

Propagating wave correlation functions in complex environments

In collaboration with

Gabriele Gradoni and Stephen Creagh School of Mathematical Sciences Dave Thomas and Chris Smartt George Green Institute for EM Research

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Aim: Modelling high-frequency wave dynamics including noise, interference and multiple reflections

Applications:

-Electromagnetic Compatibility

Spurious emissions from cirucits and cables in confined environment.

-Wireless Communication

multiple antenna arrangements in mobile phones, WLAN etc, but also for future technologies (on-chip and chip-to-chip communication)

-Noise and vibration issues in mechanical engineering.

Partners:

Nottingham Trent University TU München University of Nice Sophia Antipolis University of Maryland inuTech GmbH – Nürnberg CDH AG - Ingolstadt CST AG – Darmstadt IMST GmbH - Duisburg NXP Semiconductors

UNITED KINGDOM \cdot CHINA \cdot MALAYSIA

Aim: Modelling high-frequency wave dynamics including noise, interference and multiple reflections

Outline of the talk

Introduction: correlations, Green functions and classical dynamics.

- I) Correlation functions: *free propagation in the Wigner-Weyl picture*.
- II) Correlation functions: *multiple reflections a semiclassical treatment*.
- III) Propagating the classical flow *Discrete Flow Mapping*.

Introduction:

UNITED KINGDOM · CHINA · MALAYSIA

Stochastic source – consider correlation function in plane parallel to z = 0. $\sum_{n=1}^{\infty} (m_n - m_n) = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{m_n - m_n}{2} \frac{1}{2} \frac$

$$\Gamma_{z}\left(p_{1}, p_{2}\right) = \left\langle\psi\left(p_{1}, z\right)\psi^{*}\left(p_{2}, z\right)\right\rangle$$

here in momentum space; $\langle . \rangle$ denotes, for example, time average.

Idea:

- Near-field correlation \rightarrow far-field correlation;
- Wigner transform to describe waves in phase-space (position, momentum);
- Derive efficient propagation schemes in phase-space;

• Retrieve field-field correlation in configuration space.

Can we predict Γ_z over the whole domain including reflections?

Introduction:

UNITED KINGDOM · CHINA · MALAYSIA

Stochastic source – consider correlation function in plane parallel to z = 0.

$$\Gamma_{z}(p_{1}, p_{2}) = \langle \psi(p_{1}, z) \psi^{*}(p_{2}, z) \rangle$$

here in momentum space; $\langle . \rangle$ denotes, for example, time average.

Previous work:

- Connection between correlation function and (imaginary part of) Green function
 - Creagh and Dimon (1997);
 - Hortikar and Srednicki (1998);
 - Weaver and Lobkis (2001);
 - Urbina and Richter (2006)
- Connection between correlation function and phase space propagation
 - *Marcuvitz* (1991)
 - **Optics:** Littlejohn and Winston (1993), ..., Alonso (2011)
 - Dittrich, Viviescas and Sandoval (2006)
- Propagation of correlation function as numerical tool:
 - Russer and Russer (2012)

and many more ...

UNITED KINGDOM · CHINA · MALAYSIA

Stochastic source – consider correlation function in plane parallel to z = 0. $\Gamma_z (p_1, p_2) = \langle \psi (p_1, z) \psi^* (p_2, z) \rangle$

here in momentum space; $\langle . \rangle$ denotes, for example, time average.

Measurement of source correlation function

Chris Smartt et al - GGIEMR

Cavity with aperture – single probe, single frequency

UNITED KINGDOM \cdot CHINA \cdot MALAYSIA

UNITED KINGDOM \cdot CHINA \cdot MALAYSIA

Measurement of source correlation function

Chris Smartt et al - GGIEMR

Arduino Galileo PCB

Arduino PCB – two-probe 1D time measurement

Measurement of source correlation function

Chris Smartt et al - GGIEMR

UNITED KINGDOM · CHINA · MALAYSIA

100 MHz

Arduino PCB – two-probe 1D time measurement

Radiation into free space: Propagation rules

UNITED KINGDOM · CHINA · MALAYSIA

Propagation into free space: Huygens principle – Green's identity

Radiation into free space: Wigner function

Using Wigner Transform (in plane z = const):

$$W_{z}(x,p) = \left(\frac{k}{2\pi}\right)^{d} \int e^{ikxq} \Gamma_{z}\left(p + \frac{q}{2}, p - \frac{q}{2}\right) dq$$

... and back-transformation:

$$\Gamma_z\left(p+\frac{q}{2}, p-\frac{q}{2}\right) = \int e^{-ikx'q} W_z\left(x', p\right) \, dx'$$

Note – spatial correlation function can be recovered:

$$W_z(x,p) = \left(\frac{k}{2\pi}\right)^d \int e^{ikps} \Gamma_z\left(x + \frac{s}{2}, x - \frac{s}{2}\right) ds$$

