# Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes

#### Rodolfo A. Jalabert, Guillaume Weick, Hans A. Weidenmüller Dietmar Weinmann

Rafael A. Molina, Philippe Jacquod

Luchon Superbagnères, March 2015







《曰》 《聞》 《臣》 《臣》

| Experiments | Parity rule | Mean wave-function correlations | Fluctuations | Conclusions<br>o |
|-------------|-------------|---------------------------------|--------------|------------------|
| Transmi     | ssion pha   | se                              |              |                  |

#### Quantum scatterer connected to monochannel leads

$$e^{ikx} \xrightarrow{t e^{ikx}} t e^{ikx}$$

$$G = \frac{l}{V} = \frac{2e^2}{h}|t|^2$$
Transmission amplitude
$$t = |t|e^{i\alpha}$$

 $\alpha$  transmission phase

Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions o

# AB interferometer containing a quantum dot



Schuster et al., Nature '97

 $\sim$  200 electrons



continuous phase evolution in resonances (Friedel sum rule)  $\propto \delta \alpha$ abrupt drops of  $\pi$  in valleys

subsequent peaks in phase

nac

| Experiments | Parity rule | Mean wave-function correlations | Fluctuations | Conclusions |
|-------------|-------------|---------------------------------|--------------|-------------|
| 0•          |             |                                 |              |             |
|             |             |                                 |              |             |

### Crossover mesoscopic $\leftrightarrow$ universal



Avinum-Kalish et al., Nature '05



"Mesoscopic":  $N \lesssim 10$ ; irregular phase evolution



"Universal": N > 14; subsequent peaks in phase

500



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| 00          | 000         | 0000                            | 0000         |             |
|-------------|-------------|---------------------------------|--------------|-------------|
| Experiments | Parity rule | Mean wave-function correlations | Fluctuations | Conclusions |

#### Continuous evolution of t



| Experiments | Parity rule<br>oo● | Mean wave-function correlations | Fluctuations | Conclusions<br>o |
|-------------|--------------------|---------------------------------|--------------|------------------|
| Parity ru   | le                 |                                 |              |                  |



$$D_n = \gamma_n^l \gamma_n^r \gamma_{n+1}^l \gamma_{n+1}^r$$
$$\operatorname{sgn}(\gamma_n^l \gamma_n^r) = \pm \operatorname{sgn}(\gamma_{n+1}^l \gamma_{n+1}^r) \to D_n \gtrless 0$$

 $D_n < 0$   $\rightarrow$  no transmission zero no phase lapse  $D_n > 0$   $\rightarrow |t| = 0$ phase lapse

[Lee PRL '99; Taniguchi & Büttiker PRB '99, Levy-Yeyati & Büttiker PRB '00, Aharony et al. PRB '02]

Disordered dots:  $\mathcal{P}(D_n < 0) = 1/2 \quad \rightsquigarrow$  irregular phase evolution Experiment:  $\mathcal{P}(D_n < 0) = 0 \quad \rightsquigarrow$  correlations between  $\gamma_n$  and  $\gamma_{n+1}$ ?



# Wave-function correlations in chaotic dots

D



$$\mathcal{L}_n^{\mathrm{l}(\mathrm{r})} \propto \int_0^W \mathrm{d} y \, \Phi_{\mathrm{l}(\mathrm{r})}(y) \, \psi_n(x^{\mathrm{l}(\mathrm{r})}, y) \sim \psi_n(x^{\mathrm{l}(\mathrm{r})}, 0)$$

$$egin{aligned} & & p_n = \gamma_n^{\mathrm{l}} \gamma_n^{\mathrm{r}} \gamma_{n+1}^{\mathrm{l}} \gamma_{n+1}^{\mathrm{r}} \ & = \psi_n(x^{\mathrm{l}}, 0) \psi_n(x^{\mathrm{r}}, 0) \psi_{n+1}(x^{\mathrm{l}}, 0) \psi_{n+1}(x^{\mathrm{r}}, 0) \end{aligned}$$

Random wave model: [M.V. Berry, J. Phys. A '77]

$$\psi_n^{\text{RWM}}(\mathbf{r}) = \frac{1}{N} \sum_{j=1}^{N} \cos[\mathbf{k}_j \mathbf{r} + \delta_j]$$

random  $\delta_j$   $E_n = \frac{\hbar^2 k_n^2}{2m} \rightsquigarrow$  randomly oriented  $\mathbf{k}_j$  with  $|\mathbf{k}_j| = k_n$ 

