Systems with off-diagonal disorder
on a lattice -2

Jakub Zakrzewski

Marian Smoluchowski Institute of Physics
Jagiellonian University in Krakow

With

Julia Stasinska, Maciej Lewenstein (ICFO),
Omijyotti Dutta, Mateusz tacki, Jan Major, Arkadiusz Kosior, Marcin Ptodzien

Luchon, March 2015

1/39



What is to come

v

Supplement to Karol Zyczkowski talk

v

Optical lattice and Bose-Hubbard model

v

BH with Gavish-Castin disorder and density dependent
tunnelings

v

Periodically modulated interactions
> ?



Supplement to Karol’s talk

Marek Kus 60th birthday

Organized by Centre for Theoretical Physics, together with
Institute of Physics and Department of Physics, University of
Warsaw

The Symposium will be held on 24-25 April in Warsaw.
Detailed info on the website:
http://www.cft.edu.pI/SymposiumMarek/

3/39



Supplement to Karol’s talk-2 - IF UJ
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Optical lattice




Bose-Hubbard model’ U
H= —J% bib; + Ean(h/— 1)

J - tuneling, hopping U - on-site interaction,

J>>U-
superfluid, gapless

J<< U
Mott insulator
gap <= U

(after Greiner et al. (2002)

"H.A. Gersch and G. C. Knollman, Phys. Rev. 129,959 (1963).

6/39



Typical Bose-Hubbard with disorder

H= a3 B+ o S lh—1) = 3 i
i

() i

with p; random

>

uniform disorder Fisher et al 1989, Schulz-Giamarchi 1988
gapless insulator Bose glass phase (BG)

BG separates Ml from SF always (no direct MI-SF
transition -“theorem of inclusions” - Pollet 2009)

Gavish-Castin disorder VA;M;. M particles heavy and
immobile — Vu;h; with binary p;.

MI with non integer filling (due to impurities)

MI survives for arbitrary disorder strength



Bose-Hubbard with off-diagonal binary disorder?

For diagonal disorder
= —JZ bib+ — Z PRy — 1) = > (1 — ywi) Py
i
But interaction induced tunnelings yield

H2_—JZ + a(wi + wj)] bl b,+ Zn, i=1)=>_(n—ywi)y

i

Origin: two-body interactions. Typically |v| > .
Off diagonal disorder

» Mean field approach 1D, 2D: local mean field v; = (b)) w3

2J. Stasinska et al Phys. Rev. A 2014



Bose-Hubbard with off-diagonal binary disorder-2

Denoting J := J/U etc. standard perturbative in J approach:

vi=>_ IRy,
i

with random matrix

nj +1 n;
Ri=[1+ alwj + w; <_ L — ),
i =1 (wi +wp)] ni—p+3w; (n—1)—p+3w;
forﬁ,-t(1—§w,-)<ﬁ<h,-+§w,-. _
If det(JR — 1) # 0 then ); = 0 Ml border: J max[A(R)] = 1. In
thermodynamic limit MI border from assuming all w; identical
(Mering-Fleishhauer). In 1D spectrum analytic - Toeplitz matrix

2J max [\/ﬁ} =1 With X% := R jus
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Bose-Hubbard with off-diagonal binary disorder-3
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Bose-Hubbard with off-diagonal binary disorder-4

Variance of eigenvalues:

10%F
100} N

1k

Var(A)

0.01¢

10 O‘.5 1‘.0 1‘.5 2‘.0
uJ

» for a given p exists a single i for which the matrix non
random — this givces a tip of Ml lobe

» direct MI-SF transition not violating “inclusion theorem” for
diagonal binary disorder

» off-diagonal disorder - only via Bose glass phase, BG more, ..
prominient e

» still BG regions small for moderate off-diagonal disorder

» Can we produce strong off-diagonal disorder?
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Periodically modulated parameters

Gaston Floquet theorem (1883). In modern formulation similar
to (younger) Bloch theorem. Consider Hamiltonian with periodic
time dependence: H(t) = H(t+ T). Stationary states

(1)) = Z el |uy(t)) (1)

Where e; are called quasienergies and |u;(t)) = |uj(t+ T)).
|uj)) are eigenstates to eigenenergy e; in extended phase
space for H — 0;. The corresponding scalar product involves
integration over the period.
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Effective Hamiltonian

Hamiltonian in the extended space has a block structure:
()

(]
E .
(m—1

» Hef is time-averaged
Hamiltonian in F. basis

» V for big w is negligible

» As blocks differ only by energy
.Ew??nﬂ shift we can consider one only.