Radiation into free space: WF Propagator

The WF is propagated in phase space (x,p) according to

$$W_z(x,p) = \int \int \hat{\mathcal{G}}(x,p;x',p';z) W_0(x',p') dx'dp'$$

with propagator:

$$\hat{\mathcal{G}}(x, p, x', p'; z) = \\ = \delta(p - p') \left(\frac{k}{2\pi}\right)^d \int e^{ik(x - x')q} e^{ikz\left(\sqrt{1 - \left(p + \frac{q}{2}\right)^2} - \sqrt{1 - \left(p - \frac{q}{2}\right)^2}^*\right)} dq$$

This propagator acts in phase space – see Dietrich et al (2006)

Radiation into free space: Forbenius Perron Operator

UNITED KINGDOM · CHINA · MALAYSIA

Taylor expanding exponential $\Delta T(p,q) = \sqrt{1 - \left(p + \frac{q}{2}\right)^2 - \sqrt{1 - \left(p - \frac{q}{2}\right)^2}}$ to first order in q:

$$\hat{\mathcal{G}}(x,x',z;p) \approx \left(\frac{k}{2\pi}\right)^d \int e^{ik(x-x')q-ikz\frac{p}{\sqrt{1-p^2}}q} dq$$

$$= \delta \left(x - x' - \frac{p}{\sqrt{1 - p^2}} z \right)$$
 Ray-tracing /
Frobenius-Perron approximation

(Ray) densities are propagated along classical rays:

$$W_z(x,p) \approx W_0\left(x - z\frac{p}{\sqrt{1-p^2}},p\right)$$

Valid for quasihomogeneous sources

Propagation of Gaussian source in free space

UNITED KINGDOM · CHINA · MALAYSIA

Radiation into free space: Forbenius Perron Operator + corrections

UNITED KINGDOM · CHINA · MALAYSIA

Taylor expanding exponential $\Delta T(p,q) = \sqrt{1 - \left(p + \frac{q}{2}\right)^2 - \sqrt{1 - \left(p - \frac{q}{2}\right)^2}}$ to third order in q:

$$\hat{\mathcal{G}}(x, x', z; p) \approx \\ \approx \left(\frac{k}{2\pi}\right)^d \int e^{ik\left(x-x'\right)q-ikz\left[\frac{p}{\sqrt{1-p^2}}\right]q+ikz\left[\frac{p}{4(1-p^2)^{3/2}}+\frac{p^3}{4(1-p^2)^{5/2}}\right]q^3} dq \\ \stackrel{\text{(in 1D)}}{=a} \operatorname{Ai}\left[a\left(x-x'-\frac{zp}{T(p)}\right)\right] \qquad \dots \text{ similar to Marcuvitz (1991)}$$

with

$$a = 2k^{2/3} \left(zT'''(p) \right)^{-1/3}$$

Converges to Frobenius-Perron form for k $\rightarrow \infty$

Radiation into free space: Reflections

UNITED KINGDOM · CHINA · MALAYSIA

FP/Airy approximation + interference term

Radiation into free space

Strategy:

Transform source correlation function into Wignerfet \rightarrow Propagate Wigner Function in phase space (either exactly or using linear (3rd order) approximation \rightarrow Transform $W_z(x,p)$ back to correlation fet $\Gamma_z(x,x')$

In particular for FP approximation – simplified propagation rule

$$\left[\Gamma_{z}\left(x,s\right)\approx\int\int e^{ikp'\left(s-s'\right)}\Gamma_{0}\left(x-\frac{p'}{\sqrt{1-p'^{2}}}z,s'\right)\,ds'\,dp'\right]$$

(generalised) van Cittert - Zernike theorem - *Cerbino 2007* Correlation length: $\Delta s = z \lambda / L$

Radiation into free space: Van Cittert - Zernike

UNITED KINGDOM · CHINA · MALAYSIA

Corrections due to evanescent contribution!

Correlation Length

Propagation of realistic signal – cable bundle driven by random voltage

UNITED KINGDOM · CHINA · MALAYSIA

Propagation of realistic signal – cable bundle driven by random voltage – <u>near field</u>

UNITED KINGDOM · CHINA · MALAYSIA

UNITED KINGDOM · CHINA · MALAYSIA

Propagation of correlation functions including multiple reflection – a semiclassical approach

UNITED KINGDOM · CHINA · MALAYSIA

Can we propagate correlation function including multiplereflections – open or closed?

