*
Taylor expanding exponential AT (p, q) = \/ 1 — (p + _> _ \/ 1 — <p _ _>
to third order 1n Q:

G (x,2,2;p) =

N (£>d/ ez'k(a:—a: )q zkz[\/—}q—l-zkz[ e ;92)3/2+4(1z;32)5/2] ¢ dq

27

(in1D)
= a Al {a <

with

q = 2]€2/3 (ZTW(p))_l/g

) } .. similar to Marcuvitz (1991)

Converges to Frobenius-Perron form for k =
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Planar circuit, PCB

A
I
~
Y Reflector
4} — Exact
- - - Approximate
3 A
N
E
o 2
1
X B
c1 1.2

1.4 1.6 1.8
D [m]




Radiation into free space: Reflections

Exact Wigner Approximate
Wigner
Exact Approximate
Correlation Correlation
Function Function

X [m]

FP — approximation +
interference term
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Exact Wigner
o 0
-0.5 0.2
0
, 1
Approximate 1
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0.4
0.5 I 0.2

0.6 Approximate
0.4 Wigner - FP

Exact
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FP/Airy approximation +

interference term
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Strategy:
Transform source correlation function into Wignerfct -
Propagate Wigner Function in phase space (either exactly or
using linear (3 order) approximation—>Transform Wz(x,p)
back to correlation fct Iz(x,x’)

In particular for FP approximation — simplified propagation rule

SN / p/
[, (x,s)~ // gikp (s=5') Io [ x— z,s | ds' dp'
\/1 _ p/2

(generalised) van Cittert - Zernike theorem - Cerbino 2007

Correlation length: As =z A/ L



Radiation into free space: Van Cittert - Zernike
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Corrections due to evanescent contribution!

Propagation of

Correlation function
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Propagation of realistic signal — cable bundle
driven by random voltage




Propagation of realistic signal — cable bundle !’n' R
driven by random voltage — near field ——
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Propagation of realistic signal — cable bundle !’n'
driven by random voltage — far field —

Exact (TLM) z2=23)\ FP approx
(b)
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Propagation of correlation functions
including multiple reflection —
a semiclassical approach
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Can we propagate correlation
function including multiple-
reflections — open or closed?

Consider transfer operator method:

(1 —=T) ) = [tho)

1}, . outgoing/incoming wave on boundary

T: Transfer operator — exact Prozen, Smilansky, Creagh et al 2013
— semiclassical Bogomolny, Smilansky



Propagation including multiple reflection — !’.‘ T,\'];Uﬁ';',e{;ﬁgf,n
a semiclassical approach ——
Now rewrite I = |¢)_) (¢_| Iy
A
—1 | —1,
= (I=T)"" [tho) (tho| (1= T) "
— Z T T™7
n,m=0

After reordering terms, we obtain

F=K+) [T”K+KT”’T}

n=1

K — i T T™1

n=0

with



The University of

Propagation including multiple reflection — !’.’ Nottingham
a semiclassical approach N ——

Whatis K =) T"TT™" 2

n=0

Set LT, = T”FOT”’T

Using semiclassical expression (Bogomolny):
(n)
Tn(ZIZ,ZIZ/) _ (27_‘_7;)(1—00/2 2 : AjeiS(ac,x’)—iV%

J:x—x’
Consider Wigner Transform: (LnFO ) 1%

By evaluating the quadruple integral and the double sum over
trajectories by stationary phase ...
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In leading order in 1/k:

(LnFO)W ~ L"Wy (... provided W, is homogeneous on the scale of 1/k).
Wo: Wigner transform of 10

where
L"Wo] (X) = / 5(X — " (X' N)Wo(X"dX' X = (,p)
. . ©(X) : map
Frobenius — Perron operator for n-reflections
The Wigner Transform of K = Z T"T,T™" is then:
n=0
o0 Stationary phase space

Kw =~ Z LWy = (1 _ £)_1WO — p | density from source W,

including reflections

n=0
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(1—-L)"'Wo=p

can be computed using Dynamical Energy Analysis (DEA) method
Tanner 2009, Chappell et al 2013

Smooth part of correlation function I'" by inverse Wigner Transform:

K~ K¢ = W_l[p]

Higher order oscillatory corrections may be obtained using

FaKa+ Y [T”Kcl n KclT”’T]
n=1
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Note:
under relatively general conditions (low or uniform absorption,
ergodicity or ““uniformity” of initial ray density W, ...):

p = const & K. = const x 1

Thus 50
' ~ const | I+ Z [T” + T”’T]

n=1

Equivalent to relation between Green’s fct and correlation fct:
Hortikar & Srednicki, Weaver, Richter & Urbina
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Solving the classical flow equation using
Frobenius Perron operatore —
Dynamical Energy Analysis

0] (X) = / 5(X — o(X))po(X)dX"
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Idea: Propagation of ray densities in phases space
(position + direction variable) along rays
—> linear map

Pros: ° Linear systems of equations;
* only short trajectories;
* Flow equation — can be solved on meshes.

Cons: ¢ Doubling of number of variables
—> adequate choice of basis functions
* so far only for stationary processes
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Summary:

* Wigner transformation = From propagating Correlation
functions to the propagation of phase space densities.

* High-frequency limit leads to ray-tracing approximation.

* Perron-Frobenius operators transport correlations
efficiently in phase-space — including reflections.

* Smooth part can be obtained from DEA approximation.

* Applications 1n electromagnetics, vibroacoustics and
quantum mechanics
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Modelling multiple antennas in confined domains — EM field description

Recent Future Emerging Technology grant (€ 3.4 Mio):

Partners:

University of Nottingham IMST GmbH - Kamp-Lintfort
University Nice Sophia Antipolis NXP Semiconductors - Toulouse
Technical University of Munich CST AG - Darmstadt

Institut Supérieur de I’Aeronautique & de I’Espace - Toulouse

We are looking for a 3-year post-doc in Nottingham — start date 1. Sept 2015