+wm

Side remark: With resonant coupling of Bloch bands:
A. Przysiezna, O. Dutta, and JZ, Rice-Mele model with topological solitons in an optical lattice
New J. Phys. 17, 013018(2015)

2
O. Dutta, A. Przysiezna, and JZ, Spontaneous magnetization and anomalous Hall effect in an emergent Dice Iattice

arXiv:1405.2565
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Bose-Hubbard model with time-modulated energies
Bose-Hubbard Hamiltonian (no interactions) first:

H="> ety — J(b]

On-site energies are time dependent: ¢;(t) = ¢;(1 + 0 sin(wt)).

bis1 + b, 1by)

(@)

If w > J we can find effective time-independent Hamiltonianian:

Heft = Z eini — JEM (b by + b,T+1 b;)

i

Where: 05

T olx)

0
J’.eff — JJO <w(6i+1 _ 6,‘)> 0.0

A
N

) 2 a 6 8 10

x

3)
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When it is interesting?

Superlattice

Change of
tunneling
amplitude between
types od sites.
(Morais Smith)

External
potential

"Classical” shaken
lattice is effectively
of this type.
(Eckardt, Weiss,
Holthaus)

Disorder

Creation of
off-diagonal
disorder
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Disorder in optical lattice

Everything can be simulated with cold atoms
— how can we create a disordered potential?

Incommensurate .
lat. Frozen particles
Speckle potential
- - » Easy to create » uncontrollable
» Controllable > Not really a (or by Y. x7
, . Castin only)
» Big setup disorder! _
Aubry-André > Binary
disorder

not Anderson
16/39



Binary disorder

Recipe as before:

v

v

Let them evolve

v

v

"Freeze” them to create disorder pattern
Put another atoms interacting with the frozen ones

YANNAND
VAVAVAVA

Put some fermions/hardcore bosons into a lattice

On-site energies:
€ = Vn,f

For nf € {0,1}
— {0, V) '
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Periodically modulated (interspecies) interaction®

If we modulate periodically the interspecies interaction strength:

V — Vo + Vi sin(wt),

effectively we modulate on-site energies.
= We get renormalized tunneling (for w > J).

Vo+Visin(wt)

3A. Kosior et al. arXiv 1502.02453

(4)
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Effective time independent Hamiltonian
Effective Hamiltonian:

Herr = > _(Von)ni —
i
L _Jo fif nf=0 et _ J, if nf =nl,
’ Vo, ifnf=1" " J =JJ(Vijw), ifnln!
! i i+1

For uncorrelated disorder states localization at all energies
(1D). So DRDM (Dual Random Dimer Model) — no two adjacent

sites can be occupied by frozen particles

Vi(nf , —nf
JTo <1('U')> (bibiy1 + b}L+1bi)

Delocalized resonance
modes (Schaff, Akdeniz, K:
Vignolo 2010) «
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Approximation of the localization length

Jihip1 + Ji1iz1 + (i — E)yi = 0.

Let: Vi = ¢ini, where ni = 1/(-./,‘77,'_1), then:
Pit1 + i1 + Vigi =0,

where V; = |n;[2(e; + E) is a new effective diagonal disorder.
For DRDM: n; = 1/J#. Mapping onto kicked oscillator* yields
perturbative localization length

N1 p  (Vo+2(1 - J?)cos(k))
T (14 )2 8sin?(k)

« (1_ o prlp+cos(2k))
1+ p2+2pcos(2k) )’

where p = /(1 — p) and g — the density of frozen particles.