Consider transfer operator method:

$$(1 - T) |\psi_{-}\rangle = |\psi_{0}\rangle$$

 $\psi_{\text{+/-}}$: outgoing/incoming wave on boundary

T: Transfer operator- exactProzen, Smilansky, Creagh et al 2013- semiclassicalBogomolny, Smilansky

Now rewrite
$$\Gamma = |\psi_{-}\rangle \langle \psi_{-}| \prod_{0}^{n} (I - T)^{-1,\dagger}$$

$$= (I - T)^{-1} |\psi_{0}\rangle \langle \psi_{0}| (I - T)^{-1,\dagger}$$
$$= \sum_{n,m=0}^{\infty} T^{n} \Gamma_{0} T^{m,\dagger}$$

After reordering terms, we obtain

with
$$\begin{split} \Gamma &= \mathbf{K} + \sum_{n=1}^{\infty} \left[\mathbf{T}^n \mathbf{K} + \mathbf{K} \mathbf{T}^{n,\dagger} \right] \\ \mathbf{K} &= \sum_{n=0}^{\infty} \mathbf{T}^n \Gamma_0 \mathbf{T}^{n,\dagger} \end{split}$$

UNITED KINGDOM \cdot CHINA \cdot MALAYSIA

What is
$$K = \sum_{n=0}^{\infty} T^n \Gamma_0 T^{n,\dagger}$$
?
Set $L^n \Gamma_0 \equiv T^n \Gamma_0 T^{n,\dagger}$

 \sim

Using semiclassical expression (Bogomolny):

$$T^{n}(x, x') = (2\pi i)^{(1-d)/2} \sum_{j:x \to x'}^{(n)} A_{j} e^{iS(x, x') - i\nu \frac{\pi}{2}}$$

Consider Wigner Transform: $(L^n \Gamma_0)_W$

By evaluating the quadruple integral and the double sum over trajectories by stationary phase ...

In leading order in 1/k:

 $(L^n \Gamma_0)_W \approx \mathcal{L}^n W_0$ (... provided W_0 is **homogeneous** on the scale of 1/k). W0: Wigner transform of Γ_0

where

$$\left[\mathcal{L}^{n}W_{0}\right](X) = \int \delta(X - \varphi^{n}(X'))W_{0}(X')dX' \qquad X = (x, p)$$

$$\varphi(X) : \text{map}$$

Frobenius – Perron operator for n-reflections

The Wigner Transform of $K = \sum_{n=0}^{\infty} T^n \Gamma_0 T^{n,\dagger}$ is then:

$$\mathbf{K}_W \approx \sum_{n=0}^{\infty} \mathcal{L}^n W_0 = (1 - \mathcal{L})^{-1} W_0 = \rho$$

Stationary phase space density from source W₀ including reflections

$$(1-\mathcal{L})^{-1}W_0 = \rho$$

can be computed using *Dynamical Energy Analysis* (DEA) method *Tanner 2009, Chappell et al 2013*

Smooth part of correlation function Γ by inverse Wigner Transform:

$$K \approx K_{cl} = W^{-1}[\rho]$$

Higher order oscillatory corrections may be obtained using

$$\Gamma \approx \mathbf{K}_{cl} + \sum_{n=1}^{\infty} \left[\mathbf{T}^{n} \mathbf{K}_{cl} + \mathbf{K}_{cl} \mathbf{T}^{n,\dagger} \right]$$

Note:

under relatively general conditions (low or uniform absorption, ergodicity or 'uniformity' of initial ray density W_0 ...):

$$\rho = const \Leftrightarrow K_{cl} = const \times I$$

Thus

$$\Gamma \approx const \left(\mathbf{I} + \sum_{n=1}^{\infty} \left[\mathbf{T}^n + \mathbf{T}^{n,\dagger} \right] \right)$$

Equivalent to relation between Green's fct and correlation fct: Hortikar & Srednicki, Weaver, Richter & Urbina

UNITED KINGDOM · CHINA · MALAYSIA

Solving the classical flow equation using Frobenius Perron operatore – Dynamical Energy Analysis

$$\left[\mathcal{L}\rho_0\right](X) = \int \delta(X - \varphi(X'))\rho_0(X')dX'$$

Dynamical Energy Analysis - DEA:

UNITED KINGDOM · CHINA · MALAYSIA

Idea: Propagation of ray densities in phases space (position + direction variable) along rays → linear map

- **Pros**: Linear systems of equations;
 - only short trajectories;
 - Flow equation can be solved on meshes.
- Cons: Doubling of number of variables
 → adequate choice of basis functions
 so far only for stationary processes

Summary:

• Wigner transformation \rightarrow From propagating Correlation functions to the propagation of phase space densities.

- High-frequency limit leads to ray-tracing approximation.
- Perron-Frobenius operators transport correlations efficiently in phase-space including reflections.
- Smooth part can be obtained from DEA approximation.
- Applications in electromagnetics, vibroacoustics and quantum mechanics

Modelling multiple antennas in confined domains – EM field description

Recent Future Emerging Technology grant (€ 3.4 Mio):

Noisy Electromagnetic Fields - A Technological Platform for Chip-to-Chip Communication

Partners:

University of NottinghamIMST GmbH – Kamp-LintfortUniversity Nice Sophia AntipolisNXP Semiconductors - ToulouseTechnical University of MunichCST AG - DarmstadtInstitut Supérieur de l'Aeronautique & de l'Espace - Toulouse

We are looking for a **3-year post-doc** in Nottingham – start date 1. Sept 2015

Thank you ...