Correlations over a distance  $L = x^r - x^l$ 

$$\langle \psi_n(\mathbf{r})\psi_n(\mathbf{r}')\rangle \simeq \frac{1}{\mathcal{A}} J_0(k|\mathbf{r}-\mathbf{r}'|) \qquad \rightsquigarrow \langle D_n\rangle \sim J_0(k_nL)J_0(k_{n+1}L)$$



Average-based probability of having no phase lapse ( $\langle D_n \rangle < 0$ )

$$\mathcal{P}(\langle D_n 
angle < 0) \sim rac{1}{kL}$$

Tendency towards the universal regime at large *kL* R.A. Molina, R.A. Jalabert, DW, Ph. Jacquod, PRL **108**, 076803 (2012)



 $\operatorname{Re}[t]$ 

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@





"universal" regime at very large kL

kL

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Conclusions were drawn from the sign of the average

$$\langle D_n \rangle = \langle \gamma_n^{\rm l} \gamma_n^{\rm r} \gamma_{n+1}^{\rm l} \gamma_{n+1}^{\rm r} \rangle$$

and assuming narrow leads

 $\gamma_n^{l/r} \sim \psi_n(\mathbf{x}^{l/r}, \mathbf{0})$ 

Questions:

- What happens in the case of wider leads?
- Do statistical fluctuations of the  $\gamma_n^{1/r}$  change the results?

| Experiments | Parity rule | Mean wave-function correlations | Fluctuations | Conclusions |
|-------------|-------------|---------------------------------|--------------|-------------|
|             |             |                                 | 0000         |             |
|             |             |                                 |              |             |

# Gaussian fluctuations of the partial-width amplitudes

Dots with chaotic classical dynamics  $\rightsquigarrow$  Gaussian distribution of  $\psi_n$ [Voros '76, Berry '77, Srednicki '96]

$$\gamma_n^{\mathrm{l(r)}} \propto \int_0^W \mathrm{d} y \, \Phi_{\mathrm{l(r)}}(y) \, \psi_n(x^{\mathrm{l(r)}}, y)$$

 $\rightarrow$  Gaussian distribution of the PWAs  $\gamma_n^{l/r}$  with joint density

$$p(\gamma_n^{\rm l},\gamma_n^{\rm r}) = \frac{1}{2\pi\sigma_n^2\sqrt{1-\rho_n^2}} \exp\left(-\frac{(\gamma_n^{\rm l})^2 + (\gamma_n^{\rm r})^2 - 2\rho_n\gamma_n^{\rm l}\gamma_n^{\rm r}}{2\sigma_n^2(1-\rho_n^2)}\right)$$

Variance and correlator with LR symmetry:

$$\sigma_n^2 = \langle \gamma_n^{\rm l} \gamma_n^{\rm l} \rangle = \langle \gamma_n^{\rm r} \gamma_n^{\rm r} \rangle \qquad \qquad \rho_n = \frac{1}{\sigma_n^2} \langle \gamma_n^{\rm l} \gamma_n^{\rm r} \rangle$$

~ Probability for positive parity

$$\mathcal{P}(\gamma_n^{\rm l}\gamma_n^{\rm r}>0)=\frac{1}{2}+\frac{1}{\pi}\arcsin\left(\rho_n\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへで



 $k_n L$ 

<ロ> <四> <四> <四> <三</td>



# Numerics for $\mathcal{P}(D_n < 0)$ averaging over 14 cavities



Blue:  $\mathcal{P}(D_n < 0)$ ; smoothing  $k_n$  interval of  $\delta/L$  with  $\delta = \pi/4$  and  $\pi$  Red: from the statistical model; same smoothing

| Experiments | Parity rule | Mean wave-function correlations | Fluctuations | Conclusions<br>• |
|-------------|-------------|---------------------------------|--------------|------------------|
| Conclusio   | ns          |                                 |              |                  |

- Wave-function correlations: probability for non-universal evolution ~ 1/kL in chaotic dots
   → Tendency towards universal behavior at large N
- Gaussian fluctuations of partial-width amplitudes
   Reduced tendency towards universal behavior

Outlook: More realistic dot models? Beyond Gaussian fluctuations? Correlations  $n \leftrightarrow n + 1$ ?

R.A. Molina *et al.*, PRL **108**, 076803 (2012); PRB **88**, 045419 (2013) R.A. Jalabert *et al.*, PRE **89**, 052911 (2014)