“L. Tessieri and F. Izrailev Physica E9, 405 (2001).
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Transparent modes

Delocalized mode exists
for:

Vi

if condition:
Vo < 2(1 —J')?

is fulfilled.

30r 3 ! B
ﬂ-; :
i I
ks i

220 2 ] 1
k3 I
= :I
2 i
g i

= 101 1 il -
g i
,I
,\

AR RS

0 1 0 1 2 3

quasimomentum
Localization length. Left panel:
{Vp =0.05,J = 0.95} (black) and
{Vo=0.1,J'= 0.9} (red). Right ¢
panel: {V, =0.1,J = 0.1}
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Band pass filter?

Transparent mode position cos(k;) = 2(14/{70\/1&;))2 can be

chosen by changing interaction (Vy, V1) or modulation
frequency w.
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Only particles with chosen quasimomentum leave the
disordered region.
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Long-range hoppings
What if we add next-nearest neighbor hoppings to our
Hamiltonian?

Herr = 3 _ i — JE (bl bjsq + h.c.) + I (bl biy2 + h.c.)

]
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Solid line for J = 0.01J.
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Mechanism

With nearest neighbor hopping

With NEXT—nearest neighbor hopping

L3 onance

If frozen particles are separated
by at least two sites, resonance
reappears.

If particle resonantly passes
one obstacle it will pass all of
them.
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Summary

» Off-diagonal disorder may be interesting
» It may be controlled using periodically modified interactions

» Future plans: Realization of random tunneling phases —
random gauge fields

Recent review on Hubbard: O. Dutta et al. arXiv:1406.0181,
Rep. Prog. Phys. in press

Financed: MAESTRO ST-2 DEC-2012/04/A/ST2/00088
http://chaos.if.uj.edu. pI/AOD/maestro/
N NARODOWE CENTRUM NAUKI

I\

2
X
N
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Many-body Anderson localization in 1D
D. Delande, C. Mueller, K. Sacha, M. Ptodzien, S. Avazbaev, JZ

Effects for BEC with interactions
» Effective one body (EOB) approach: ehys. Rev. Lett. 103 210402 (2009)
» Full many body solution: New J. Phys. 15 045021 (2013)

Hag V2t o ~<z>2] o2)=pnd2).  (616) =N

limit...
J. Billy et al., Nature 453, 891 (2008)

G. Roati et al., Nature 453, 895 (2008)
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Experiments in the non-interacting
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Bright solitons in a BEC

Gross-Pitaevskii equation:

1
5%l | wnie, g0 (el =N

B _ [N exp(—if) 5
¢0(Z q) E Cosh( q> ( )
-2 N2 g?

Wg n= = 8 (6)

density

&=

Yet full exact many-body solution - uniform
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Bright solitons in a BEC

Gross-Pitaevskii equation:

1
5%l | wnie, g0 (el =N

N exp(—if)
bo(z-q) = |57 (5
O(Z Q) \/ZE cosh (z%q> ( )
- _2 B N2g2
§= I\Tg w= - 8 (6) .

density

Yet full exact many-body solution - uniform
The position of the center of mass should be treated quantum

mechanically. %)
q - position operator for N particle soliton. )
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Bright soliton in a BEC

The effective Hamiltonian

If we add weak disorder potential V/(z), the effective
Hamiltonian describing center of mass motion reads:

I:IeffN — +/d2 V(2) |¢o(z — q)I°.

» Simple arguments:

Substitution of a time-dependent bright soliton solution
~ eP?¢y(z — q) to the energy functional

E

1
[ o2 | 10e0l2 + Glol* ~ uloP + V(2o

= Bo+ [orviootz - P
2N
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Bright solitons in a BEC

The effective Hamiltonian

» Bogoliubov theory:
(J. Dziarmaga, (2004) for V =10)

Z E. b} b ++/sz ) ldo(z — q)[2.
n,En>

N2 2
NVo < Ei =yl = 89 :
Weak perturbation cannot populate internal excited states of

the soliton.
Shape preserved
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Bright solitons in a BEC

Anderson localization
» V/(z) is optical speckle potential with correlation length o¢ < .

» To the second order (Born approximation) in the potential
strength Vg, inverse localization length, valid for (k) < k,

Nrké \?
k) ~ Gz mo0Vs <sinh7(r7rk§))

NVo = 1072y, 0o = 0.3¢, N = 100
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Many-body approach to Anderson localization

Motivation

Any many body effect omitted in the former effective CM
quantization approach could destroy the phase coherence and
the wavefunction.

Full many body test required

2

= [az (@) |- o+ V@] b+ § [ a2 012 0@ i) )

Discretization (3-point kinetic energy) gives Bose-Hubbard
Hamiltonian:

H= Z { (alai1 + h.c.) + Ea,Ta,Ta,a, +V a}a,}

J—252,U:Qand V= V(Z/),Z/II(g

B. Schmidt and M. Fleischhauer, Phys. Rev. A75 (2007)
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Many-body approach to Anderson localization

Technicalities

v

space restricted to 2K + 1 = 1921 points [-KJ, K¢]
Matrix product state (MPS) cvariational representation

wy=" S iR M )

Qe QNG 5l

v

i - site dependent tensors, Al - bond vectors

» We find a quasi-exact many body ground state — bright
soliton in a shallow trap (imaginary time propagation
TEBD)

» Trap is removed, disorder turned on, real time propagation
with TEBD v

» Reliable calculations for N = 25 particles
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Many-body approach to Anderson localization

Technicalities

v

Unit of length — soliton size & — Unit of time &2

Initial harmonic oscillator w = 0.025/¢2 (not to disturb the
soliton shape yet to confine CM to a distance slightly larger
than &)

strength of the random potential comparable to soliton
energy w/4ie. Vo =25x10"4

correlation of the disorder o9 = 0.4¢

discretization 6 = £/5 tests on smaller...

time step (Trotter errors!) dt = 0.008¢2

Nmax = 14 (needed!) despite N§/2¢ = 2.5 for N = 25

x = 30 (small possible) dimension per site 450 (1921 sﬂes@
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Many-body approach to Anderson localization

Tests
> %, Nmax, O, ....
» entropy of entanglement growth

S= S = - A2 In(alh?2
sup S = sup > (I

e

)
)

—
T
1

Entropy of entanglement
[S*]

OO

] ; 1 i 1 . »
1000 ZQOO 3000 4000 X,
Time
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Many-body approach to Anderson localization

Results

» Atomic density in time

L T Y T t‘ T I
2 =0
g 1 1 o) -- =500 | T
=2
.0
£ 0.5
8
<
%0

96 realizations of disorder
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Many-body approach to Anderson localization

Results

» One body density matrix (:f(z)(2'))
60

40

Z'[€

—40 =20 0 20 40 60
z/€
Transverse width ~ £. Largest eigenvalue = condensate
fraction =0.14!
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Many-body approach to Anderson localization

Simulation of the measurement

» From MPS repesentation — pll by contraction of tensors..
» Choose n; according to the statistical distribution

» Project MPS on subspace with that n; on / site and
normalize

» Repeat scanning other sites till reaching N

15 T T T

5F .

[a—y
o
T

Atomic dens

4
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Many-body approach to Anderson localization

Comparison with effective one body of 2009

» Let us compare CM densities coming from both

approaches
0-15'|'|'|'|'|

Ip()” |

0.01%

000l =0 20 0 20 40 &0

2 [T e,
Ip(g)l T
0.01

Ll 1 TR T
0.001 10

96 versus 10 000 realizations of disorder for EOB. Dotted 1/q.
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Conclusions:

» AL for attractive interactions in 1D disorder

» Excellent agreement between full many body and EOB
description

» Full simulation of the experiment including the
measurements possible.
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